
PII: S0301-5629(00)00323-9

● Original Contribution

A TEXTURAL APPROACH BASED ON GABOR FUNCTIONS FOR
TEXTURE EDGE DETECTION IN ULTRASOUND IMAGES
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Abstract—Edge detection is an important, but difficult, step in quantitative ultrasound (US) image analysis. In
this paper, we present a new textural approach for detecting a class of edges in US images; namely, the texture
edges with a weak regional mean gray-level difference (RMGD) between adjacent regions. The proposed
approach comprises a vision model-based texture edge detector using Gabor functions and a new texture-
enhancement scheme. The experimental results on the synthetic edge images have shown that the performances
of the four tested textural and nontextural edge detectors are about 20%–95% worse than that of the proposed
approach. Moreover, the texture enhancement may improve the performance of the proposed texture edge
detector by as much as 40%. The experiments on 20 clinical US images have shown that the proposed approach
can find reasonable edges for real objects of interest with the performance of 0.46 0.08 in terms of the Pratt’s
figure. (E-mail: chung@lotus.mc.ntu.edu.tw) © 2001 World Federation for Ultrasound in Medicine & Biology.

Key Words:Ultrasound image, Edge detection, Early vision model, Wavelet analysis, Distance map, Difference
mask.

INTRODUCTION

Edge detection is an essential task in many quantitative
analyses of ultrasound (US) images. It usually serves as
the first step in border identification, area and volume
measurement for the object of interest. Some typical
examples are border detection of hepatic ducts (Sun et al.
1996), contour detection of breast tumors (Collaris and
Hoecks 1996), contour tracking of cardiac structures
(Chalana et al. 1996; Mikic et al. 1998), tongue contour
tracking (Akgul et al. 1999), and so on. Nevertheless,
edge detection has been recognized as a difficult problem
in US image analysis due to the intrinsic noisy and
textural nature of a US image.

The intrinsic noises and textures result from such
factors as signal processing, image formation, interpola-
tion, tissue property, speckle, artefact, and so forth. The
most notorious phenomenon is the speckle, which de-
grades not only the perceivable resolution by a factor of
5 to 7 (Kozma and Christensen 1976), but also the
discriminability of subtle difference in grey levels

(George et al. 1976). The texture pattern, composed of
quasirepetitive texcels (i.e., texture elements) or sporadic
spots of middle-grained size, basically reflects the tissue
property. It should be pointed out that the speckles,
textures and artefacts are considered as noises primarily
from the viewpoint of edge detection. For practical clin-
ical applications, speckles, textures and artefacts fre-
quently play an important role in making the diagnosis.

The fundamental difficulty of US image edge de-
tection mainly arises from the false edges that are easily
generated from the speckles, texcels, sporadic spots and
artefacts. An edge of an object of interest in an US image
is intrinsically determined by two properties of the two
adjacent regions forming the edge. One property is the
regional mean grey-level difference (RMGD) (i.e., the
difference of the mean grey levels of these two regions).
The other property is the texture difference of these two
regions. If the RMGD is significant, regardless of the
texture difference, the edge may be easily detected by
classic approaches because the strength of the desired
edge is much stronger than that of false edges.

However, for many US image applications, such as
hepatic tumor analysis, it is quite common that the
RMGD of the desired edge is not significant enough,
which has made edge detection a hard problem because

Address correspondence to: Chung-Ming Chen, Institute of Bio-
medical Engineering, College of Medicine, National Taiwan Univer-
sity, #1, Sec. 1, Jen-Ai Road, Taipei, Taiwan. E-mail: chung@
lotus.mc.ntu.edu.tw

Ultrasound in Med. & Biol., Vol. 27, No. 4, pp. 515–534, 2001
Copyright © 2001 World Federation for Ultrasound in Medicine & Biology

Printed in the USA. All rights reserved
0301-5629/01/$–see front matter

515



determination of the desired edges may be seriously
interfered with by the false edges. What is even worse is
that, in the extreme case, the desired edge may be pri-
marily defined by the texture difference. It means that
those edge-detection approaches designed to utilize the
RMGD would be ineffective or even useless in capturing
these edges. Because the texture of the object of interest
normally differs from that of its surrounding tissues, this
paper would focus on finding the texture edges with a
weak RMGD. A textural edge is defined as an edge
formed by two regions with different texture patterns,
regardless of the strength of the RMGD.

To cope with the interference of the noises and
textures, various approaches have been proposed previ-
ously for detecting edges in a US image. Most of these
approaches are basically nontextural approaches. Some
examples are: a genetic algorithm by Heckman (1996),
1D wavelet analysis techniques by Sun et al. (1996) and
Yoshida et al. (1998), a fuzzy logic approach by So-
laiman et al. (1996), the radial bas-relief technique by
Liu et al. (1997), and snake models by Mikic et al. (1998)
and Akgul et al. (1999). Although satisfactory results
have been reported for specific applications with these
nontextural approaches, these approaches may not be so
effective when they are used to detect the texture edges
with a weak RMGD. The main problem is the loss of the
textural information defining the edges. It is because the
nontextural approaches inherently consider the speckles
and tissue-related textures as noises, and discard them in
one way or another. Because the RMGD is small, the
nontextural approaches need to find an edge subject to a
low signal-to-noise ratio (SNR). Consequently, the edge-
detection performance may be seriously deteriorated by
the false edges of the speckles and texcels. Or, the
nontextural approaches may lead to a shift of the true
edge position, or smear the desired edges, if a substantial
denoising or speckle reduction operation is applied.

Alternatively, to utilize fully the texture difference
and the RMGD, using textural approaches would be,
theoretically, a better choice in finding a texture edge
with a weak RMGD. Nonetheless, not many textural
approaches have been proposed to obtain the boundary
of an object of interest in an US image previously.
Notably, Muzzolini and colleagues have suggested a
multiresolution framework incorporating simulated an-
nealing (Muzzolini et al. 1993), a method based on a set
of sampled textures (Muzzolini et al. 1994), and the Inck
(incomplete knowledge) criterion function (Muzzolini et
al. 1998) for US image segmentation. Mojsilovic et al.
(1997) used textural operators to separate different tissue
regions and morphological processing to refine extracted
contours. Boukerroui et al. (1998) proposed an adaptive
K-means clustering algorithm based on the multiresolu-

tion textures using the 2-D wavelet analysis for breast
lesion segmentation.

Although textural approaches have the potential
better to utilize the texture difference and the RMGD, at
least two problems remain to be solved to make textural
approaches clinically useful. One of them is feature
extraction and the other is reduction of the interference
from the sporadic spots. A good feature is generally
considered as the key to the success of all textural
approaches. Two excellent reviews on the texture fea-
tures for general texture image analysis may be found in
Haralick (1979) and Reed and du Buf (1993). However,
many texture features [e.g., texture spectrum (He and
Wang 1990), fractal dimension (Keller et al. 1989), co-
occurrence matrix (Haralick 1979), etc.] have been found
to be ineffective in distinguishing different tissue tex-
tures (Sun et al. 1996; Lai and Chen 2000). Generally
speaking, the conventional texture features usually do
not perform very well in US image analysis because of
the quasiperiodic nature of the speckles and texcels and
the inhomogeneity of the texture patterns over the entire
area of the object of interest. On the other hand, even if
a good feature is found, the interference from the spo-
radic spots may still seriously degrade the performance
of a texture edge detector.

To find the texture edges with a weak RMGD, a new
textural approach is proposed in this paper for the US
images. The proposed textural approach is composed of two
major techniques. One is a texture-enhancement scheme to
reduce the interference of the sporadic spots and the arte-
facts in texture feature extraction while retaining the tex-
tures. The other is a new texture edge detector based on an
early vision model using Gabor functions for feature ex-
traction. The early vision model has received a great atten-
tion in the past two decades, due to the great capability of
human visual perception in identifying the texture edges.
Inspired by the biological performance, numerous ap-
proaches have been proposed for texture edge detection
based on early vision models (e.g., Dunn et al. 1994; Bigun
and du Buf 1994; Jain and Farrokhnia 1991; Malik and
Perona 1990; Tan 1995; Van Hulle and Tollenaere 1993,
etc.) As in all vision model-based approaches, the basic idea
of the proposed texture edge detector is to simulate the early
vision process by extracting texture features from the neu-
roimages. The neuroimages are formed by convolving the
texture images with a set of receptive field profiles of simple
cells in V1 area tuned to different frequency and orientation
bands. However, the proposed texture edge detector differs
from many previous vision model-based approaches in that
the texture features proposed in our model have been de-
signed with a psychophysical support. By using the syn-
thetic edge images, the performance of the proposed tex-
tural approach has been compared to two nontextural edge
detectors and two textural approaches based on vision mod-
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els. Also, the edges derived by the proposed approach have
been compared with the boundaries delineated by the med-
ical doctors on the real ultrasound images.

