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Abstract. To deal with highly uncertain and noisy data, for example, biochemical laboratory examinations, a
classifier is required to be able to classify an instance into all possible classes and each class is associated with a
degree which shows how possible an instance is in that class. According to these degrees, we can discriminate the
more possible classes from the less possible classes. The classifier or an expert can pick the most possible one to
be the instance class. However, if their discrimination is not distinguishable, it is better that the classifier should
not make any prediction, especially when there is incomplete or inadequate data. A fuzzy classifier is proposed
to classify the data with noise and uncertainties. Instead of determining a single class for a given instance, fuzzy
classification predicts the degree of possibility for every class.

Adenomatous polyps are widely accepted to be precancerous lesions and will degenerate into cancers ultimately.
Therefore, it is important to generate a predictive method that can identify the patients who have obtained polyps and
remove the lesions of them. Considering the uncertainties and noise in the biochemical laboratory examination data,
fuzzy classification trees, which integrate decision tree techniques and fuzzy classifications, provide the efficient
way to classify the data in order to generate the model for polyp screening.
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1. Introduction

Colorectal cancer (CRC) has become one of the lead-
ing causes of cancer death in Taiwan, with nearly 2900
new cases and 1900 deaths reported each year. Despite
advances in treatment, early detection can probably re-
duce CRC mortality more than any other approaches.
Therefore, it is important to develop a cost-effective

cancer screening policy in the hopes of reducing CRC
mortality by detecting lesions at any early, curable
stage.

The prevalence of adenomatous polyp varies geo-
graphically in parallel with the incidence of colorec-
tal cancer and an increasing risk of colorectal cancer
[1–4]. The concept is now widely accepted that ade-
nomas are precancerous lesions and will degenerate
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into cancers ultimately. Nowadays, the majority of the
pathogeneses of the colorectal cancer are attributed
to the adenoma-adenocarcinoma sequence. Hence, the
identification and removal of the precancerous lesion,
an adenomatous polyp, have significant clinical impli-
cations and are now commonly recommended for the
control of CRC. Endoscopy is considered the most sen-
sitive diagnostic modality for detection of colorectal
polyps. However, the effort and eventual cost involved
based on this surveillance strategy are potentially enor-
mous and not practical, except for high-risk groups.
Owing to the shortage of medical resources at present,
it is important to develop a most cost-effective and safe
screening method to predict the existence of adenoma-
tous polyps.

In order to determine the predictive value of the risk
factors related to the existence of rectosigmoid colon
polyps, physicians evaluate all putative risk factors ob-
tained from checkup items. Bias inevitably occurs from
this assumption, in that only factors that have been se-
lected can be shown to have association. A collection
of physical checkup data with the patients who under-
went sigmoidoscopy enrolled for the polyp screening
analysis.

Classification can be thought as the base of ability
to knowledge acquisition [5]. Some classification tech-
niques, e.g. decision trees [6–11], decision lists [12, 13]
work well for pattern recognition and process control.
Here, we choose these techniques to apply to colon
polyp screening analysis [3]. Unfortunately, it is hard
to clearly classify the data because of the uncertainties
and noise. Obviously, a vague classification method is
needed to deal with such problems. That is, a classifier
is able to classify an instance into all possible ones and
each class is associated with a degree which shows how
possible an instance is in that class. According to these
degrees, we can discriminate the more possible classes
from the less possible classes.

As a result, a more reasonable answer from the clas-
sification system should present all probable conclu-
sions, each of which is associated with a degree of
possibility. When the number of variables to describe
a process is not large, it models the process by (1)
dividing the whole space into several subspaces, (2)
representing each subspace by a simple linear func-
tion, and (3) interpolating several subspaces contin-
uously. When a system is very complex, it is neces-
sary to extract the relevant variables in the premises
of fuzzy models. Sugeno and Kang [14] proposed to
use a mathematical programming method to dealing

with this problem. Schuermann and Doster [15] called
it to be hard-decision systems. A large amount of cal-
culation to identify premise parameters is unavoiding.
Therefore, fuzzy classifications have proposed by Hsu
and Chiang [16–18].

This paper introduces the use of the fuzzy classifica-
tion approach to polyp screening. Section 2 gives the
definition of classifications and problems of traditional
classifiers. The definitions of fuzzy classifications, fuzzy
classification trees and an example of fuzzy classifi-
cation trees are presented in Section 3. The attribute
selection measures are defined in Section 4. Section 5
describes the basic algorithm for constructing a Fuzzy
Classification Tree (FCT) from a data set. The classi-
fication process is shown in Section 6. The empirical
results compared FCT with C4.5 on polyp screening
are shown in Section 6, followed by the conclusion.

2. Classifications

Given a set of instances, a classification problem is con-
cerned with assigning each instance into a proper class
based on its attribute values. An instance can be de-
scribed in terms of its values corresponding to a given
set of attributes. The most important issue in classifi-
cation is to identify the key attributes of the instances.
Classification is an important inductive technology that
has been widely used to gain the information from a
very large database. The data in the database are identi-
fied to belong to different classes. Classification meth-
ods are used to minimize the difference in a class and
to maximize the difference among classes.

