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Abstract—Edge detection is an important, but difficult, step in quantitative ultrasound (US) image analysis. In
this paper, we present a new textural approach for detecting a class of edges in US images; namely, the texture
edges with a weak regional mean gray-level difference (RMGD) between adjacent regions. The proposed
approach comprises a vision model-based texture edge detector using Gabor functions and a new texture-
enhancement scheme. The experimental results on the synthetic edge images have shown that the performances
of the four tested textural and nontextural edge detectors are about 20%-95% worse than that of the proposed
approach. Moreover, the texture enhancement may improve the performance of the proposed texture edge
detector by as much as 40%. The experiments on 20 clinical US images have shown that the proposed approach
can find reasonable edges for real objects of interest with the performance of 04 0.08 in terms of the Pratt's
figure. (E-mail: chung@lotus.mc.ntu.edu.tw) © 2001 World Federation for Ultrasound in Medicine & Biology.

Key Words:Ultrasound image, Edge detection, Early vision model, Wavelet analysis, Distance map, Difference
mask.

INTRODUCTION (George et al. 1976). The texture pattern, composed of
quasirepetitive texcels.€., texture elements) or sporadic
spots of middle-grained size, basically reflects the tissue
property. It should be pointed out that the speckles,
textures and artefacts are considered as noises primarily

Edge detection is an essential task in many quantitative
analyses of ultrasound (US) images. It usually serves as
the first step in border identification, area and volume
measurement for the object of interest. Some typical _ ) . : .
examples are border detection of hepatic ducts (Sun et al_from the wevypomt of edge detection. For practical clin-
1996), contour detection of breast tumors (Collaris and ical apphcauon;, speckles, tegtures -and artefacts f_re—
Hoecks 1996), contour tracking of cardiac structures quently play an |mportapt.role n mak|r]g the diagnosis.
(Chalana et al. 1996; Mikic et al. 1998), tongue contour 1€ fundamental difficulty of US image edge de-
tracking (Akgul et al. 1999), and so on. Nevertheless, tection mainly arises from the false edges that are easily

edge detection has been recognized as a difficult problemd€nerated from the speckles, texcels, sporadic spots and
in US image analysis due to the intrinsic noisy and artefacts. An edge of an object of interest in an US image

textural nature of a US image. is intrinsically determined by two properties of the two

The intrinsic noises and textures result from such adjacent regions forming the edge. One property is the
factors as signal processing, image formation, interpola- "€gional mean grey-level difference (RMGDie(, the
tion, tissue property, speckle, artefact, and so forth. The difference of the mean grey levels of these two regions).
most notorious phenomenon is the speckle, which de- The other property is the texture difference of these two
grades not only the perceivable resolution by a factor of "€gions. If the RMGD is significant, regardless of the
5 to 7 (Kozma and Christensen 1976), but also the texture difference, the edge may be easily detected by
discriminability of subtle difference in grey levels classic approaches because the strength of the desired
edge is much stronger than that of false edges.
However, for many US image applications, such as
_Address correspondence to: Chung-Ming Chen, Institute of Bio- hepatic tumor analysis, it is quite common that the
medical Engineering, College of Medicine, National Taiwan Univer- . . L
sity, #1, Sec. 1, Jen-Ai Road, Taipei, Taiwan. E-mail: chung@ RMGD of the desired edge is not significant enough,
lotus.mc.ntu.edu.tw which has made edge detection a hard problem because
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determination of the desired edges may be seriously tion textures using the 2-D wavelet analysis for breast
interfered with by the false edges. What is even worse is lesion segmentation.

that, in the extreme case, the desired edge may be pri- Although textural approaches have the potential
marily defined by the texture difference. It means that better to utilize the texture difference and the RMGD, at
those edge-detection approaches designed to utilize thdeast two problems remain to be solved to make textural
RMGD would be ineffective or even useless in capturing approaches clinically useful. One of them is feature
these edges. Because the texture of the object of interesgxtraction and the other is reduction of the interference
normally differs from that of its surrounding tissues, this from the sporadic spots. A good feature is generally
paper would focus on finding the texture edges with a considered as the key to the success of all textural
weak RMGD. A textural edge is defined as an edge approaches. Two excellent reviews on the texture fea-
formed by two regions with different texture patterns, tures for general texture image analysis may be found in
regardless of the strength of the RMGD. Haralick (1979) and Reed and du Buf (1993). However,