MATERIALS AND METHODS

Finding texture edges with a weak RMGD in a
US image involves two essential tasks. One is effec-
tive texture edge detection and the other is reduction
of the interference of the sporadic spots and the arte-
facts in texture feature extraction while preserving the
textures. To accomplish these two tasks, a new tex-
tural approach composed of a vision model-based tex-
ture edge detector and a texture-enhancement scheme
is proposed in this paper. Motivated by the incredible
ability of the human vision in texture edge detection,
the proposed texture edge detector attempts to simu-
late the texture-discriminating process in the early
vision. Its partial results have been successfully ap-
plied to enhance the image force of a snake model in
Chen et al. (2000). On the other hand, to augment the
performance of texture edge detection, rather than
performing denoising or speckle reduction, the pro-
posed texture-enhancement scheme smoothes out the
undesirables and keeps the texture information unaf-
fected as much as possible using wavelet analysis. It
should be emphasized that the proposed textural ap-
proach is not limited to use on the US images. It may
be applied to general texture edge detection problems
by properly choosing the parameter values, such as
block size, decomposition levelJ, and so on, which
depends on the image types and will be defined later.

Texture edge detector
Vision is a very complex process in the human

brain. Even though extensive studies have been carried
out for decades in an attempt to attain a better under-
standing of the visual process, the outcome is still quite
limited, except for the early vision. Recent researches on
psychophysics, psychophysiology, and neurology have
suggested that simple cells are the fundamental process-
ing elements for visual information. The receptive field
profile of a simple cell in V1 area may be modeled as an
even or an odd Gabor function, and each simple cell is
tuned to a specific narrow frequency and orientation
band (Daugman 1980). The inputs of a simple cell are
approximately summed and weighted by the correspond-
ing Gabor coefficients. The output of a simple cell is
half-way rectified. The general form of a Gabor function
may be expressed by:

g~ x, y! 5 exp$2@~ x 2 x0!
2a2 1 ~ y 2 y0!

2b2#p%

3 exp$22pi @u0~ x 2 x0! 1 v0~ y 2 y0!#%, (1)

and its Fourier transform is

G~u, v! 5 expH2
1

p F ~u 2 u0!
2

a2 1
~v 2 v0!

2

b2 GJ
3 exp$22pi @ x0~u 2 u0! 1 y0~v 2 v0!#%. (2)

The Gabor functions have a nice property that they
can simultaneously achieve the lower bounds of the
uncertainty inequalitiesDx z Du $ p/4 andDy z Dv $
p/4. In other words, they may attain very narrow fre-
quency and orientation responses while spatial localiza-
tion is maintained. Alternatively, the receptive field pro-
file may also be modeled closely by several other func-
tions (e.g., the difference of offset Gaussians, DOOG)
(Malik and Perona 1990). The DOOG function is a linear
combination of three offset identical Gaussian functions.
Define the zero-mean Gaussian function in the spatial
domain as:

G~ x0, y0, sx, sy! 5
1

2
psxsy

3 exp$2@~ x 2 x0!
2/sx

2 1 ~ y 2 y0!
2/sy

2#%, (3)

wheresx andsy are the standard deviations in thex and
y directions, respectively, and (x0, y0) the center of the
Gaussian function. As an example, the DOOG function
used by Malik and Perona (1990) is:

DOOG5 a z G~0, ya, sx, sy! 1 b z G~0, yb, sx, sy!

1 c z G~0, yc, sx, sy!, (4)

whereya 5 2yc 5 sy and yb 5 0.
To simulate the multichannel filtering mechanism

inherent in the biological early vision, two types of
algorithms have previously been considered to generate
the neuroimages. One is to compute the neuroimages
with a predefined set of receptive field profiles (Bigun
and du Buf 1994; Jain and Farrokhnia 1991; Malik and
Perona 1990). The other is to apply the receptive field
profiles only to the significant frequency components
(e.g., the largest local maxima in the Fourier spectrum)
(Dunn et al. 1994; Tan 1995). For a US image, because
the textures are not only complex, but also irregular, the
significant frequency components of the entire image do
not necessarily correlate with the primary spatial fre-
quency components of the textures. Therefore, it would
be a reasonable choice to use a predefined set of recep-
tive field profiles reasonably covering the entire fre-
quency domain for edge detection in an US image.

The set of Gabor filters employed in this study is the
rosette map suggested by Jain and Farrokhnia (1991), as
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shown in Fig. 1, which reasonably covers the entire
frequency domain. Each ellipse in Fig. 1 is a Gaussian
function in the frequency domain and each pair of el-
lipses symmetrical with respect to the origin (the center)
represents an even Gabor function. The rosette map is
constructed as follows. For the horizontal pairs of Gauss-
ian functions, given the central frequency,u0, the fre-
quency bandwidth,Bf, and the orientation bandwidth,
Bu, the SD of a Gaussian function in both dimensions,
(i.e., su and sv) are defined in eqns (5) and (6), as
suggested by Jain and Farrokhnia (1991). TheBf andBu

define the bandwidth in the horizontal (radial) and azi-
muthal directions, respectively. The bandwidth is com-
puted at the half-peak magnitude for each Gaussian func-
tion. Because several experiments have shown that the
frequency bandwidth of the simple cells in the V1 area is
about one octave (Pollen and Ronner 1983),Bf is set to
1 in this work. With all possibleu0 andBu in the V1 area,
empirically, we chooseBu 5 308 andu0 5 =2/ 2, =2,
2=2, . . . , 2k21=2, wherek 5 (log2 M) 2 1 andM
is the block size, which will be defined later.

Bf 5 log2Su0 1 ~2 ln 2!1/ 2su

u0 2 ~2 ln 2!1/ 2su
D (5)

Bu 5 2 tan21S ~2 ln 2!1/ 2sv

u0
D . (6)

After the horizontal pairs of Gaussian functions have
been derived, other pairs of Gaussian functions may be
easily obtained by rotating the corresponding horizontal
pairs. Note that, for each Gaussian function in Fig. 1,
only the portion larger than the half-peak magnitude is
shown. One salient feature of this set of Gabor filters is
that, in the spatial domain, it can catch fast-changing
edges with a smaller bandwidth and slow-changing
edges with a larger bandwidth. Unlike Jain’s and Far-
rokhnia’s work (Jain and Farrokhnia 1991) in which the
weighting factor for each Gabor function is inversely
proportional to the square of its central frequency, all
weighting factors are set to 1 in this study. Also, the DC
component of each Gabor function is set to zero.

The proposed texture edge detector basically
evolves from the texture discrimination model proposed
by Chen (1994). In Chen’s study, a psychophysical ex-
periment was carried out to quantify the perceptual sim-
ilarities between a reference random dot texture and 16
isoperiodicity textures. In parallel to the psychophysical
experiment, each texture, denoted asI , was convolved
with a bank of filters which were either Gabor or DOOG
functions with different orientations and frequencies, as
illustrated in Fig. 2 byI* hk, where ‘*’ denotes the 2-D
convolution andhk thekth Gabor function. The integra-
tion over the output of a given polarity (on or off), which
simulated half-wave rectification of a V1 simple cell,
gave a single number representing the response of a filter
to a texture. For the filtered image using thekth Gabor
function, S1 and S2 represent the integration opera-
tions of the positive and negative pixels, respectively, in
Fig. 2. The sum of the positive pixel values and that of
the negative pixel values are denoted bygpk and gnk,
respectively. For a given texture, this number defined the
coordinate of a point along the axis associated with the
filter of a given polarity in theN-dimensional space

Fig. 1. The rosette map for the selected set of Gabor filters in
frequency domain, in which each Gabor function consists of
two Gaussian functions (ellipses) symmetrical with respect to
the origin and only the portion larger than the half-peak mag-

nitude is shown for each Gaussian function.

Fig. 2. Derivation of theG-vector, whereI* hk stands for
convolving the image with thekth Gabor function,S1 andS2
represent the integration operations over the positive and neg-
ative pixel values, respectively, and the vectorG denotes the

G-vector.
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defined by the bank of filters employed. The vector
formed by theN numbers (i.e., the vectorG in Fig. 2)
uniquely defining a point in theN-dimensional space for
each texture is calledG-vector in this paper for conve-
nience. The perceptual similarity between two textures
was modeled as the Euclidean distance between their
correspondingG-vectors. The results of his study
showed that the similarities predicted by this model
closely agreed with those obtained by the psychophysical
experiments.

Supported by the psychophysical experiments,
Chen (1994) not only provides an effective mathematical
model to quantify the perceptual similarity between two
textures, but also implicitly suggests that a texture may
be characterized by itsG-vector. Based on Chen’s results
and recent physiological findings, the proposed edge
detector has been designed to capture the texture edge
with a weak RMGD by transforming theG-vectors of
local texture information into the distance map and the
difference mask that, together, define the desirable edges.
More specifically, the proposed edge detection is com-
posed of four steps as described in the following.