Consider an ordered set of attributes A =
(a1, a2, . . . , an) for the instance description. An at-
tribute value vector x = 〈x1, x2, . . . , xn〉 consists of
the value xi for the corresponding attribute ai . Each
attribute may take either ordered or categorical values.
Ordered values are typically numerical, either discrete
or continuous, while categorical values are symbolic.
For example, supposedly to decide whether one should
play golf depends on attributes {Outlook, Temper-
ature, . . . }. The attribute value vector for the golf
example may look like 〈sunny, 85◦F, . . .〉, in which
attribute Outlook takes a symbol as value and attribute
Temperature is numerical. As another example, in a
study on physical examinations performed at the Na-
tional Taiwan University Hospital, there were more
than 400 attributes associated with the examinations.
The first attribute was gender, which had a symbolic
value of either male or female; the second attribute,
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age, had a discrete value ranging from 0 to 120; the
third attribute, height, was defined over a continuous
range from 0 to 200.

Through a classification method, a classifier can be
constructed from a database. This classifier is able to
predict which class a new instance is. Many techniques,
such as Bayesian classifiers [19], decision trees [11],
neural networks [20], rule based learners [21, 22], etc.,
have been applied to producing classifiers. A classifier
is produced on a set of training instances and a decision
is made automatically on each new instance based upon
a forecast of the classification of the instance.

2.1. Requirements of Classifiers

Traditional classifiers, such as decision trees [11] and
rule based learners [13, 21, 22], usually produce a clas-
sification of every new instance. Although those classi-
fiers are generally efficient, they have serious problems
in dealing with elaborate real-valued attributes [23, 24].
In some applications, it is advantageous not to produce
a classification on every instance. In particular, when
a learning program is being used to assist a person to
perform some task, it might be desirable to have the
machine automatically make some decisions while al-
lowing others to be made by the person. It is necessary
that a classifier can classify an instance into all possi-
ble classes and each class is associated with a degree
which shows how possible an instance is in that class.
According to these degrees, we can discriminate the
more possible classes from the less possible classes.
The classifier or an expert can pick the most possible
one to be the instance class. However, if their discrim-
ination is not distinguishable, it is better that the clas-
sifier should not make any prediction, especially when
there is incomplete or inadequate data.

Bayesian classifiers estimate the probability that a
test instance is a member of each class and thes test
instance is assigned to the class with the highest prob-
ability. This kind of classification methods is based on
Bayesian formula [25, 26]. The a priori probabilities
are needed to explain the result of classifications. The
data defined on classical statistics can classify into n
mutually exclusive and equally likely outcomes. If n A

denotes those outcomes with property A, then the prob-
ability of A is the fraction n A/n [27]. A priori proba-
bilities are determined in accordance with the classical
definition. The purpose of the learning task is to con-
struct the rules from an amount of training samples. In
order to make those rules sufficient to describe the uni-

versal world, it is necessary that the training samples
are sufficient to be talked about by a priori. This seems
a strong assumption for the training set. Ignoring some
limitations in the classical, or a prior approach, for data
analysis, we will find that it is difficult in the data that
has high dimensions and is sparse.

Neural network classifiers that use a logistic activa-
tion function have units to produce an output ranged
from 0 to 1 [20]. A test instance can be classified cor-
rectly according to the value of the activation on the unit
with the maximum activation as a measure of the like-
lihood. A given threshold can be used to achieve mak-
ing a significant discrimination on classification tasks.
However, the complexity of defining the architecture
of neural network classifiers and the low convergent
rate of learning make this kind of classifiers improper
for high-dimensional large databases.

Therefore, the concept of “fuzzy classifications” has
been proposed [16–18]. Fuzzy classifications which
satisfy the basic requirements addressed above are
properly defined the classifiers that we need for data
analysis. A fuzzy classifier, fuzzy classification trees,
has been addressed instead of the other kinds of classi-
fiers. Fuzzy classification trees are a kind of tree struc-
ture classifiers.

2.2. Data Partition Problems

Classification by decision trees has been successfully
applied to problems in artificial intelligence, pattern
recognition and statistics. However, as Quinlan [28]
pointed out “the results of decision trees are categorical
and so do not convey potential uncertainties in classi-
fications.” Missing or imprecise information may pre-
vent a case from being classified at all. In the presence
of uncertainties, what is preferred is an estimate of the
degree of being in each class, e.g. in the medical do-
main.

CART [29], and C4.5 [11] choose a test for the root
node to create its leaves, partition the training set into
those nodes, and then apply the same algorithm recur-
sively to each of the leaves. The test chosen is according
to a goodness of split measured at each stage. Accord-
ing to the test, the data can be explicitly divided into a
nested sequence of regions. The data partition can have
favorable consequences for the bias of an estimator, but
it generally increases the variance of the estimator [30].
Consider the linear regression model, for example, in
which the variance of the estimates of the slope and in-
tercept depends quadratically on the spread of data on
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the projection axes of the corresponding independent
variables. The points that are the most peripheral in the
input space are those that have the maximal in decreas-
ing the variance of the parameter estimates. Jordan and
Jacobs called those algorithms variance-increasing al-
gorithms [30].

Instead of classifying a case as belonging to exactly
one class, and ruling out the others, one can estimate
the relative probabilities of it belonging to each class.
Casey and Nagy [31] designed a decision tree classi-
fier using probabilistic model for the optical character
recognition process. Breiman et al. [29] introduced the
class probability estimate. Quinlan [22] proposed prob-
abilistic decision trees to deal with uncertainties in data.
Schuermann and Doster [15] also proposed using the
probabilistic model to estimate the probability of each
class. In addition, to deal with the search bias intro-
duced in attribute selections and the hypotheses-space
bias due to noisy data [25], Buntine [26] suggested
the “averaging” method over multiple class probabil-
ity trees. Unfortunately, even as class probability trees
[29] that are used to produce accurate posterior class
probabilities, rather than simply the label of the mostly
likely class is also based on the data partition algorithm
of the traditional decision tree classifier, such as CART
or C4.5. That makes the class probability trees not able
to avoid the variance-increasing problem.