To cope with the interference of the noises and Many texture featurese(g, texture spectrum (He and

textures, various approaches have been proposed previ¥Vang 1990), fractal dimension (Keller et al. 1989), co-
ously for detecting edges in a US image. Most of these 0ccurrence matrix (Haralick 1979), etc.] have been found
approaches are basically nontextural approaches. somdo be ineffective in dlstmgylshmg different tissue tex-
examples are: a genetic algorithm by Heckman (1996), tures (Sun et al. 1996; Lai and Chen 2000). Generally

1D wavelet analysis techniques by Sun et al. (1996) and SP€aking, the conventional texture features usually do
Yoshida et al. (1998), a fuzzy logic approach by So- not perform very well in US image analysis because of

laiman et al. (1996), the radial bas-relief technique by the quasiperiodic nature of the speckles and texcels and

Liu etal. (1997), and snake models by Mikic et al. (1998) the inhomogeneity of-the texture patterns over the entirg
and Akgul et al. (1999). Although satisfactory results area of the object of interest. On the other hand, even if

have been reported for specific applications with these a good feature is found, the interference from the spo-

nontextural approaches, these approaches may not be S(r)adlc spots may still seriously degrade the performance
of a texture edge detector.

effective when they are used to detect the texture edges To find the texture edges with a weak RMGD, a new

with a weak RMGD. The main problem is the loss of the textural approach is proposed in this paper for the US

textural information defining the edges. It is because the . )
. . images. The proposed textural approach is composed of two
nontextural approaches inherently consider the speckles

and tissue-related textures as noises, and discard them i major techn_iques. One s a texture-enhancement scheme to
' : "feduce the interference of the sporadic spots and the arte-
one way or another. Because th_e RMGD is smgll, the facts in texture feature extraction while retaining the tex-
nonte_xtural app_roachgs need to find an edge subject to Qures. The other is a new texture edge detector based on an
low S|gna|-to-n0|se ratio (SNR). Consequently, fche edge- early vision model using Gabor functions for feature ex-
detection performance may be seriously deteriorated by - iy The early vision model has received a great atten-
the false edges of the speckles and texcels. Or, theon in the past two decades, due to the great capability of
nontextural approaches may lead to a shift of the true ,,an visual perception in identifying the texture edges.
edge-p-osmon, or smear the Qe5|red ed-ges., ifa Su_bStam'a'lnspired by the biological performance, numerous ap-
denoising or speckle reduction operation is applied. proaches have been proposed for texture edge detection
Alternatively, to utilize fully the texture difference  |55ed on early vision models.¢, Dunn et al. 1994 Bigun
and the RMGD, using textural approaches would be, ang du Buf 1994; Jain and Farrokhnia 1991; Malik and
theoretically, a better choice in finding a texture edge perona 1990; Tan 1995: Van Hulle and Tollenaere 1993,
with a weak RMGD. Nonetheless, not many textural etc.) As in all vision model-based approaches, the basic idea
approaches have been proposed to obtain the boundanyf the proposed texture edge detector is to simulate the early
of an object of interest in an US image previously. vision process by extracting texture features from the neu-
Notably, Muzzolini and colleagues have suggested a roimages. The neuroimages are formed by convolving the
multiresolution framework incorporating simulated an- texture images with a set of receptive field profiles of simple
nealing (Muzzolini et al. 1993), a method based on a set cells in V1 area tuned to different frequency and orientation
of sampled textures (Muzzolini et al. 1994), and the Inck bands. However, the proposed texture edge detector differs
(incomplete knowledge) criterion function (Muzzolini et from many previous vision model-based approaches in that
al. 1998) for US image segmentation. Mojsilovic et al. the texture features proposed in our model have been de-
(1997) used textural operators to separate different tissuesigned with a psychophysical support. By using the syn-
regions and morphological processing to refine extracted thetic edge images, the performance of the proposed tex-
contours. Boukerroui et al. (1998) proposed an adaptive tural approach has been compared to two nontextural edge
K-means clustering algorithm based on the multiresolu- detectors and two textural approaches based on vision mod-
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els. Also, the edges derived by the proposed approach haveand its Fourier transform is
been compared with the boundaries delineated by the med-
ical doctors on the real ultrasound images.