Step 1: Compute the G-vectors of local textures for
each pixel.Unlike Chen’s approach and most previous
early vision models, in which the neuroimages are ob-
tained by convolving the entire image with Gabor filters
(or other models of receptive field profiles), the proposed
approach characterizes the textures surrounding each
pixel within a small block. As illustrated in Fig. 3, the
underlying imageI is decomposed into overlapping
blocks of constant size. Suppose the image size isN 3 N
and the block size isM 3 M. We will have (N 2 M)2

blocks, each centered at a pixel in the central (N 2 M) 3
(N 2 M) region of the imageI . Then, for each block,
compute theG-vector with the predefined set of even
Gabor filters, which may be formally expressed as fol-
lows. Denote the block centered at the pixel (i , j ) of the
imageI asB(i , j ) and theG-vector computed fromB(i ,

j ) as G(i , j ). Let Bk(i , j ) 5 B(i , j )* hk and Bpk(i , j )
denote the half-way rectifiedBk(i , j ) of positive polarity
[i.e., all negative pixels values are set to zero in the
neuroimage,Bk(i , j )]. Also, the value of the pixel (r , s)
in Bpk(i , j ) is denoted byBpk(i , j )[ r ][ s]. Similarly,
Bnk(i , j ) denotes the half-way rectifiedBk(i , j ) of neg-
ative polarity. Supposen Gabor filters are used. Define:

G~i , j ! 5 ~ gp1~i , j !, gn1~i , j !, . . . ,

gpk~i , j !, gnk~i , j !, . . . , gpn~i , j !, gnn~i , j !! (7)

and

gpk~i , j ! 5 O
r51

M O
s51

M

Bpk~i , j !@r #@s# (8)

gnk~i , j ! 5 O
r51

M O
s51

M

Bnk~i , j !@r #@s#, (9)

wherehk is thekth Gabor function and * the 2-D con-
volution.

The size of a block should be selected so that the
number of texcels in each block is adequate to represent
the speckles and the tissue-related textures. Because, for
a US image with a good quality, a block of size 83 8 or
16 3 16 usually comprises a sufficient number of speck-
les and texcels, these two block sizes have been em-
ployed throughout our studies. Choosing a block size of
a power of two is for fast implementation of the 2-D
convolution.

Step 2: Compute the distance map.The distance
map, DIST, of the underlying image is defined as
DIST(i , j ) 5 iG(i , j )i, wherei xi is the 2-norm of the
vectorx. Then, the peaks in the distance map suggest the
edge locations. To demonstrate the distance map, Fig. 4a
is used as the source of the texture image, which is a
synthetic edge image consisting of two 1283 128 US
images. To ensure a weak RMGD around the desired
edge, the image intensity of both US images has been
adjusted so that the RMGD between the rightmost four
columns of the left image and the leftmost four columns
of the right image is zero. As a result, Fig. 4b gives the
distance map derived by using the block size of 83 8 for
Fig. 4a. The line profile of the 53rd line of the distance
map, which is marked by a white line in Fig. 4b, is
plotted in Fig. 5. One can see that a peak does exist at the
border of two textures in the distance map.

To see what texture features have been exploited by
the distance map and why a peak can be formed at the
texture boundary, without loss of generality, consider the

Fig. 3. Given the image sizeN 3 N and the block sizeM 3 M,
decomposing the underlying US image into (N 2 M)2 blocks,
each centered at a pixel in the central (N 2 M) 3 (N 2 M)

region of the image.
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contribution from one element, saygpk(i , j ), in G(i , j ) to
DIST(i , j ). Then,

gpk
2 ~i , j ! 5 S O

r51

M O
s51

M

Bpk~i , j !@r #@s#D 2

5 Ppk~i , j !~1 1 Xpk~i , j !! (10)

and

Ppk~i , j ! 5 O
r51

M O
s51

M

~Bpk~i , j !@r #@s#!2 (11)

Xpk~i , j ! 5 2 O
r151

M O
s151

M O
r251

M O
s251

M

~r 1, s1! Þ ~r 2, s2!

3 SBpk~i , j !@r 1#@s1#

ÎPpk~i , j !
z

Bpk~i , j !@r 2#@s2#

ÎPpk~i , j ! D
5 M211 2

1

1 1
m

s22 , (12)

wherem ands2 are the mean and the variance ofBpk(i ,
j ), which are defined as

m 5

O
r51

M O
s51

M

Bpk~i , j !@r #@s#

M2 (13)

s2 5
Ppk~i , j !

M2 2 m2. (14)

Equation (10) decomposesgpk
2 (i , j ) into two mul-

tiplicative factors,Ppk(i , j ) and Xpk(i , j ). Ppk(i , j ) is
actually the AC power of the half-way rectified neuro-
image of positive polarity,Bpk(i , j ). Note that the DC
power is zero because the DC component has been set to
zero for each Gabor function. On the other hand,Xpk(i ,
j ) measures the uniformity ofBpk(i , j ). Generally, the
more uniform theBpk(i , j ) is, the smaller thes2/m will
be and, hence, the larger theXpk(i , j ) will be. Therefore,
each element of theG-vector is made up of two texture
features, namely, the AC power and the uniformity in the
corresponding half-way rectified neuroimage of a given
polarity.

Because derivation of a distance map involves such
nonlinear operations as half-way rectification, square,
and so forth, formally showing why a peak can be
formed at the texture border is basically a difficult prob-
lem. Nevertheless, one may still gain some insight into
the behavior of the distance map around the texture
border by analyzing the AC power and the uniformity of
each element in theG-vector. For ease of analysis, as
illustrated in Fig. 6, a bipartite image composed of two
texture images with the texture border at the central

Fig. 5. The line profile of the 53rd line of the distance map,
which corresponds to the white line marked in Fig. 4b, showing

a peak at the border of two textures.

Fig. 4. (a) A synthetic edge image consisting of two 1283 128
US images. (b) The distance map of the synthetic edge image

derived by using the block size of 83 8.
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column is used for investigating the AC power. Take any
block, B(i , j ), containing the texture border as an exam-
ple. Each blockB(i , j ) is composed of two textures,
namely, the left and the right textures. Suppose the sizes
of the block, the left texture and the right texture areM 3
M, M 3 (M 2 l ) andM 3 l , respectively. The total AC
power contained in the distance map ofB(i , j ) is:

total AC power5 O
k51

n

~Ppk~i , j ! 1 Pnk~i , j !!, (15)

wherePnk(i , j ) is the AC power of the half-way rectified
neuroimage of negative polarity. According to the
Parserval’s theorem, the total AC power may be ex-
pressed in the frequency domain as:

total AC power5 O
u51

M O
v51

M US O
k51

n

~F~hk! z F~B~i , j !!!D
3 @u#@v#U 2

5 O
u51

M O
v51

M USS O
k51

n

F~hk!D z F~B~i , j !!D @u#

3 @v#U 2

< C O
u51

M O
v51

M

uF~B~i , j !!@u#@v#u2, (16)

whereC is a constant,F( z ) the 2-D discrete Fourier
transform (2-D DFT) anduxu is the magnitude of the
complex numberx. From the second line to the third line
in eqn (16), it is assumed that the magnitudes of all
frequency components in the sum of all Gabor functions
are approximately equal. For example, the ratio of the
SD to the mean of all frequency components is less than
10% for the sum of the Gabor functions defined in the
rosette map whenM 5 64. This ratio may be further
reduced if more Gabor functions are used or proper
weights are assigned to the Gabor functions.

Roughly speaking, the total AC power captured by
the distance map for each blockB(i , j ) is proportional to
the total power ofB(i , j ). Denote the regional mean grey
levels of the left texture, the right texture and the entire

block of B(i , j ) as ml, mr, and ma, respectively. It is
assumed that both left and right textures are homoge-
neous so thatml andmr are independent of the texture
areas. Again, using the Parserval’s theorem, the total
power ofB(i , j ) may be expressed as:

1

M2 O
u51

M O
v51

M

uF~B~i , j !!@u#@v#u2 5 O
r51

M O
s51

M

uB~i , j !@r #@s#u2

5 O
r51

M O
s51

M2l

~B~i , j !@r #@s# 2 ml!
2 1 O

r51

M O
s5M2l11

M

~B~i , j !

3 @r #@s# 2 mr!
2 1 M~M 2 l !~ml 2 ma!