Probabilistic approaches still assume there is only
one decision node in the tree to which a case can be
classified. A test instance falls down a single branch to
arrive at a leaf labelled by a class and associated with the
corresponding probability. Such classifications ignore
the information at the other nodes. Several methods,
including Buntine’s classification trees [26], Rymon’s
Set Enumeration tree [32] have been addressed to solve
this difficulty. However, their approaches are still inef-
ficient in both time and space.

Due to the variance-increasing problem, a “soft”
splitting method that allows the training instance to
lie simultaneously in multiple regions is hence ad-
dressed. Jordan and Jacobs [30] proposed the variance-
decreasing algorithm that is a hybrid method combined
the bottom-up induction of decision trees and neural
computing. Their method defined a complex decision
tree architecture in which each node of the tree is a neu-
ral network. A complicated computation is involved in
training this hybrid architecture. A simple and efficient
method is necessary to overcome this problem.

Fuzzy decision trees [17, 33–35] which integrate de-
cision tree techniques and fuzzy classifiers, provide a

simple and efficient way to generate the classification
model that can suffer from inadequately or improperly
expressing and handling the vagueness and ambiguity
associated with human thinking and perception [36].
Even by Quinlan’s work [28], the types of uncertainties
are not to be probabilistic, appearing as randomness or
noise. Pedrycz and Sosnowski [37] pointed out that the
concept of fuzzy granulation realized via context-based
clustering is aimed at the discretization process. For
the sake of vagueness, fuzzy classifications are issued.
Through it, we can calculate the degree of possibility
that the instance belongs to any of the classes. Using
information-based measures, there is no need to gener-
ate multiple classification trees. Therefore, it requires
less time and space than decision forests [38].

3. Fuzzy Classifications

Fuzzy classifications are proposed to overcome the
difficulties that conventional classifiers cannot handle
multiple instances with overlapping attribute values
that belong to different classes, but keep the efficient
as decision tree classifiers.

Definition 1. Given a fuzzy classifier F for a given
classification problem (X , C) defines a total function

F : X → {〈p1, . . . , pn〉 | pi ∈ [0, 1]}

where pi is the possibility that a given instance x be-
longs to class Ci and n is the number of classes.

For ease of presentation, the function F is sometimes
represented as a vector of functions

〈℘1, ℘2, . . . , ℘n〉,

where ℘i is a possibility function X → [0, 1]. For any
given instance x, the relation ℘i (x) > ℘ j (x) indicates
that it is more likely for the instance x to be in class Ci .

A fuzzy classifier can be readily implemented by a
tree structure, such as fuzzy decision trees [33–36, 39].
In general, those methods can be separated into two
types, pre-fuzzification and post-fuzzification. How-
ever, no matter what the type of fuzzy decision tree
methods is, they all unavoid two phases processing to
generate the decision rules. They either prefuzzify the
data according to domain knowledge or postfuzzify the
decision rules generated by the decision tree methods
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Figure 1. A sample FCT with C = {C1, C2}

by some tuning methods. They do not concern the dis-
tribution of the data that can make improper classifi-
cations. Therefore, fuzzy classification trees [16–18]
have been presented to solve those problems on pre-
fuzzification and post-fuzzification.

This section briefly presents the basic definitions of
fuzzy classification trees (FCTs). Figure 1 shows a sam-
ple FCT that classifies instances into two classes C1 and
C2.

Let L be the set of all labels that is defined by a
labeling function that uniquely assigns a label to each
node and each branch.

Definition 2. Given an FCT, each node n in the tree
T is given a label:

Label(n) =



1 if n is the root;

Label(n′).i if n is the i th
child of node n′.

where . is the concatenation operator.

NL denote the node labeled by L ∈ L, and BL denote
the branch leading into node NL . Each non-terminal
node in the tree is associated with a test, and the result-
ing branches, BL .i , is associated with a membership
function

µL .i : X → [0, 1].

Intuitively, the membership defines the degree of pos-
sibility that an instance x ∈ X should be propagated
down the branch. In our implementation, each test at a
node is tested on a single attribute. Therefore, the mem-
bership function is defined over the projection on that
attribute, that is, projection(X , aL ), i.e. the domain
of the testing attribute aL ∈ A.

Suppose each node NL is associated with a class CL

and a possibility function PL .

Definition 3. Let the label for the parent node of NL

is denoted to be L̂ . The possibility function PL : X →
[0, 1] is defined by composing the membership func-
tions along the path from the root to node NL . That
is,

PL =
{

1 if NL is the root node;

PL̂ ⊗ µL if NL̂ is the parent of NL .

The composition operator ⊗ is defined in terms of some
valid operation for combining two membership func-
tions.

Several composition operators, e.g. fuzzy sum, fuzzy
product, and fuzzy max, are supported in our imple-
mentation. For example,

PL (x) = PL̂ (x) + µL (x)

when the fuzzy sum operator is applied.
Given any instance x at a terminal node NL in an FCT,

it is classified into class CL with a possibility PL (x).
As shown in Fig. 1, multiple terminal nodes may be
associated with the same class. It follows that an FCT
defines a unique fuzzy classifier

F = 〈℘1, . . . , ℘n〉

such that the possibility for an instance belonging to
class Ci is the maximum over all the possibility values at
terminal nodes classified as Ci . That is, for 1 ≤ i ≤ n,

℘i (x) = max{PL (x)|NL is a leaf ∧ CL = Ci }.