Glu, v) = exp{—l {(U ;zuo) N (v _bZVO) ]}

T
MATERIALS AND METHODS .
X exp{ —2i[ Xo(U — Ug) + Yo(V — Vo) ]}.  (2)

Finding texture edges with a weak RMGD in a

US image involves two essential tasks. One is effec- The Gabor functions have a nice property that they
tive texture edge detection and the other is reduction g simultaneously achieve the lower bounds of the
of the interference of the sporadic spots and the arte- yncertainty inequalitiedx - Au = =/4 andAy - Av =
facts in texture feature extraction while preserving the /4. |n other words, they may attain very narrow fre-
textures. To accomplish these two tasks, a new tex- quency and orientation responses while spatial localiza-
tural approach composed of a vision model-based tex- tion is maintained. Alternatively, the receptive field pro-
ture edge detector and a texture-enhancement schemegjle may also be modeled closely by several other func-
is proposed in this paper. Motivated by the incredible tions .g, the difference of offset Gaussians, DOOG)
ability of the human vision in texture edge detection, (Malik and Perona 1990). The DOOG function is a linear
the proposed texture edge detector attempts to simu-compination of three offset identical Gaussian functions.

late the texture-discriminating process in the early pefine the zero-mean Gaussian function in the spatial
vision. Its partial results have been successfully ap- gomain as:

plied to enhance the image force of a snake model in

Chen et al. (2000). On the other hand, to augment the 1

performance of texture edge detection, rather than G(x,, y,, o, o) = 5 MO0y

performing denoising or speckle reduction, the pro-

posed texture-enhancement scheme smoothes out the x exp{—[(x = x)7o% + (y — Yo)?ail}, (3)
undesirables and keeps the texture information unaf-

fected as much as_possible using wavelet analysis. Itwhereax ando, are the standard deviations in thend
should be emphasized that the proposed textural aP-y directions, respectively, and, y,) the center of the

proach is not limited to use on the US images. It may Gayssian function. As an example, the DOOG function
be applied to general texture edge detection problems ,caq by Malik and Perona (1990) is:

by properly choosing the parameter values, such as
block size, decomposition level, and so on, which . .
depends on the image types and will be defined later. DOOG=a-G(0, ya 03 o) + b~ G(0, Y, 0 03)

+cC- G(O, yc, Oy, O-y)v (4)

Texture edge detector
Vision is a very complex process in the human wherey, = —y. = o, andy, = 0.

brain. Even though extensive studies have been carried ~ To simulate the multichannel filtering mechanism
out for decades in an attempt to attain a better under- inherent in the biological early vision, two types of
standing of the visual process, the outcome is still quite algorithms have previously been considered to generate
limited, except for the early vision. Recent researches on the neuroimages. One is to compute the neuroimages
psychophysics, psychophysiology, and neurology have With a predefined set of receptive field profiles (Bigun
suggested that simple cells are the fundamental processand du Buf 1994; Jain and Farrokhnia 1991; Malik and
ing elements for visual information. The receptive field Perona 1990). The other is to apply the receptive field
profile of a simple cell in V1 area may be modeled as an profiles only to the significant frequency components
even or an odd Gabor function, and each simple cell is (€.9, the largest local maxima in the Fourier spectrum)
tuned to a specific narrow frequency and orientation (Dunn et al. 1994; Tan 1995). For a US image, because
band (Daugman 1980). The inputs of a simple cell are the textures are not only complex, but also irregular, the
approximately summed and weighted by the correspond- significant frequency components of the entire image do
ing Gabor coefficients. The output of a simple cell is not necessarily correlate with the primary spatial fre-
half-way rectified. The general form of a Gabor function quency components of the textures. Therefore, it would
may be expressed by: be a reasonable choice to use a predefined set of recep-
tive field profiles reasonably covering the entire fre-
_ 2.2 2.2 quency domain for edge detection in an US image.
9(x, y) = exp—[(x = xp)"a” + (y = yo "] m} The set of Gabor filters employed in this study is the