2

1 Ml ~mr 2 ma!
2 1 M2ma

2. (17)

Equation (17) divides the total power ofB(i , j ) into the
power purely from textures (i.e., the first two terms), the
power from the regional mean grey levels (i.e., the sec-
ond two terms) and the power from the DC component
(i.e., the last term). Because both left and right textures
have been assumed to be homogeneous, each of the first
two terms would be linearly proportional to the texture
area. Hence, the sum of the first two terms would be a
monotonic function ofl , for l from 0 to M. For the
second two terms, one can easily show that, ifmr Þ ml,
the sum of the second two terms is monotonically in-
creasing withl , for l from 0 toM/ 2, and monotonically
decreasing withl , for l from M/ 2 to M. The maximum
of the sum of the second two terms, thus, occurs atl 5
M/ 2. The second two terms diminish ifmr 5 ml. The
last term is actually the DC component of the blockB(i ,
j ) and will be cancelled when filtered with the Gabor
functions because the DC component of all Gabor func-
tions have been set to zero. As a result, as a block slides
from the left of the texture border to the right, one may
expect a local maximum at the texture border for the total
power of the block. Because the total AC power con-
tained in the distance map is roughly proportional to the
total power of each block, a local maximum may be
observed at the texture border for the total AC power of
the distance map.

Although the decisive information captured by the
AC power, Ppk(i , j ), is the variation of the low fre-
quency information (i.e., the information based on the
regional mean grey levels) the major information caught
by the uniformity, Xpk(i , j ), is the middle- to high-
frequency information. Consider a block,B(i , j ), in the
bipartite image given in Fig. 6, and a middle- to high-
frequency Gabor function,hk. Initially, supposeB(i , j )
consists of only one texture. Then, because a texture is
composed of periodic or quasiperiodic texcels,Bpk(i , j )
is also periodic or quasiperiodic and it is very likely that
most energy ofBpk(i , j ) is concentrated in the periodic or
quasiperiodic blobs as a result of filtering with a middle-

Fig. 6. The model of a bipartite image used in the analysis of
the total AC power contained in the distance map of each block.
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to high-frequency Gabor function. As the block moves
from one texture to the other, say, from the left of the
texture border to the right, the energy concentration
phenomenon will be disturbed when the other texture
(the right texture) appears in the block. In other words,
more and more energy will start to spread over the entire
block as the area of the right texture is getting larger.
That is, thes2/m of Bpk(i , j ) tends to become smaller as
the block moves from the left toward the texture border.
Likewise, a similar argument may be made for a block
moving from the right to the left. By symmetry, it is
reasonable to expect a local minimum for thes2/m and,
hence, a local maximum for theXpk(i , j ) at the texture
border. As an example, Fig. 7d demonstrates the change
of the uniformity,Xpk(i , j ), for a 643 64 block moving
from the 36th column to the 95th column centered at the
64th row in the 1283 128 LM texture image shown in

Fig. 7a. The texture border is at the 64th column. The
main reason why an LM texture image rather than a
synthetic US edge image is used is that, from a US
image, it is relatively difficult to find a homogeneous
subimage as large as 1283 128 for extracting blocks of
size 643 64, which is considered as the minimal ac-
ceptable size for presentation. To better visualize the
correlation between the uniformity and the energy dis-
tribution (i.e., the grey-level distribution) over the entire
block, B(64, 401 6t) andBpk(64, 401 6t), for t 5
1 to 9, are provided in Fig. 7b and c, respectively. The
uniformity corresponding to each of these blocks is also
marked in Fig. 7d. The central frequency of the Gabor
function used is (u0, u ) 5 (4=2, p/3) in the polar
coordinate system. All blocks in Fig. 7c have been quan-
tized by the same decision and output levels for visual
comparison of relative brightness. One may see from
Fig. 7c that the strips in the block marked as “col64” are
more uniform and dimmer than those in other blocks,
which results in a higher uniformity. Note that the uni-
formity variation shown in Fig. 7c and d would be less
evident for using a low-frequency Gabor function be-
cause the texture information may be smeared too seri-
ously to characterize different textures.

In summary,DIST(i , j ) comprises two major tex-
ture information. One is the total AC power involved in
all neuroimages, which is roughly proportional to the
total power of the underlying block of image. For a block
centered at the texture border, because the areas of both
textures are about the same, the total AC power may
contribute a local maximum in the distance map, pro-
vided that the regional mean grey levels of both textures
in the block are different. The other texture information
contained inDIST(i , j ) is the uniformity measurement in
each half-way rectified neuroimage of a polarity. In
contrast to the total AC power, which mainly utilizes the
low-frequency information (i.e., the regional mean grey
levels) to generate a peak at the texture border, the
uniformity variation would be more evident for the half-
way rectified neuroimage of a polarity computed from a
middle- to high-frequency Gabor function. A local max-
imum of uniformity may occur at the texture border
because the half-way rectified neuroimage of a polarity
derived from a block centered at the texture border is
usually more uniform in terms ofs2/m than the corre-
sponding half-way rectified neuroimages from the adja-
cent blocks.

Step 3: Compute the difference map and the differ-
ence mask.The distance map plays the decisive role in
identifying the potential edges. Nevertheless, the differ-
ence mask generated from the difference map further
confines the regions where the desired edges might exist
to suppress the false peaks due to the noisy nature of the

Fig. 7. Demonstration of uniformity variation across a texture
border along the 64th row of a texture image. (a) A 1283 128
LM texture image with the texture border at the 64th column;
(b) nine blocks of the original image, includingB(64, 40 1
6t), t 5 1 to 9. (c) Bpk(64, 40 1 6t), t 5 1 to 9. (d)
Uniformity from the 36th column to the 95th column (i.e.,
Xpk(64, j ), j 5 36 to 95). The label beneath each block of

image is the column number of this block.
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US image, as shown in Fig. 5. The difference map,
DIFF , of the underlying image is defined as:

DIFF ~i , j ! 5 ~iG~i 2 1, j ! 2 G~i , j !i2 1 iG~i , j 2 1!

2 G~i , j !i2!1/ 2. (18)

Recall thatG(i , j ) is theG-vector of the blockB(i , j ).
Conceptually, the difference map computes the compos-
ite perceptual similarity between the horizontal adjacent
blocks and vertical adjacent blocks based on Chen’s
model (Chen 1994). The difference map of Fig. 4a,
derived by using the block size of 83 8, is provided in
Fig. 8a, and the line profile of its 53rd line, which
corresponds to the white line marked in Fig. 8a, is plotted
in Fig. 9. From Fig. 9, one may observe that the differ-
ence map does not generate a significant peak at the
texture border. That is, two adjacent blocks are not the
most dissimilar at the texture border. In practice, the
actual peak position is dependent on the texcel size. As
the block moves from the left texture to the right one,
ideally DIFF (i , j ) remains zero when the block contains
only one texture. When the block starts to include the
right texture,DIFF (i , j ) starts to have a positive value.
It is conjectured thatDIFF (i , j ) reaches a local maxi-
mum when the portion of the right texture in the block is
just large enough partially to exhibit the right texture
property. Suppose, at this time, the center of the block is
(i0, j0). It is because, at this time,G(i0, j0 2 1) mainly
sees the texture features from the left texture, whereas
G(i0, j0) sees texture features from both of the left and
the right textures. After that, as the block moves toward
the texture border, because the areas of both textures in

every two adjacent blocks only differ slightly, the dif-
ference of the texture information contained in theG-
vectors of every two adjacent blocks is expected to be
minor. Hence, it is reasonable to anticipate aDIFF (i , j )
smaller than the local maximum,DIFF (i0, j0).

Although the difference map may not be used to
pinpoint the desired edges, it does reveal the great pos-
sibility to find the desired edges within the regions en-
closed by the significant peaks. This observation has led
to the design of the difference mask, which serves as a
useful mask to suppress the undesired edges suggested
by the distance map. The goal is to extract the area
enclosed by the local maximums at the left side and the

Fig. 8. (a) The difference map of Fig. 4a derived by using the block size of 83 8. (b) The dilated difference map using
grey-level dilation with an 83 8 structuring element; (c) The difference mask; (d) The difference mask weighted

distance map.

Fig. 9. The line profiles of the 53rd lines of the difference map,
the dilated difference map and the difference mask weighted
distance map, which correspond to the white lines marked in

Fig. 8a, b and d, respectively.
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right side of the texture border in the difference map. To
generate the difference mask, a grey-level dilation using
an M 3 M (i.e., the block size) square structuring
element is first applied to the difference map to fill up the
regions enclosed by the significant peaks. The grey-level
dilation operatorGD(I (i , j ), Sp), which dilates pixel (i ,
j ) of imageI using thep 3 p structuring elementSp, is
defined as:

GD~I ~i , j !, Sp! 5 max~I ul! 1 max~I ur! 1 max~I ll!