Before going into detail about the tree construction
algorithm, let us give a brief example to explain the
fuzzy classification tree. Consider that the objects were
human beings and the classification task involved the
hypertension, the attributes might be

rsabp systolic arterial blood pressure
rdabp diastolic arterial blood pressure
fbs fasting blood sugar

The normal arterial blood pressure is 120/70 mm Hg.
If a person whose resting systolic blood pressure is over
120 mm Hg and resting diastolic blood pressure is over
70 mm Hg, that can always increase this patient’s risk
for hypertension. Whatever the fasting blood sugar is
will take no effect on the hypertension’s diagnosis.
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Table 1. A training set of hypertension.

No. rsabp rdabp fbs class

1. 118 65 110 normal

2. 114 68 120 normal

3. 130 75 100 hypertension

4. 122 76 140 hypertension

5. 108 60 99 normal

6. 120 78 102 hypertension

7. 115 73 121 normal

8. 125 70 110 hypertension

9. 124 69 108 hypertension

10. 113 61 122 normal

11. 109 62 98 normal

12. 135 80 104 hypertension

13. 116 67 103 normal

14. 133 83 117 hypertension

15. 119 75 112 hypertension

In our example, we assume that each object in the
universe belongs to one of two mutually exclusive
classes, hypertension or normal, which is shown in
Table 1.

Our algorithm for constructing a fuzzy classifica-
tion tree can automatically identify the characteristics
of the attribute values in according to their appearances
at different classes, which is able to eliminate the noise
and adjust the classification of values. It also can dis-
tinguish which attributes are adequate or inadequate
for the current classification. We say attributes are in-
adequate for the classification task if two objects are
identical but belong to different classes, however, it is
clearly impossible to differentiate between these ob-
jects with reference only to the given attributes.

The classification rule will be expressed as a fuzzy
classification tree. A fuzzy classification tree that cor-
rectly classifies each object in the training set is given
in Fig. 2. As mentioned above, leaves of a fuzzy clas-
sification tree are class name, other nodes represent
attribute-based selections with a branch for each possi-
ble outcome. The tree is beginning from the root of the
tree and proceeding down to its leaves. The tree con-
structing process continues until a leaf is encountered,
then the object is asserted to belong to the class at the
leaf.

As shown in Fig. 2, the fuzzy classification tree
identifies the classification intervals for each attribute
in different classes. The interval of the ‘rsabp’ at-

Figure 2. A fuzzy classification tree for the hypertension example.

tribute for hypertension is (119, 135), and for normal
is (108, 118). Since the intervals of the normal and the
hypertension classes are nonoverlapped, so the mem-
bership function of each one is 1. The interval of the
‘rdabp’ attribute for hypertension is (69, 83) with mem-
bership 1, and for normal is (60, 69.83) that is di-
vided into two parts (60, 69) with membership 1 and
(69, 69.83) with membership greater than 0 and less
than 1. The intervals of the ‘fbs’ attribute for these two
classes as seen are almost overlapping. Of course, fbs
is the most inadequate attribute for the hypertension
classification.

From the root to the leaves of the fuzzy classification
tree, it is easy to see that the rsabp is the most adequate
attribute to construct a classification tree for the exam-
ple. It can correctly classify each object in the training
set. The essence of induction is to construct a fuzzy
classification tree that correctly classifies not only ob-
jects from the training set but other unseen objects as
well. The process of construction will be introduced in
the succeeding section.

As we expect, the fuzzy classification tree can not
only correctly classify the domain of each attribute but
also identify the adequate attribute. In the Fig. 2, the
attributes below the dash line are not needed to be con-
sidered further more. Both the rdabp and fbs attributes
are not considered any more, especially the fbs. Be-
cause the rsabp attribute is enough to distinguish the
objects which are hypertension or normal.

4. Information-Based Measure

At each node of a fuzzy classification tree, an attribute
is used to calculate the membership that an instance
should be split into a branch. This attribute is decided
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at the learning time, that may create the best data clus-
tering at the current node. The goodness of split is an
important criterion for selecting attributes to expand a
fuzzy classification tree. Some information-based mea-
sures have been widely applied to classifications for
evaluating the goodness of split [11, 29, 40–42].

In order to evaluate the uncertainties in the data,
Shannon has defined the information entropy function
that refers to the Boltzmann’s H theorem in statisti-
cal mechanics [43]. The foundation of Shannon’s for-
mula is based on probability theory. Quinlan [11], etc.,
have used such kind of uncertainty evaluation methods
to construct tree classifiers. These information-based
evaluation methods can be applied to the construc-
tion of probabilistic fuzzy classification trees. How-
ever, those methods are well-defined on probability.

According to the original probabilistic entropy de-
fined by Shannon [43] and fuzzy entropy function de-
fined by De. Luca and Termini [44], the information-
based measure should satisfy the following criteria. Let
the possibility ℘i for each i define the possibility of an
instance, where ℘i ∈ [0, 1]. Five criteria [16, 18] re-
quired for attribute selection in terms of an information-
based measure of FCT are listed as follows.