X exp{—2mi[Ug(X — Xo) + Vo(Y — Yo I}, (1) rosette map suggested by Jain and Farrokhnia (1991), as
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Fig. 1. The rosette map for the selected set of Gabor filters in

frequency domain, in which each Gabor function consists of

two Gaussian functions (ellipses) symmetrical with respect to

the origin and only the portion larger than the half-peak mag-
nitude is shown for each Gaussian function.

shown in Fig. 1, which reasonably covers the entire
frequency domain. Each ellipse in Fig. 1 is a Gaussian
function in the frequency domain and each pair of el-
lipses symmetrical with respect to the origin (the center)
represents an even Gabor function. The rosette map i
constructed as follows. For the horizontal pairs of Gauss-
ian functions, given the central frequenay, the fre
guency bandwidthB;, and the orientation bandwidth,
B,, the SD of a Gaussian function in both dimensions,
(i.e, o, and o) are defined in egns (5) and (6), as
suggested by Jain and Farrokhnia (1991). BhandB,
define the bandwidth in the horizontal (radial) and azi-
muthal directions, respectively. The bandwidth is com-

puted at the half-peak magnitude for each Gaussian func-
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Fig. 2. Derivation of theG-vector, wherel*h, stands for

convolving the image with thieth Gabor functionX+ and>—

represent the integration operations over the positive and neg-

ative pixel values, respectively, and the vec®denotes the
G-vector.

After the horizontal pairs of Gaussian functions have
been derived, other pairs of Gaussian functions may be
easily obtained by rotating the corresponding horizontal
pairs. Note that, for each Gaussian function in Fig. 1,
only the portion larger than the half-peak magnitude is
shown. One salient feature of this set of Gabor filters is
that, in the spatial domain, it can catch fast-changing
edges with a smaller bandwidth and slow-changing
edges with a larger bandwidth. Unlike Jain’s and Far-
rokhnia’s work (Jain and Farrokhnia 1991) in which the

weighting factor for each Gabor function is inversely

proportional to the square of its central frequency, all

'Sweighting factors are set to 1 in this study. Also, the DC

component of each Gabor function is set to zero.

The proposed texture edge detector basically
evolves from the texture discrimination model proposed
by Chen (1994). In Chen's study, a psychophysical ex-
periment was carried out to quantify the perceptual sim-
ilarities between a reference random dot texture and 16
isoperiodicity textures. In parallel to the psychophysical
experiment, each texture, denotedlasvas convolved
with a bank of filters which were either Gabor or DOOG

tion. Because several experiments have shown that thefunctions with different orientations and frequencies, as

frequency bandwidth of the simple cells in the V1 area is
about one octave (Pollen and Ronner 19&3)is set to

1 in this work. With all possiblel, andB, in the V1 area,
empirically, we choos8, = 30° andu, = V'2/2, V2,
2V2, ..., 2" /2, wherek = (log, M) — 1 andM

is the block size, which will be defined later.

B = U + (2 In 2)¥%g, .
¢ = 100 Up— (2 In 2)"%, )
(2 In 2)Y%0,
By=2tan{ ——|. (6)
o

illustrated in Fig. 2 byi*h,, where *' denotes the 2-D
convolution anch, the kth Gabor function. The integra
tion over the output of a given polarity (on or off), which
simulated half-wave rectification of a V1 simple cell,
gave a single number representing the response of a filter
to a texture. For the filtered image using tkte Gabor
function, %+ and X— represent the integration opera-
tions of the positive and negative pixels, respectively, in
Fig. 2. The sum of the positive pixel values and that of
the negative pixel values are denoted djy. and gy,
respectively. For a given texture, this number defined the
coordinate of a point along the axis associated with the
filter of a given polarity in theN-dimensional space
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) asG(i, j). Let By(i, ) = B(i, j)*h and B,(i, J)
denote the half-way rectifieB, (i, j) of positive polarity
[i.e., all negative pixels values are set to zero in the
neuroimageB,(i, j)]. Also, the value of the pixelr( s)

in Bp(i, ) is denoted byB,(i, j)[r][s]. Similarly,
B,(i, j) denotes the half-way rectified, (i, j) of neg
ative polarity. Supposa Gabor filters are used. Define:

G('! J) = (gpl(il J)v gnl(i1 ])1 LR

Fig. 3. Given the image siZ¢ X N and the block siz&1 X M, o 1)y Gnin )5 v - Qi 0), Onnis ) (7)
decomposing the underlying US image ind ¢ M)? blocks,
each centered at a pixel in the centrdll ¢ M) X (N — M)

region of the image. and

M M
defined by the bank of filters employed.. Thg vector OE > Byi, )[r]ls] (8)
formed by theN numbers i(e., the vectorG in Fig. 2) r=1s=1
uniquely defining a point in thil-dimensional space for
each texture is calle@-vector in this paper for conve- M M
nience. The perceptual similarity between two textures Ondi, J) = Zl Zl Bndi, DIrls], 9)
was modeled as the Euclidean distance between their S
corresponding G-vectors. The results of his study
showed that the similarities predicted by this model Wherehy is thekth Gabor function and * the 2-D cen

closely agreed with those obtained by the psychophysical volution.
experiments. The size of a block should be selected so that the

Supported by the psychophysical experiments, number of texcels in each block is adequate to represent
Chen (1994) not only provides an effective mathematical the speckles and the tissue-related textures. Because, for
model to quantify the perceptual similarity between two @ US image with a good quality, a block of size<83 or
textures, but also implicitly suggests that a texture may 16 X 16 usually comprises a sufficient number of speck-
be characterized by iG-vector. Based on Chen’s results 1es and texcels, these two block sizes have been em-
and recent physiological findings, the proposed edge ployed throughout our studies. Choosing a block size of
detector has been designed to capture the texture edgé Power of two is for fast implementation of the 2-D
with a weak RMGD by transforming th&-vectors of convolution.
local texture information into the distance map and the . . .
difference mask that, together, define the desirable edges.m apStDeIpS'I% ' cc::foT;\F()aufn:jr:aerly?fg;a?;zgzaige dilf?;aegCZS
More specifically, the proposed edge detection is com- i '

: ) . DIST(i, j) = ||G(i, j)||, where||x]| is the 2-norm of the
posed of four steps as described in the following. vectorx. Then, the peaks in the distance map suggest the

Step 1: Compute the G-vectors of local textures for edge locations. To demonstrate the distance map, Fig. 4a
each pixel.Unlike Chen’s approach and most previous is used as the source of the texture image, which is a
early vision models, in which the neuroimages are ob- synthetic edge image consisting of two 128128 US
tained by convolving the entire image with Gabor filters images. To ensure a weak RMGD around the desired
(or other models of receptive field profiles), the proposed edge, the image intensity of both US images has been
approach characterizes the textures surrounding eachadjusted so that the RMGD between the rightmost four
pixel within a small block. As illustrated in Fig. 3, the columns of the left image and the leftmost four columns
underlying imagel is decomposed into overlapping of the right image is zero. As a result, Fig. 4b gives the

blocks of constant size. Suppose the image sikeXsN distance map derived by using the block size of 8 for
and the block size i X M. We will have N — M)? Fig. 4a. The line profile of the 53rd line of the distance
blocks, each centered at a pixel in the centkhH{ M) X map, which is marked by a white line in Fig. 4b, is

(N — M) region of the imagéd. Then, for each block, plotted in Fig. 5. One can see that a peak does exist at the
compute theG-vector with the predefined set of even border of two textures in the distance map.

Gabor filters, which may be formally expressed as fol- To see what texture features have been exploited by
lows. Denote the block centered at the pixeljj of the the distance map and why a peak can be formed at the
imagel asB(i, j) and theG-vector computed frons(i, texture boundary, without loss of generality, consider the
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Ghli, ) = (2 > By, j)[r][s])

= Pudi, (1 + Xuli, j))  (10)

and
Puli i) = 2 2 (Buli, DINsD*  (11)
K " " X ’ M M M M
left image right image Xui,N)=2> > >
(a) rlz’i Si):i (rfzz,: ;)SZ::L
y (Bpk(i,j)[rl][sl] _ Bpk(i,j)[rz][sz]>
\/Ppk(i7 J) \//Ppk(i1 J)
1
=M1~ : (12)
1+ 5
o

wherep ando” are the mean and the varianceBy(i,
j), which are defined as

2, 2, Budi, DIrls]

r=1s=1

desired boundary

(®) o= P"T\(,:; D w2 (14)