1 max~I lr!, (19)

where

I ul 5 I ~i 2 p/ 2: i , j 2 p/ 2: j ! (20)

I ur 5 I ~i 2 p/ 2: i , j 1 1: j 1 p/ 2 2 1! (21)

I ll 5 I ~i 1 1: i 1 p/ 2 2 1, j 2 p/ 2: j ! (22)

I lr 5 I ~i 1 1: i 1 p/ 2 2 1, j 1 1: j 1 p/ 2 2 1!. (23)

In words, the grey-level dilation operatorGD(I (i , j ), Sp)
replacesI (i , j ) by the sum of the maximums of the four
regions defined byI ul, I ur, I ll and I lr . Following the
grey-level dilation, the dilated difference map is thresh-
olded by its mean value and set the pixels larger than the
threshold to 255, which results in a binary image con-
taining 0-pixels and 255-pixels. At this stage, it is ex-
pected that the desired edges would be covered by the
255-pixels. However, due to the noise in the difference
map, the binary image may contain undesirable small
clusters of 255-pixels. Also, the sizes of the 255-pixel
clusters covering the desired edges may be unnecessarily
large and can be shrunk. Thus, the binary image is
eroded by a 33 3 structuring element and the eroded
image is smoothed by a Gaussian function of SD 1,
which gives the difference mask. Because the edges of
the eroded image are step edges, the smoothing operation
is to eliminate the false edges that may be introduced by
the step edges when using the eroded image as the mask.
Taking Fig. 4a as an example, Fig. 8a–c shows the
difference map, dilated difference map and difference
mask of Fig. 4a. The line profiles of the 53rd lines, the
difference map and the dilated difference map are plotted
in Fig. 9, which correspond to the white lines marked in
Fig. 8a and b, respectively. From Figs. 8 and 9, one can
see that the dilated difference map has succeeded in
defining a significant region around the border, and the
difference mask has effectively excluded a great amount
of undesired area.

Step 4: Compute the difference mask weighted dis-
tance map.After the distance map and difference mask
have been derived, the difference mask weighted dis-
tance map,WDIST, may be easily obtained by comput-
ing WDIST(i , j ) 5 DIST(i , j ) z DM(i , j ), whereDM
denotes the difference mask. Finally, theWDIST is
smoothed by a Gaussian function and the peaks of the
smoothedWDISTdefine the potential edges. The Gauss-
ian function is to reduce the noise in theWDIST. For
example, the weighted distance map (Fig. 8d) resulting
from the distance map and the difference mask given in
Fig. 4b and Fig. 8c, respectively, has greatly reduced the
possible areas where the desired peaks in the distance
map (Fig. 4b) might exist. The 53rd line profiles of the
weighted distance map, labeled as “weighted distance
map” in Fig. 9, clearly show that the difference mask has
successfully eliminated many undesired false peaks in
comparison with the 53rd line profile of the distance map
illustrated in Fig. 5. Finally, one may apply a threshold-
ing technique to determine the desired edges.

As a summary, the proposed texture edge detector is
composed of four steps. In step 1, the image is decom-
posed into overlapping blocks and theG-vector,G(i , j ),
for each block,B(i , j ), centered at the pixel (i , j ) is
computed using the Gabor functions defined in the ro-
sette map show in Fig. 1. In step 2, the distance map,
DIST, of the underlying image, which is defined as
DIST(i , j ) 5 iG(i , j )i is computed. The peaks in the
distance map suggest the edge locations. In step 3, the
difference mask, which is generated from the difference
map, to suppress the false peaks in the distance map is
computed. The difference map,DIFF , is defined by eqn
(18). The difference mask is derived by applying the
grey-level dilation operator defined in eqn (19) to the
difference map, followed by thresholding, binary erosion
and Gaussian smoothing. In step 4, the distance map is
masked by the difference mask and theWDIST is
smoothed with a Gaussian function. The desired edges
are determined from the peaks in the smoothedWDIST,
for example, by thresholding techniques.

Texture enhancement
Even with a texture edge detector, false edges may

be easily generated due to the sporadic spots and arte-
facts in a US image. Obviously, the conventional denois-
ing techniques cannot be used because the texture infor-
mation may be spoiled greatly by the smoothing opera-
tions. To preserve the texture patterns used for
identifying the texture edge with a weak RMGD, a new
concept of denoising for texture enhancement is pro-
posed in this paper. Instead of smoothing the original
image, which may destroy the structures of all scales,
smoothing operations are only applied to those of se-
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lected scales. To achieve this goal, wavelet analysis is
employed to extract information of different scales.

Wavelet transform may be viewed as an operation
projecting an image onto subspaces of different resolu-
tions (scales). Because wavelet bases have a higher com-
pact support than sinusoidal functions, wavelet trans-
form, in general, provides a much better locality than
Fourier transform. Taking 1-D discrete wavelet trans-
form (DWT) as an example, mathematically, 1-D DWT
up to a levelJ of depths for a discrete signalx(n), neZ,
may be formulated as follows:

x~n! 5 O
j51

J O
keZ

dj,kc j,k
r ~n! 1 O

keZ
aJ,kfJ,k~n!, (24)

and

dj,k 5 O
n

x~n!c j,k~n! (25)

aJ,k 5 O
n

n

x~n!fJ,k~n!, (26)

where:

f(t)5continuous scaling function,
c(t)5continuous wavelet function,

cr(t)5continuous reconstructing wavelet function,
f j ,k(n)5discrete version of the scaling function at

scale 2j and positionk, f j ,k(t) 5
22j / 2f(22j / 2t 2 k),

c j ,k(n)5discrete version of the wavelet function at
scale 2j and positionk, c j ,k(t) 5
22j / 2c(22j / 2t 2 k),

c j ,k
r (n)5discrete version of the reconstructing wavelet

function at scale 2j and positionk, c j ,k
r (t) 5

22j / 2cr(22j / 2t 2 k),
dj ,k5detail coefficients at scale 2j and positionk,
aJ,k5approximation coefficients at scale 2J and

positionk.

By using 1-D DWT, for aJ levels of decomposition,
a discrete signalx(n) may be decomposed intoJ levels
of detail signals (i.e., the detail signals from level 1 to
level J) and an approximation signal at levelJ. The
detail signal at levelj , denoted asDj( x(n)), may be
computed fromdj ,k by Dj( x(n)) 5 ¥k dj ,kc j ,k

r (n) and
the approximation signal at levelJ, denoted asAJ( x(n)),
may be derived fromaJ,k by AJ( x(n)) 5 ¥k aJ,kfJ,k(n).
The approximation signal at leveli , Ai( x(n)), represents
the approximated (smoothed) version of the original sig-
nalx(n) with a resolution of one point for every 2i points
of the original signal. The detail signal at leveli ,

Di( x(n)), stands for the difference in information be-
tween the approximated versions of the original signal
x(n) at two successive resolutions. As a matter of fact,
the following iterative relation holds for the detail and
approximation signals at two successive levels, where
A0( x(n)) 5 x(n):

Ai21~ x~n!! 5 Ai~ x~n!! 1 Di~ x~n!!. (27)

Similarly, for the 2-D DWT, an image may be
decomposed into four images (i.e., one approximation
and three details) at each level of resolution. These three
details are horizontal, vertical and diagonal details.

To preserve the texture information as much as
possible in the texture enhancement process, our idea to
minimize the influence of the false edges is to perform
smoothing operation (e.g., using a Gaussian filter) on the
approximation at levelJ (i.e., A) rather than on the
original image. This idea has inherently assumed that the
small-scale texture information is mainly comprised in
the details at the firstJ levels. Note thatJ is image-
dependent and strongly related to the scales of the struc-
tures to be smoothed. After smoothing, the denoised
image,I d, may be reconstructed from the details in the
first J levels and the smoothedAJ, denoted asSAJ using
a relation similar to eqn (27) for 2-D DWT as follows:

I d 5 O
i51

J

~Hi 1 Vi 1 Di! 1 SAJ. (28)

For US images, a reasonable choice ofJ is J 5 log2M,
whereM 3 M is the block size for computation of the
distance map. The rationale of this choice is as follows.
Because, in theory, anM 3 M block would extract the
texture information with texcels not larger thanM/ 2 3
M/ 2 according to the Nyquist rate, the structures larger
than M/ 2 3 M/ 2 hardly contribute valuable texture
information to the distance map. On the other hand,
because the equivalent resolution inAJ is about 2J,
smoothingAJ should not ruin any useful texture infor-
mation that might be used in the distance map. This
texture-enhancement idea can be further generalized to
multiresolution filtering, if necessary. In other words,
one may apply Gaussian filters of different SDs to the
different levels of approximations.

Performance analysis
Two types of US images have been employed to

evaluate the performance of the proposed edge-detection
algorithm. One is the synthetic edge image and the other
is the clinical US image. The synthetic edge image is a
composite bipartite image consisting of two 1283 128
US images, as shown in Fig. 4a. Because the border of
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two textures is well defined, the synthetic edge image
serves for the exact performance evaluation of the pro-
posed algorithm. On the other hand, the detected edges
of the clinical US images are compared with the bound-
aries manually drawn by an experienced medical doctor.
Because the edges in the clinical US images usually are
not well defined, delineating the boundaries of the ob-
jects of interest is quite a subjective process. As a result,
the manually delineated boundary of an object frequently
varies substantially with that of the medical doctor.
Therefore, it should be emphasized that this performance
evaluation can only serve as a reference.