Property 1. Function H (℘1, ℘2, . . . , ℘n) should be
continuous in ℘i . This property prevents a situation in
which a very small change in ℘i would produce a large
(discontinuous) vibration.

Property 2. Function H must be 0 if and only if all
the ℘i but one are zero. When all but one is possible,
there exists no uncertainty in the data.

Property 3. Function H is the maximum value if and
only if the ℘i are equal because there exists the most
uncertainties in the data. That is, no matter what all
the ℘i are, the largest uncertainties happened when all
the ℘i are of the same value.

Property 4. Function H is a nonnegative valuation
on the ℘i .

Property 5. The purpose of an attribute selection
measure is to reduce uncertainties in the data, so it
is necessary that if a choice is broken down into sev-
eral successive choices, the original H should be no
less than the weighted sum of the individual values of
H. This property prevents the data been classified to
be worse than before.

We can define our fuzzy entropy functions that fol-
low the five criteria. Suppose we have a set of instances
SL at node NL . Assume there are n classes associated
with the possibilities of occurrences ℘1, ℘2, . . . , ℘n .
Concerning about the measure of how much choice is
involved in the selection of the instance in SL or of how
uncertain we are of the outcome, we choose the entropy
function to evaluate that.

Definition 4. The entropy for the set of instances SL

at node NL is defined by

Info(SL ) = −
∑
∀c∈C

Pc
L

PL
× log2

Pc
L

PL
.

where

PL = −
∑
x∈SL

PL (x)

is the sum of the possibility value PL (x) of all instances
at node NL , and

Pc
L =

∑
x∈SL∧Class(x)=c

PL (x)

is the sum over instances belonging to class c.

The entropy of a set measures the average amount of
information needed to identify the class of an instance
in the set. It is minimized when the set of instances are
homogeneous, and maximized when the set is perfectly
balanced among the classes.

A similar measurement can be defined when the set
is distributed into bL subsets, one for each branch based
on the test at node NL . The expected information re-
quirement is the weighted sum over the subsets.

InfoT (SL ) =
bL∑

i=1

PL .i

PL
× Info(SL .i ).

To assess the “benefits” of a test, we need to consider
the increase in entropy. The quality

Gain(TestL ) = Info(SL ) − InfoT (SL ).

measures the information gain due to the test TestL .
This gain criterion is used as the basis for attribute
selection.
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4.1. Choosing the Fuzzy Operations

Five criteria of fuzzy entropy limitate the fuzzy opera-
tors that can be used to calculate the possibility of each
instance at a node. Here, the fuzzy t-norm operator is
involved for the possibility evaluation because it can
satisfy those criteria, especially, the fifth property.

Since the function, log2 is a continuous function,
the fuzzy entropy defined by log2 is also a continuous
function. It is easy to see that Info satisfies Property 1.

If SL is the set of instances in NL that has been
purely classified into one class, that is all the ℘i of
each instance but one are zero. Let ℘i �= 0 for some
class Ci , then the possibility

PL =
∑
x∈SL

PL (x) =
∑
x∈SL

℘i (x).

The possibilities Pc
L of the other classes are zero.

Because

Pc
L =

∑
x∈SL∧Class(x)=c

PL (x) = 0

for c �= Ci . The entropy value of Info(SL ) will be zero
when all the possibilities ℘i but one are zero.

Property 3 restricts that the entropy value is maxi-
mum when all the class possibilities are equal. Accord-
ing to that, it needs that

∑
c Pc

L should be no bigger than
PL . Otherwise, this property will not be satisfied. Let
|C| be the number of classes and PCi

L = PC j

L for i �= j.
In the FCT algorithm, the sum operation

∑
is defined

to be equal to the sum

Info(SL ) = −
∑
∀c∈C

Pc
L

PL
× log2

Pc
L

PL

≤ −
|C|∑

i=1

PL

|C|PL
log2

PL

|C|PL

= −
|C|∑

i=1

1

|C| log2
1

|C| .

operation in classical (crisp) set.
Since 0 ≤ Pc

L ≤ PL for all class c ∈ C, log2
Pc

L
PL

≤ 0
and Info(SL ) ≥ 0. Therefore, it is no doubt that the
fourth property is also satisfied.

The purpose of an attribute selection in FCTs is to-
ward reducing the uncertainties in the data. After the
fuzzy classification tree has been generating, the total
entropy of the child nodes should be no greater than
the entropy of their parent nodes. In the other word, the

total entropy of child nodes from a node should be less
than or equal to the entropy of that node before the tree
expanded. That is,

Info(SL ) ≥
bL∑

i=1

PL .i

PL
× Info(SL .i ).

This is what the fifth property gives, which is a strong
constraint that restricts the kinds of fuzzy operations
and the membership functions. It also limits the clus-
tering methods to generate the membership function
from a node.

The membership function is the kernel for fuzzy
classifications. To determine the membership function
from a data set, the method of clustering is used. Clus-
tering is a well-used method in pattern recognition.
It plays a key role in searching for structures in data.
There may be different kinds of models simultaneously
occurring in the data, that is called multi-model [26].
Data could be clustered into differential groups in ac-
cordance with their distribution models. The models
construct the membership function of the data.

Fuzzy c-means clustering method [45], which satis-
fies the weaker requirement, is used to make a properly
vague partition. The membership value of each datum
defines how possible this datum is associated with a
category. The membership gives a meaningful expla-
nation on this vagueness. Therefore, to deal with the
unavoidable observation and measurement uncertain-
ties, fuzzy clustering is a very suitable choice applied
to real world applications.