Fig. 4. (a) A synthetic edge image consisting of two 22828

S TR vad by using the block size ol 8 8. " Equation (10) decomposgg, i, j) into two mu-
tiplicative factors,Pp(i, j) and Xp(i, j). Ppli, ) is
actually the AC power of the half-way rectified neuro-
image of positive polarityB(i, j). Note that the DC
power is zero because the DC component has been set to
zero for each Gabor function. On the other haxg(i,

j) measures the uniformity dB(i, j). Generally, the
more uniform theB,,.(i, j) is, the smaller ther®/w will

contribution from one element, say,(i, j), in G(i, j) to
DIST(i, j). Then,

Rl i e ST e be and, hence, the larger thg,(i, j) will be. Therefore,
* [ PN TR each element of th&-vector is made up of two texture
T | e SE= S features, namely, the AC power and the uniformity in the
R i | Desired edge position I— corresponding half-way rectified neuroimage of a given
R L R N polarity.
NG Ll ShEE Because derivation of a distance map involves such
“ T T A R N E ) nonlinear operations as half-way rectification, square,
N " R ) and so forth, formally showing why a peak can be
2 [y _ i A MR A formed at the texture border is basically a difficult prob-
T e B T A em. Nevertheless, one may still gain some insight into
1: . : I s : : \. W : : = I N h I ” . . . h .
117 33 49 65 81 97 13 129 145 161 177 193 209 25 241 the behavior of the distance map around the texture
P namher border by analyzing the AC power and the uniformity of

Fig. 5. The line profile of the 53rd line of the distance map, each element in th&-vector. For ease of analysis, as

which corresponds to the white line marked in Fig. 4b, showing illustrated in Fig. 6, a bipartite image composed of two
a peak at the border of two textures. texture images with the texture border at the central
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right
texture

'
block ¢
texture |

ing the
border

Fig. 6. The model of a bipartite image used in the analysis of
the total AC power contained in the distance map of each block.

column is used for investigating the AC power. Take any
block, B(i, j), containing the texture border as an exam-
ple. Each blockB(i, j) is composed of two textures,
namely, the left and the right textures. Suppose the sizes
of the block, the left texture and the right texture Rtex

M, M X (M —|)andM X I, respectively. The total AC
power contained in the distance mapR(f, j) is:

total AC power= él (Puli, ) + Pudi, j)), (15)

whereP, (i, j) is the AC power of the half-way rectified
neuroimage of negative polarity. According to the
Parserval’'s theorem, the total AC power may be ex-
pressed in the frequency domain as:

|

n

2, (F(h) - F(B(i, |))

k=1

M M
total AC power= >, >
u=1v=1

xmm1=;;;«gﬂm»H%Jﬂm
XW]%C§;F®QMMMRGQ

whereC is a constantf( - ) the 2-D discrete Fourier
transform (2-D DFT) andx| is the magnitude of the
complex numbex. From the second line to the third line
in egn (16), it is assumed that the magnitudes of all
frequency components in the sum of all Gabor functions
are approximately equal. For example, the ratio of the
SD to the mean of all frequency components is less than
10% for the sum of the Gabor functions defined in the
rosette map whe = 64. This ratio may be further
reduced if more Gabor functions are used or proper
weights are assigned to the Gabor functions.

Roughly speaking, the total AC power captured by
the distance map for each bloBKi, j) is proportional to
the total power 08(i, j). Denote the regional mean grey
levels of the left texture, the right texture and the entire

image<.-M. CHEeN et al. 521

block of B(i, j) asm,, m,, andm,, respectively. It is
assumed that both left and right textures are homoge-
neous so tham, andm, are independent of the texture

areas. Again, using the Parserval's theorem, the total
power ofB(i, j) may be expressed as:

1 M M M M
2 2, 2 |F(BG, Hullv]*= 2 X [BG, DIrls]?

u=1v=

M

s

(B, DIrlls] —m)?* + 3 > (B, ))

X [r][s] — m)2+ M(M — |)(m, — m,)?
+ MI(m, — my)? + M2m2.