Because the focus of this paper is on those texture
edges with a weak RMGD, for comparative study, the
proposed algorithm has been compared to two nontex-
tural edge detectors and two textural edge detectors using
the synthetic edge images. The nontextural edge detec-
tors are taken into account because most previous ap-
proaches are nontextural approaches and the texture
edges still have detectable RMGD, though weak, that can
certainly be utilized by the nontextural approaches. The
comparison with the nontextural edge detectors is in-
tended to show the important role of the texture infor-
mation, even when the RMGD is relatively strong.

The two nontextural edge detectors are the Laplacian-
of-Gaussian (LOG) (Marr and Hildreth 1980) and the
Canny edge detectors (Canny 1986). The LOG is a widely
used edge detector that defines the edges at the zero-cross-
ing points of the second derivative of the Gaussian-
smoothed image. The LOG usually achieves a much better
performance than many other classic approaches, especially
in cases of low signal-to-noise ratio (Parker 1997). The
Canny edge detector is an optimal operator with respect to
a set of criteria (i.e., good detection, good localization, and
single response). Even though these two nontextural edge
detectors have been designed with a smoother, their perfor-
mance on US images is usually unacceptable due to the
speckles and tissue-related textures. To ensure the fairness
of the comparison among different algorithms, the under-
lying principle in the experimental design was to maximize
the intended capability of each algorithm. Therefore, for the
LOG and the Canny operators, the speckle reduction algo-
rithm proposed by Karaman et al. (1995) has been carried
out on the synthetic edge images before these two edge
detectors were applied. The reason why a speckle-reduction
algorithm rather than a denoising method is employed is
that the former can usually preserve the object boundary
better than the latter, by taking into account the statistical
property of the speckles. In this study, we have employed
the LOG and the Canny edge detectors provided in the
commercial software tool, MATLAB.

The two textural edge detectors are the early vision
model-based approaches proposed by Jain and Farrokh-
nia (1991) and Malik and Perona (1990). In the approach

of (Jain and Farrokhnia 1991), each texture image is
filtered with a set of even Gabor functions forming a
rosette map in the frequency domain. Among all filtered
images, the significant filtered images are selected so that
the summed power is 95% of the total power. Following
selection of the significant filtered images, a nonlinear
hyperbolic transform is applied to each filtered image
and the transformed image is averaged with a weighting
window (e.g., a Gaussian function) to measure the local
energy. The energy maps derived from all selected fil-
tered images form a feature vector for each pixel. A
clustering algorithm called CLUSTER is employed to
find the texture boundary, which recursively assigns each
pixel to the cluster with the shortest Euclidean distance
between the feature vector of the pixel and that of the
centroid of the cluster.

In the algorithm of (Malik and Perona 1990), each
texture image is convolved with a set of filters (DOG and
DOOG) followed by half-way rectification. Two DOG
functions have been used, namely DOG1 and DOG2,
which are defined as:

DOG1~s! 5 a z G~0, 0, s i, s i!

1 b z G~0, 0, s0, s0! (29)

DOG2~s! 5 a z G~0, 0, s i, s i! 1 b z G~0, 0, s, s!

1 c z G~0, 0, s0, s0!, (30)

where G( x0, y0, sx, sy) is the Gaussian function, as
defined previously. For DOG1,s i: s: s0 is 0.71:1:1.14
anda:b is 1: 21. For DOG2,s i: s: s0 is 0.62:1:1.6 and
a:b:c is 1:22:1. An inhibition scheme is then applied to
suppress the weak response based on the so-called
postinhibition response (PIR). The PIR selects the stron-
gest thresholded and weighted response from the sam-
pling neighborhood of each pixel in each channel. The
threshold for each pixel in each channel is the maximal
weighted response in the neighborhood of the pixel de-
fined over all channels. The weighting factors are related
to the measure of the effectiveness of inhibition. The
texture boundaries are defined by the local peaks in the
texture gradient, which is the maximum of the gradient
of the PIR smoothed by a Gaussian function among all
channels for each pixel.

The performance of each edge detector is evaluated
using the figure suggested by Pratt (1980), which is
defined as:

E 5
1

E0 max~I f, I 0!
O
i51

If S 1

1 1 adi
2D , (31)

where
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I f5the number of edge pixels found by the edge
detector,

I o5the actual number of edge pixels,
di5the shortest distance from thei th detected edge

pixel to the ideal boundary,
a5the scaling factor, which is set to 1 in our

analysis,
Eo5the normalization factor to take into account the

discrete nature of a digital image.

The reason for using the Pratt’s figure as the performance
index is that it not only measures the distance between
the all detected edges and the corresponding desired
edges, but also gives penalty to the excessive number of
edge points. For the synthetic edge image, the ideal
boundary is an imaginary line at the middle of the 128th
and the 129th columns. Therefore, the best performance
that an algorithm can achieve is 0.8. In this case,E0 is set
to 0.8. For the clinical US image, because the ideal
boundary is manually drawn by an experienced medical
doctor, there is no discrete problem andE0 is set to 1.

IMPLEMENTATIONS AND DISCUSSIONS

All US images, including those used to make the
synthetic edge images, are selected by medical doctors
and captured from a Toshiba SSA-380A clinical US
imaging system through a frame-grabber card. The
frame-grabber card was the Meteor-II card made by the
Matrox Electronic System Ltd., which captured the im-
age from the RGB output of the Toshiba SSA-380A and
stored the image in the BMP format with 8-bit resolution
for each color channel. The operating frequency of the
ultrasound system was 3 MHz.

For both of the synthetic edge images and the clin-
ical US images, the block size used in the proposed
texture edge detector is 83 8. Accordingly, the decom-
position levelJ for the texture enhancement is log2 8 5
3 as discussed above.

Rather than evaluating the performance using the
entire image, for each synthetic edge image, the Pratt’s
figure has been computed within a performance window,
that is defined as the central 803 w pixels (i.e., 80 rows
by w/ 2 columns at both sides of the imaginary bound-
ary). The reasons are two-fold. One is that it is quite
common to perform edge detection within a region-of-
interest (ROI). In this case, it is more appropriate to
measure the performance of the ROI instead of the entire
image. The other is that, since it is not easy to find a large
homogeneous area in an clinical US image to make the
synthetic edge images, computing the Pratt’s figure in a
large region might include edges from other tissues,
which are not necessarily false edges. On the other hand,
evaluating the performance within a small region may

not be applicable to the practical situations. Therefore, in
this paper, five differentw s (i.e., w 5 20, 40, 60, 80,
and 100) have been considered to account for the possi-
ble influence of the complex nature of a US image. For
succinctness, we will present the performances evaluated
using the five different performance windows only for
the proposed algorithm. The performance comparison
between different algorithms will be made by using one
small performance window (w 5 20) and one large
performance window (w 5 80), to avoid the possible
bias due to the window size. For each clinical US image,
the performance is evaluated only for those detected
edge points that are less than 10 pixels away from the
manually delineated boundary in terms of the Euclidean
distance. The size of the performance window is mainly
limited by the smallest size of the testing objects of
interest and by the criterion imposed by us (i.e., using
approximately the same area for inside and outside the
boundary in computing the Pratt’s figure).

Because the performance of each edge-detection
algorithm is quite dependent on the parameter values
used for each image, to avoid an unfair comparison due
to an improper selection of the parameter values, we
have adopted the best performance attainable in the per-
formance comparison. The best parameter values for
each algorithm have been sought by a coarse search
followed by a fine search. The coarse search is to narrow
down the possible ranges of the best parameter values for
each image by using a relatively large step size for each
parameter. The fine search is to find the best parameter
values with a small step size within the range determined
by the coarse search. For the LOG and the Canny edge
detectors, the best performance was found by varying the
only two parameters (i.e., the thresholds and the SDs)
specified in the MATLAB commands. For the Jain and
Farrokhnia and Malik and Perona approaches, the best
performance was derived by using the parameter values
given in their papers. In addition, because Malik did not
give the values for the radius of the sampling neighbor-
hood and the SD of the Gaussian function in computing
the texture gradients, coarse and fine searches have been
applied to these two parameters to find the best perfor-
mance. For the proposed algorithm, the threshold is
defined as the mean plus the SD multiplied by a factor,
Tm, where the mean and the SD are calculated over the
entire image. The coarse and fine searches have been
applied to the SD of the Gaussian function smoothing the
WDIST and the factorTm. Table 1 summarizes the
parameters to which the fine search has been applied as
well as their ranges and step sizes used in the fine search
for each algorithm. For the Jain and Farrokhnia (1991)
algorithm, no fine search has been conducted because the
parameter values given in the paper have been employed.
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On the synthetic edge images
To investigate the effect of the RMGD on the edge-

detection performance, 20 sets of synthetic edge images
have been employed for performance evaluation and
comparison. Each set consisted of five images that were
made of the same two 1283 128 US images, but with
different RMGDs. For each set, the RMGDs were set to
0, 10, 20, 30 and 40. The RMGD of each synthetic edge
image was ensured by adjusting the regional mean grey
levels of its two 1283 128 US images so that the RMGD
between the rightmost four columns of the left image and
the leftmost four columns of the right image met the
specified value. As an example, by using the proposed
texture edge detector without texture enhancement, Fig.
10 demonstrates the 15th set of the synthetic edge images
and the detected edges with the best performance in
terms of the Pratt’s figure. In Fig. 10, the RMGDs of the
five synthetic edge images are 0, 10, 20, 30 and 40 from
top to bottom. The synthetic edge images are in the left
column and the corresponding detected edge images are
in the right column, side by side. The white rectangle in
each right image of Fig. 10 indicates the performance
window of size 803 100.