Theorem 1. Let ⊗ be the fuzzy t-norm operator. If∑bL
i=1 µL .i (x) ≤ 1 for every x ∈ SL . Definition 3 satis-

fies the fifth property of entropy. That is

Info(SL ) ≥
bL∑

i=1

PL .i

PL
Info(SL .i )

Proof: Let α be the maximal membership value
for all membership functions. Since

∑
l µl(x) ≤

1 and α ≥ µl(x), ∀ l, x and
∑

c∈C Pc
L ≤ PL , the right-

hand-side of the inequality is derived as follows.

bL∑
i=1

PL .i

PL
Info(SL .i ) = −

bL∑
i=1

PL .i

PL

∑
c∈C

Pc
L .i

PL .i
log2

Pc
L .i

PL .i

= −
bL∑

i=1

PL .i

PL

∑
c∈C

Pc
L ⊗ µL .i

PL ⊗ µL .i
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× log2
Pc

L ⊗ µL .i

PL ⊗ µL .i

≤ −
∑
c∈C

Pc
L ⊗ α

PL ⊗ α
log2

Pc
L ⊗ α

PL ⊗ α

≤ −
∑
c∈C

Pc
L

PL
log2

Pc
L

PL

= Info(SL ).

5. Algorithms

This section presents the learning algorithm for con-
structing a fuzzy classification tree from a set of train-
ing instances containing real-valued attributes. Previ-
ous approaches to this problem usually fuzzify the data
before they are used to construct a decision tree [36].
The linguistic variables have to be defined ahead of
time based on existing domain knowledge.

The main algorithm for FCT construction as shown
in Fig. 3 takes an input a set S0 of instances, and starts
by creating a root node N1, adding its label to L, and
initializing S1 to be S0.

The fuzzy information gain evaluation is
based on the algorithm in Fig. 4. The procedure
Spawn New Tree(NL , ai ) that expands the tree from
node NL according to some attribute ai is shown in
Fig. 5. Fuzzy c-means clustering algorithm is then
taken to derive the membership of data based on the
selected attribute ai [18].

Figure 3. The algorithm to construct FCTs.

Suppose there are n attributes with m possible
classes, and each attribute (no matter what is cate-
gory of numerical) is associated with at most v val-
ues. Considering the worse case, which is similar to
conventional decision tree algorithms, the Build FCT
algorithm will use all the attribute values to gener-
ate classification rules for each classes. Therefore, its
worse case time complexity is O(n × m × v).

6. Experiments

The dataset selected is from a general population
who were admitted for two-day physical checkups at
National Taiwan University Hospital (NTUH) from
November 1, 1993 to October 31, 1994. All the subjects
had no prior history of any colorectal pathology. During
this one-year period, 2987 patients were admitted for
physical checkup. A total of 2746 patients who under-
went sigmoidoscopy enrolled for the polyp screening
analysis. There were 264 patients (9.5%) found to have
rectosigmoid polyps by 60 cm-flexible sigmoidoscopy.
Since the national health insurance system did not cover
the fee of physical checkup, most cases were consid-
ered from upper and middle socioeconomic classes.

The purpose of this study was to determine the
prevalence of distal large bowel polyps, both adeno-
matous and hyperplastic. At NTUH, there are about
500 checkup records for each patient in a two-day
physical checkup. Sigmoidoscopy using 60cm flexi-
ble endoscope without sedation was administered by
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Figure 4. The gain ratio evaluation algorithm.

Figure 5. The algorithm to expand the fuzzy classification trees at
each node.

experienced endoscopists on all patients except those
who gave up this procedure. If polyps were detected,
the endoscopists should describe the size, number and
location in detail. According to the endoscopic ap-
pearance, submucosal tumor, such as leiomyoma, lym-
phoid follicle, lipoma, and normal mucosa excres-
cences, were considered as negative findings for this
study. Although biopsies might be done at the screen-
ing site, it was not mandatory to this study at this stage.

Twenty one attributes, such as blood type, sex, age,
body mass index, serum cholesterol, triglyceride, to-
tal protein, albumin/globulin, albumin, Zinc Turbit
Test, direct bilirubin, total bilirubin, alkaline phospho-
tatase, acid phosphotatase, alanine aminotransferase,
asparate aminotransferase, mean corpuscle volume,
hemoglobin, hemoglobin A1C, alcohol consumption,
and smoking, were selected for discovering the knowl-
edge about the patients who will get polyp.

6.1. Cross Validation Estimates

A three-fold cross validation for the polyp screening
data set was performed. The original data set is ran-

domly split into two parts. One (2/3) is for training,
and the other (1/3) is used for testing. FCT and C4.5
methods have been compared across a variety of learn-
ing tasks in each experiment.

A frequent application of Bayes’ theorem is to eval-
uate the performance of a diagnostic test intended for
use in screening program. Let B denote the event that
a person has disease in question; B̄ the event that the
person does not have the disease; A the event that the
person gives a positive response to the test; and Ā the
event that the patient gives a negative response.

The results of this trial of the screening test may
be represented by the two conditional probabilities
P(A | B) and P(A | B̄). The probability P(A | B) is the
conditional probability of a positive response given that
the person has the disease; the larger P(A | B) is, the
more sensitive the test is. The probability P(A | B̄) is
the conditional probability of a positive response given
that the person is free of disease; the smaller P(A | B̄) is
(equivalently, the larger P( Ā | B̄) is), the more specific
the test is [46].