-3

r=1s=1

(17)

Equation (17) divides the total power Bfi, j) into the
power purely from textures.é., the first two terms), the
power from the regional mean grey level®( the sec-
ond two terms) and the power from the DC component
(i.e. the last term). Because both left and right textures
have been assumed to be homogeneous, each of the first
two terms would be linearly proportional to the texture
area. Hence, the sum of the first two terms would be a
monotonic function ofl, for | from 0 to M. For the
second two terms, one can easily show thaty,if# m,,
the sum of the second two terms is monotonically in-
creasing witH, for | from 0 toM/2, and monotonically
decreasing with, for | from M/2 to M. The maximum
of the sum of the second two terms, thus, occurs-at
M/2. The second two terms diminishnf, = m,. The
last term is actually the DC component of the bldk,
j) and will be cancelled when filtered with the Gabor
functions because the DC component of all Gabor func-
tions have been set to zero. As a result, as a block slides
from the left of the texture border to the right, one may
expect a local maximum at the texture border for the total
power of the block. Because the total AC power con-
tained in the distance map is roughly proportional to the
total power of each block, a local maximum may be
observed at the texture border for the total AC power of
the distance map.

Although the decisive information captured by the
AC power, P, (i, j), is the variation of the low fre
quency informationi(e. the information based on the
regional mean grey levels) the major information caught
by the uniformity, X(i, j), is the middle- to high-
frequency information. Consider a blodg(i, j), in the
bipartite image given in Fig. 6, and a middle- to high-
frequency Gabor functiorh,. Initially, supposeB(i, j)
consists of only one texture. Then, because a texture is
composed of periodic or quasiperiodic texcas,(i, |)
is also periodic or quasiperiodic and it is very likely that
most energy oB,(i, j) is concentrated in the periodic or
quasiperiodic blobs as a result of filtering with a middle-
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Fig. 7. Demonstration of uniformity variation across a texture
border along the 64th row of a texture image. (a) A 22828
LM texture image with the texture border at the 64th column;
(b) nine blocks of the original image, includirig(64, 40 +
6t), t 1 to 9. (c) B, (64, 40 + 6t), t 1 to 9. (d)
Uniformity from the 36th column to the 95th columme(,
Xok(64,]), | = 36 to 95). The label beneath each block of
image is the column number of this block.

to high-frequency Gabor function. As the block moves
from one texture to the other, say, from the left of the
texture border to the right, the energy concentration
phenomenon will be disturbed when the other texture

Volume 27, Number 4, 2001

Fig. 7a. The texture border is at the 64th column. The
main reason why an LM texture image rather than a
synthetic US edge image is used is that, from a US
image, it is relatively difficult to find a homogeneous
subimage as large as 128128 for extracting blocks of
size 64X 64, which is considered as the minimal ac-
ceptable size for presentation. To better visualize the
correlation between the uniformity and the energy dis-
tribution (.e., the grey-level distribution) over the entire
block, B(64, 40 + 6t) andB (64, 40 + 6t), for t =

1 to 9, are provided in Fig. 7b and c, respectively. The
uniformity corresponding to each of these blocks is also
marked in Fig. 7d. The central frequency of the Gabor
function used is o, 8) = (4V2, w/3) in the polar
coordinate system. All blocks in Fig. 7c have been quan-
tized by the same decision and output levels for visual
comparison of relative brightness. One may see from
Fig. 7c that the strips in the block marked as “col64” are
more uniform and dimmer than those in other blocks,
which results in a higher uniformity. Note that the uni-
formity variation shown in Fig. 7c and d would be less
evident for using a low-frequency Gabor function be-
cause the texture information may be smeared too seri-
ously to characterize different textures.