Without texture enhancement, the best perfor-
mances of the proposed edge detector for the 20 sets of
synthetic edge images are plotted in Fig. 11 for five
different performance windows. In Fig. 11, the vertical
axis gives the Pratt’s figure and the horizontal axis ar-
ranges data into five clusters, in terms of the RMGD, that
are separated by vertical dashed lines. A cluster contains
the performance statistics of five groups, each consisting
of 20 synthetic edge images with the same RMGD and
the same size of the performance window. For conve-
nience, the notation conventionX[w] will be used to
denote the performance of the algorithmX computed
with the performance window of size 803 w. For the
proposed textural approaches,X can be “TED,”
“ETED3” and “ETED5,” which stand for the proposed
texture edge detector without texture enhancement, with
texture enhancement smoothed by a Gaussian function of
SD 3, and with texture enhancement smoothed by a

Gaussian function of SD 5, respectively. For the conven-
tional algorithms,X can be “LOG,” “Canny,” “Malik,”
and “Jain,” which represent the LOG, the Canny, the
Malik and Perona, and the Jain and Farrokhnia algo-
rithms, respectively.

Due to the skewed distribution of the Pratt’s figures
in each group, the quartile statistics (Vardeman 1994)
instead of mean and variance has been adopted to de-
scribe the performance statistics. For each group in Fig.
11 (i.e., given an RMGD and a performance window) the
Pratt’s figures of the 20 synthetic edge images are first
sorted in the ascending order. Each vertical rectangular
bar corresponds to the median (i.e., the 11th Pratt’s
figure) of the sorted sequence, which stands for the
averaging performance that the underlying algorithm
may achieve for this group. The upper and lower error
bars indicate the 15th and the 6th Pratt’s figures in the
sorted sequence, which are statistically equivalent to the

Table 1. The parameters and their ranges and step sizes used
in the fine search of the best performance for each algorithm

Algorithms Parameters Range Step size

Proposed approach
Tm 21.5–2.5 0.1
SD 1–3 1

LOG
Threshold 0.001–0.01 0.001

SD 0.1–3.0 0.1

Canny
Threshold 0.01–0.1 0.01

SD 0.1–3.0 0.1

Malik and Perona
Neighborhood radius 2–8 1

SD 4–16 1
Jain and Farrokhnia none NA NA

Fig. 10. The 15th set of synthetic edge images (left column) and
the corresponding detected edges (right column) with the best
performance computed within the central 803 100 region: The
RMGD of each image is (a) RMGD5 0; (b) RMGD5 10; (c)

RMGD 5 20; (d) RMGD5 30; and (e) RMGD5 40.
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first and the third quartiles of the distribution. The length
of the error bar is statistically called the interquartile
range, which characterizes the spread of the middle half
of the distribution.

Generally speaking, Fig. 11 shows that the proposed
edge detector without texture enhancement provides a
reasonably high performance, even for a synthetic edge
image with a small RMGD. As the RMGD increases, the
median performance monotonically increases and the
interquartile range monotonically decreases, which
means that the proposed scheme promises a more reli-
able performance for a larger RMGD. It is because, as
the RMGD increases, the second two terms in eqn (17)
increase. These two terms basically represent the power
due to the difference of the mean grey level of the block
and that of each texture. It implies a larger total power
for a block containing the texture border and, hence, a
large value in the distance map. Consequently, as the
RMGD increases, the peaks of the false edges become
less significant and, hence, the false edges may be greatly
reduced due to the stronger local maxima contributed
from the texture border. As the size of the performance
window increases, the performance generally decreases,
mainly caused by the increased false edges and tissue
edges included in the larger area. However, this phenom-
enon becomes less evident as the RMGD increases be-
cause of the stronger local maxima resulting from the
texture border. From Fig. 10, one may see that fewer
false edges have been produced and the detected edges
are more coincident with the texture border as the
RMGD increases.

To see the effect of the texture enhancement, like
Fig. 11, the relative performance of the proposed algo-
rithms, that is (ETED3[w]-TED[w])/TED[w] and
(ETED5[w]-TED[w])/TED[w], are plotted in Figs. 12
and 13, respectively, for five sizes of performance win-
dows. The vertical axes give the percentages of improve-
ment attained by using the texture enhancement. From

Figs. 12 and 13, it is clear that using the texture enhance-
ment may achieve a substantial improvement over those
implementations without using the texture enhancement,
though it may also degrade the performance. The im-
provement basically increases as the RMGD decreases,
due to the more and more important role that the texture
information plays in texture edge detection. For a small
RMGD (e.g., less than 30) the improvement computed
using a large window tends to be better than that using a
small window. Moreover, the ETED5[w] is generally
better than the ETED3[w], except whenw 5 20, given
a small RMGD. The reason is that a larger smoother (i.e.,
a Gaussian with a larger SD) may eliminate more false
edges than a smaller smoother as intended by the texture
enhancement. This effect becomes more obvious in a
performance window larger thanw 5 20. However, it
ought to be noted that the SD of the Gaussian function
used in the texture enhancement should not be too large
because the edge information due to the RMGD will also
be weakened when the false edges are being smeared out.

Fig. 11. The best performances of the TED[w], w 5 20, 40,
60, 80 and 100, for the 20 sets of synthetic edge images.

Fig. 12. The relative performance of the ETED3[w] to the
TED[w] (i.e., (ETED3[w]-TED[w])/TED[w], w 5 20, 40,

60, 80 and 100) for the 20 sets of synthetic edge images.

Fig. 13. The relative performance of the ETED5[w] to the
TED[w] (i.e., (ETED5[w]-TED[w])/TED[w], w 5 20, 40,

60, 80 and 100) for the 20 sets of synthetic edge images.
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Empirically, one may expect a reasonable improvement
by using a Gaussian function of SD 3 to 5 for the texture
enhancement.

Take the left image in Fig. 10a as an example,
which is the original synthetic edge image in the 15th set
with the RMGD 5 0. Figure 14b and c shows the
texture-enhanced images in the left column and the de-
tected edges with the best performance in the right col-
umn by using the ETED3 and the ETED5, respectively.
The size of the performance window is 803 100. Figure
10a, which contains the original synthetic edge image
and the detected edges, is repeated in Fig. 14a for ease of
comparison. It is clear from Fig. 14 that the texture
enhancement not only improves the edges around the
texture border, but also reduces the false edges.

In performance comparison, because the relative
performance among the TED, the ETED3, and the
ETED5 algorithms have been presented above, without
loss of generality, the TED algorithm has been chosen to
represent the proposed algorithms in comparison with
the classic approaches. Two sizes of performance win-
dows have been considered to avoid the possible bias due
to the window size. One is a small performance window
(i.e., w 5 20) and the other is a large performance

window (i.e., w 5 80). Figures 15 and 16 give the
relative performances between each classic approach and
the proposed TED algorithm computed by using the
small and the large performance windows, respectively.
From Figs. 15 and 16, it is apparent that the TED
algorithm outperforms all of the four classic approaches.
Moreover, the performance improvement over the classic

Fig. 14. (a) Left: the original synthetic edge image in the 15th set with the RMGD5 0, which is the same as Fig. 10a;
right: the edges detected derived by the TED[100] algorithm. (b) Left: the texture-enhanced synthetic edge image using
a Gaussian function of SD 3; right: the edges detected derived by the ETED3[100] algorithm. (c) Left: the texture-
enhanced synthetic edge image using a Gaussian function of SD 5; right: the edges detected derived by the ETED5[100]

algorithm.

Fig. 15. The relative performance between the classic ap-
proaches and the TED algorithm for a small performance

window (i.e., w 5 20).
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approaches is more significant for a large performance
window. Because the texture enhancement also has a
better performance in a large performance window, it is
expected that the ETED3 and ETED5 may attain a much
more significant improvement over the classic ap-
proaches. Note that all the vertical rectangular bars are
plotted in the negative direction. Although the Jain and
Farrokhnia and the Malik and Perona algorithms were
designed to detect the texture edges, they perform poorly
in US image edge detection probably because of their
global approaches to extracting the texture information
in the frequency domain. When the two textures forming
the texture edge do not generate a prominent frequency
pattern in the spectrum of the entire image, it is very
likely that the global approaches cannot capture enough
texture information to determine the texture edge.