Let False Negative denote the conditional probabil-
ity that the person who has polyps but obtains neg-
ative response, and False Positive denote the condi-
tional probability that the person who does not have
polyps but gets positive response. Therefore, the less
the value of the False Negative is, the more sensitive
the screening method is. The less the value of the False
Positive is, the more specific the screening method is.
These two values identify two error types. In medical
examinations, False Negative is the important factor for
evaluating the effect of screening method. We need to
develop a method with the lowest False Negative ratio.
On the other hand, we compare these two kinds of error
rates instead of the accuracy rates and list in Table 2.
There are 211 runs of cross validation tests have been
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Table 2. The error rates of the NTUH checkup data set for polyp
screening (1).

Error rate

Method False negative False positive

FCT 0.226478 ± 0.087654 0.010175 ± 0.007056

C4.5 0.971804 ± 0.020626 0.007173 ± 0.001265

performed. These results were obtained according to
the F-test under the confident level of 68%. According
to Table 2, the error rate on False Negative of C4.5
is 0.971804 ± 0.020626 which is higher than FCT’s
0.226478±0.087654. Since 1 minus the value of False
Negative is the value for sensitivity, we can conclude
that the sensitivity of C4.5 is 0.092827 ± 0.001265
and the sensitivity of FCT is 0.989825 ± 0.007056. It
means that FCT is more adapted than C4.5 for polyp
screening. About 78% patients who have polyps will
get positive response without taking colonscope exam-
inations. However, about 1% patients who do not have
polyps will be detected to have polyps by FCT, that
is less specific than C4.5. The detail is shown in the
following section.

In another experiment, five attributes, albu-
min/globulin, albumin, alanine aminotransferase, as-
parate aminotransferase, and mean corpuscle volume,
are substituted by uric acid, Na+, K+, Ca++, and Cl−.
After we performing the three-fold cross validation 200
runs, the error rates of FCT and C4.5 are listed in Ta-
ble 3. Those substituted attributes are not important in
the polyp screening dataset because they seldom occur
in a fuzzy classification tree or a C4.5’s decision tree,
even as they occurred as the tests in the trees are far be-
neath the root of the tree. However, those five attributes,
uric acid, Na+, K+, Ca++, and Cl− are less important
than albumin/globulin, albumin, alanine aminotrans-
ferase, asparate aminotransferase, and mean corpuscle
volume for polyp screening because of the increased
error rates.

Table 3. The error rates of the NTUH checkup data set for polyp
screening (2).

Error rate

Method False negative False Positive

FCT 0.251768 ± 0.092644 0.176667 ± 0.02075

C4.5 0.971804 ± 0.021626 0.007173 ± 0.001746

Table 4. The error rates of the NTUH checkup data set for polyp
screening (3).

Error rate

Method False negative False positive

FCT 0.352234 ± 0.107644 0.182367 ± 0.120444

C4.5 0.986231 ± 0.010325 0.003242 ± 0.002241

In most of the fuzzy classification trees for polyp
screening, we found that age, body mass index, triglyc-
eride, Zinc Turbit Test and hemoglobin A1C were at
the important locations (root or near the root as possi-
ble) for constructing the classification trees. It seems
that these five attributes are the key features for polyp
screening. If we substituted uric acid, Na+, K+, Ca++,
and Cl− for age, body mass index, triglyceride, Zinc
Turbit Test and hemoglobin A1C, the error was in-
creased. Table 4 lists the error rates. Comparing the
error rates in Table 4 with Table 3, we can come to the
conclusion that some of those attributes, age, body mass
index, triglyceride, Zinc Turbit Test and hemoglobin
A1C are important for polyp screening.

From those empirical results on polyp screening, we
find that FCT is more suitable than C4.5 for polyp
screening. Not only FCT is able to make more pre-
cise decision for polyp screening, but also FCT is able
to properly reflect the effects of features. C4.5 is not
capable of doing them.

7. Discussion

In some applications, the classifier is advantageous not
to produce a classification on every instance. The clas-
sifier is needed to produce the reasonable classification
to assist a person to perform the final decision. When
there is incomplete or inadequate data, a system that
makes no prediction may provide more useful informa-
tion than a system that makes its best guess on every
case. In addition, for disease screening, the classifier
should satisfy the following criteria.

• Due to the limitation of medical resources, the clas-
sifier needs to identify the patients who do not get the
disease and do not need to take any further diagnosis.

• The classifier is able to distinguish the patients who
should take a further diagnosis. That is, the classifier
can identify the patients who are at the risk of getting
the disease.
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Figure 6. The differences of the predicted possibilities between every “polyp” instances belonging to class polyp and class healthy.

Figure 7. The differences of the predicted possibilities between every health instances belonging to class polyp and class healthy.

A one-run cross validation test is depicted in Figs. 6
and 7 to check if the FCT system satisfies the require-
ments of classifiers. Under the condition of the origi-
nal attributes, a one run cross validation testing result
is collected for illustrating the effect of FCT on polyp
screening. The data set is divide into two groups: one is
the set that all patients have rectosigmoid polyp which

is called polyp group; the other is the set of the healthy
persons which is called healthy group. Of course, the
healthy group contains the persons who were not de-
tected to have rectosigmoid polyp by 60 cm-flexible
sigmoidoscopy.

Figure 6 shows the sensitivities of FCT. It shows the
predicted possibilities and the possibility differences
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Table 5. The ratio of the difference of the predicted pos-
sibilities of two classes that is less than a threshold in the
NTUH checkup data set for FCT polyp screening.

Difference between two classes

Criterion False negative False positive

≤0.15 0.0513002 0.001686

≤0.1 0.226478 0.010175

of an instance between two classes. There are eighty-
six patients detected to have rectosigmoid polyps by
colonscopic examination. According to the twenty one
attributes, FCT and C4.5 can construct classifiers for
polyp screening respectively. Basically, a requirement
for disease screening strategies is that few false neg-
ative results should be determined. Awfully, C4.5 al-
ways makes wrong decisions for the patients who have
polyps. In this run, only four patients have been de-
tected to have polyps. The decisions of C4.5 are biased
to the majority, if only a small proportion of popula-
tion will get the disease. It can be thought as an unbal-
anced learning. In medical and financial applications,
the classifiers should avoid classifying an instance into
only one class. It is better to give a possibility result of
each class. Then we can make further judgment from
the other diagnoses and information.

Figure 7 shows the specificity of FCT. It shows the
predicted possibilities and the possibility differences
of an instance between two classes.

A useful data mining tool is not expected to substitute
human being. The most important is that the tool can
help people filter some impossible results. FCT gives
each patient the possibility of being in each class. As
seen in the Fig. 7, although almost a quarter of patients
whose possibilities of being healthy are higher than
possibilities of being polyp, the difference between
these two predicted possibilities is always smaller than
0.1. According to our experiments, there are almost no
possibility differences greater than 0.15.

7.1. A Reduced Dataset

The 400 patients are extracted from the original polyp
dataset to be a reduced subset. It includes 200 polyp
patients and 200 healthy persons. We have performed
the three-fold, five-fold, and ten-fold cross validation
respectively on this subset based on the original twenty
one attributes. The empirical results are listed in Table 6

Table 6. The error rates of the three cross validation tests.

Error rate

Validation Method False Negative False Positive

Three-fold FCT 0.2108 ± 0.06501 0.2306 ± 0.05546

Three-fold C4.5 0.4243 ± 0.10652 0.3863 ± 0.11224

Five-fold FCT 0.2017 ± 0.05923 0.2009 ± 0.04944

Five-fold C4.5 0.3724 ± 0.10736 0.3372 ± 0.10962

Ten-fold FCT 0.2008 ± 0.03612 0.1874 ± 0.04017

Ten-fold C4.5 0.3008 ± 0.08716 0.2918 ± 0.08193

where each cross validation test has been performed ten
times.

The ten-fold cross validation test is always consid-
ered to be a unbiased test [47, 48] in machine learning,
because the accuracy rate of the ten-fold cross valida-
tion test is more precise than the accuracy rate of the
others (three-fold and five-fold) for most of classifiers.
In this reduced subset, the change of the error rates of
FCT is less than the change of the error rates of C4.5
from the three-fold cross validation test to the ten-fold
cross validation test. Comparing the results of the re-
duced set with the results of original set, we can make a
further conclusion that those attributes can not provide
a distinct classification for polyp screening. The reason
may be due to the data is incomplete or inadequate.
Therefore, we should collect enough information for
classifications and collect the patient data of real total
colon examinations.

8. Conclusion

The uncertainties and noise make classification diffi-
cult. Missing or imprecise information may prevent a
case from being classified at all. It is occurred in the
boundaries of the data in two more different classes
[49, 50]. In the presence of uncertainties, it is often de-
sirable to have an estimate of the degree that an instance
is in each class.

Probabilistic tree classifiers [15, 22, 26, 29, 31] have
been proposed to deal with uncertainties and noise.
However, the a priori probabilities are needed to ex-
plain the result of classifications. In addition, prob-
abilistic tree classifiers do not give a good solution
for data partition. For numerical attributes, discretiza-
tion [11, 51] makes the data in the overlapped re-
gion be classified into only one branch. A test instance
falls down a single branch to arrive at a leaf where a



74 Chiang et al.

probability is associated with each class. Such classi-
fications ignore the possibility that instance could be
classified into the other branches.

In a fuzzy classification tree, an instance has a mem-
bership value at each node. Instead of determining a
single class for any given instance, fuzzy classifica-
tion trees can predict the degree of possibility for every
class. Using information-based measures, there is no
need to generate multiple classification trees. There-
fore, it requires less time and space than decision forests
[38].

C4.5 is totally useless for polyp screening. All the
patients who have polyps are almost classified into
the healthy class. Basically, a requirement for dis-
ease screening strategies is that few false negative re-
sults should be determined. Unfortunately, C4.5 al-
ways makes wrong decisions for the patients who have
polyps. Only few instances can be clearly classified.
The testing result of the checkup dataset is formally
under the consideration of F-test at the confident level
of 95%. Using the three-fold cross validation testing,
we will see that the error rate on false negative of FCT
is less than the error rates on false negative of C4.5.
That is, FCT is more sensitive than C4.5. The deci-
sions of C4.5 are always biased to the majority, if only
a small proportion of population will get the disease. In
medical and financial applications, it is important that a
classifier should give the estimate degrees of all poten-
tial classes. The classifiers should avoid classifying an
instance into only one class. The fuzzy classifier, fuzzy
classification trees, can estimate the possible degrees
of all classes. According to these possibilities, even if
we pick the class with the high possibility to be the
patient’s class, a much better prediction can be made
by FCT than by C4.5.
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