When the performance window is small, the LOG
and the Canny edge detectors perform reasonably well
for a relatively large RMGD. It is because the speckle
reduction process has largely removed the interference of
the speckles and the tissue-related textures, while pre-
serving the grey-scale edges due to the relatively large
RMGD. In addition, one may find that the Canny algo-
rithm is slightly better than the LOG algorithm. How-
ever, when the performance window is large, the relative
performance of the Canny algorithm to the TED algo-
rithm degrades rapidly, even for those images with a
large RMGD. In contrast, although the relative perfor-
mance of the LOG algorithm to the TED algorithm also
degrades for a large window, the LOG algorithm is much
better than the Canny algorithm when the RMGD is
large. These results partially support that a nontextural
approach may still be useful in US edge detection, as
long as the RMGD is large enough.

On the clinical ultrasound images
To evaluate the performance of the proposed algo-

rithm in detecting the real boundaries, 20 clinical US

images have been used in this study. The objects of
interest are hepatic tumors, such as hepatocellular carci-
noma (HCC), cavernous hemangiomas, metastatic liver
cancer, hyperplastic nodule, and so on. Limited by the
tumor size, the performance on each US image is eval-
uated only for those detected edge points that are less
than 10 pixels away from the manually delineated
boundary in terms of the Euclidean distance. The bound-
aries are drawn by an experienced medical doctor by
using a self-developed image-processing software called
MediaX, which allows a user to make delineation using
a mouse or a tablet system. The tablet system used in this
study is the Intuos 63 8 tablet (GD0608) made by
WACOM company. The RMGDs of the 20 tested tumors
are the difference of the mean grey levels between the
pixels outside and inside the tumor satisfying the 10-
pixel constraint. The RMGDs of the 20 tumors range
from 7.8 to 48.5. As examples, Figs. 17–20 show the
detected edges for the tumors in images 4, 7, 11 and 20,
the RMGDs of which are 17.2, 19.5, 26.2, and 48.5,
respectively. In each figure, the left image is the original
image, the middle one gives the manually drawn bound-
ary, and the right one shows the derived edges.

The best performances of the proposed algorithm on

Fig. 16. The relative performance between the classic ap-
proaches and the TED algorithm for a large performance win-

dow (i.e., w 5 80).

Fig. 17. RMGD5 17.2, Pratt’s figure5 0.338. (a) The original
image 4; (b) The manually drawn boundary; (c) The edges
detected by the proposed approach. The contrast and brightness
of these three images have been linearly adjusted in the same

way for better visualization.

Fig. 18. RMGD5 19.5, Pratt’s figure5 0.380. (a) The original
image 7. (b) The manually drawn boundary. (c) The edges
detected by the proposed approach. The contrast and brightness
of these three images have been linearly adjusted in the same

way for better visualization.
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the 20 US images are plotted in Fig. 21. Like for the
synthetic edges, the best parameter values are determined
by the fine search listed in Table 1. Because the RMGD
varies with the image, the Pratt’s figure of each image
along with its RMGD is provided in Fig. 21, instead of
using the quartile statistics. As its name implies, in Fig.
21, “Pratt’s figure” denotes the Pratt’s figure and
“RMGD” the RMGD of each tumor. All images are
sorted in the ascending order of the RMGDs. In general,
Fig. 21 reveals the tendency of performance increment as
the RMGD increases, though not monotonically, which
is quite consistent with the experimental results on the
synthetic edge images. However, the Pratt’s figure at-
tained on a clinical US image is generally smaller than
that on a synthetic edge image with a similar RMGD,
which may be ascribed to three factors. The first factor is
that, like most edge detectors, the proposed algorithm
selects edges mainly according to the peak magnitudes of
the distance map. Nevertheless, a medical doctor not
only refers to the edge strengths but also, more impor-
tantly, incorporates the medical knowledge in determin-
ing the tumor boundary. For example, the medical doctor
chose the weaker edge for the lower-right portion of the
boundary, whereas the proposed algorithm took the
stronger one in Fig. 17.

The second factor is that the human beings perform
higher functions (e.g., extrapolating the missing edges,
smoothing the edges, etc.), rather than simply following
the edges in drawing the boundary. As one can see, the
manually drawn boundaries in Figs. 17–20 are much
smoother than the detected boundaries. However, this
factor may become less significant as the RMGD in-
creases because the boundary is usually better defined for
a larger RMGD. The third factor is that different medical
doctors or the same medical doctor, but at the different
times, may define different boundaries for the same
object. Because of the time-variant and the person-de-
pendent nature, it is suggested that only the performance
comparison with the manually delineated boundaries be
used for a reference.

The experimental results on US images actually
bring out two fundamental problems of the general edge-
detection techniques based on mathematical models in
practical applications. One is that the edges may not be
clinically correct because no notion of medical knowl-
edge has been included in the algorithms. The other is
that the edges may not be coincident with those defined
by a human observer because most edge-detection algo-
rithms simply aim to capture the local edge information.
Therefore, a second step is usually required to seek a
better boundary. For example, one may employ a de-
formable model, such as a snake model, that takes ad-
vantage of the edge information and incorporates the
medical knowledge, to find the desired boundary.

CONCLUDING REMARKS

Edge detection has been recognized as a hard prob-
lem in quantitative US image analysis, especially for the
class of edges that we have focused on in this study (i.e.,
the texture edges with a weak RMGD). In this paper, we
have proposed a new textural approach for detection of
the texture edges with a weak RMGD in US images. The

Fig. 20. RMGD5 48.5, Pratt’s figure5 0.553. (a) The original
image 20. (b) The manually drawn boundary. (c) The edges
detected by the proposed approach. The contrast and brightness
of these three images have been linearly adjusted in the same

way for better visualization.

Fig. 21. The best performances of the proposed algorithm on
the 20 US images, in which “Pratt’s figure” denotes the Pratt’s

figure and “RMGD” the RMGD of a tumor.

Fig. 19. RMGD5 26.2, Pratt’s figure5 0.471. (a) The original
image 11. (b) The manually drawn boundary. (c) The edges
detected by the proposed approach. The contrast and brightness
of these three images have been linearly adjusted in the same

way for better visualization.
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proposed approach comprises two major techniques. One
is a new texture edge detector that generates a weighted
distance map based on an early vision model. The local
maxima of the weighted distance map define the edges in
the US images. The other technique is a texture-enhance-
ment scheme that performs smoothing operations on
low-resolution information utilizing the wavelet analysis,
and attempts to alleviate the interference of the artefacts
and the sporadic spots in edge detection. We have shown
that the distance map actually captures the total power in
each block of image and measures the uniformity of each
half-way rectified neuroimage of a polarity.

By using 20 sets of synthetic edge images with five
different RMGDs, the experimental results have shown
that the concept of texture enhancement is valuable in
alleviating the interference of the artefacts and the spo-
radic spots. The advantage of using the texture enhance-
ment is more apparent for a large performance window.
It has also been shown that the proposed algorithm is
superior to four classic approaches in terms of the best
performance each algorithm may achieve. These four
classic approaches include two nontextural approaches,
the LOG and the Canny algorithms, and two vision
model-based textural approaches, the Jain and Farrokh-
nia and the Malik and Perona algorithms. It is clear from
the experimental results that the texture information
plays an important role in detecting the texture edges
with a weak RMGD. For instance, when the RMGD is
relatively large, say 40, these two nontextural approaches
perform reasonably well. However, their performances
degrade rapidly as the RMGD decreases. In contrast, the
proposed textural approach yields a good performance
even with a small RMGD. But the Jain and Farrokhnia
and the Malik and Perona textural algorithms cannot find
the texture edges effectively.

The experiments on 20 clinical US images have
shown that the proposed edge detector is able to find
reasonable edges for real objects of interest. The perfor-
mance of the proposed textural approaches on 20 clinical
US images is 0.46 0.08 in terms of the Pratt’s figure.
However, when the RMGD is small, it may need another
step to link the broken edges and to make the boundaries
smooth. To make the proposed algorithm practicable,
further researches would be required to determine the
best parameter values for the SD of the Gaussian func-
tion smoothing theWDIST, and the factorTm.

It is worth while pointing out that the proposed
textural approach may be applied to other types of tex-
ture images, not limited to the US images. The critical
parameters to be changed with the various types of
texture images are the block size in deriving the distance
map and the decomposition level in texture enhance-
ment. The reason why the proposed approach can
achieve a reasonably good performance may be attrib-

uted to theG-vector found in Chen (1994), with which
the similarities between two textures may be predicted
closely in agreement with those obtained by the psycho-
physical experiments.
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