In summary,DIST(i, j) comprises two major tex-
ture information. One is the total AC power involved in
all neuroimages, which is roughly proportional to the
total power of the underlying block of image. For a block
centered at the texture border, because the areas of both
textures are about the same, the total AC power may
contribute a local maximum in the distance map, pro-
vided that the regional mean grey levels of both textures
in the block are different. The other texture information
contained irDIST(i, j) is the uniformity measurementin
each half-way rectified neuroimage of a polarity. In
contrast to the total AC power, which mainly utilizes the
low-frequency informationi(e., the regional mean grey
levels) to generate a peak at the texture border, the
uniformity variation would be more evident for the half-
way rectified neuroimage of a polarity computed from a
middle- to high-frequency Gabor function. A local max-

(the right texture) appears in the block. In other words, imum of uniformity may occur at the texture border
more and more energy will start to spread over the entire pecause the half-way rectified neuroimage of a polarity
block as the area of the right texture is getting larger. derived from a block centered at the texture border is

That is, theo®/p of By,(i, j) tends to become smaller as  ysyally more uniform in terms 05%/y than the corre
the block moves from the left toward the texture border. Sponding ha|f_Way rectified neuroimages from the adja_

Likewise, a similar argument may be made for a block cent plocks.

moving from the right to the left. By symmetry, it is

reasonable to expect a local minimum for #®@u and, Step 3: Compute the difference map and the differ-
hence, a local maximum for thé,(i, j) at the texture ence maskThe distance map plays the decisive role in
border. As an example, Fig. 7d demonstrates the changedentifying the potential edges. Nevertheless, the differ-
of the uniformity,Xp,(i, j), for a 64 64 block moving ence mask generated from the difference map further
from the 36th column to the 95th column centered at the confines the regions where the desired edges might exist
64th row in the 128x 128 LM texture image shown in  to suppress the false peaks due to the noisy nature of the
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(d)

Fig. 8. (a) The difference map of Fig. 4a derived by using the block sizexoB8(b) The dilated difference map using
grey-level dilation with an 8< 8 structuring element; (c) The difference mask; (d) The difference mask weighted
distance map.

US image, as shown in Fig. 5. The difference map, every two adjacent blocks only differ slightly, the dif-

DIFF, of the underlying image is defined as: ference of the texture information contained in Be
vectors of every two adjacent blocks is expected to be
DIFF(, j) = (|G(i — 1,)) — G(, )|? + |GG, ] — 1) minor. Hence, it is reasonable to anticipatB e F (i, j)

smaller than the local maximumIFF (ig, jo).

Although the difference map may not be used to
o o pinpoint the desired edges, it does reveal the great pos-
Recall thatG(i, j) is the G-vector of the blockB(i, j). sibility to find the desired edges within the regions en-
Conceptually, the difference map computes the compos-¢josed by the significant peaks. This observation has led
ite perceptual similarity between the horizontal adjacent {5 the design of the difference mask, which serves as a
blocks and vertical adjacenF blocks based on .Chen's useful mask to suppress the undesired edges suggested
model (Chen 1994). The difference map of Fig. 4a, py the distance map. The goal is to extract the area

derived by using the block size of 8 8, is provided in  gncjosed by the local maximums at the left side and the
Fig. 8a, and the line profile of its 53rd line, which

corresponds to the white line marked in Fig. 8a, is plotted
in Fig. 9. From Fig. 9, one may observe that the differ- 180 i oo o .
ence map does not generate a significant peak at the ' fference |
texture border. That is, two adjacent blocks are not the st e
most dissimilar at the texture border. In practice, the '% : BRI S g
actual peak position is dependent on the texcel size. As g i
the block moves from the left texture to the right one, :
ideally DIFF (i, j) remains zero when the block contains
only one texture. When the block starts to include the ¢
right texture,DIFF(i, j) starts to have a positive value.
It is conjectured thaDIFF(i, j) reaches a local maxi-
mum when the portion of the right texture in the block is 20
just large enough partially to exhibit the right texture | P RAVVINA AN A A W
property. Suppose, at this time, the center of the block is | 33 65 97 129 161 193 225
(igs jo)- Itis because, at this tim&(ig, jo — 1) mainly pixel number
ée(?s }h)e sfg:;utr(eaxzﬁﬁetuff;nj:g? frtgfn Is;ttrt]egftli;:z I\;V:tuzre]gsFig. 9. The Iine profiles of the 53rd Iine_s of the difference map,
0'J0 the dilated difference map and the difference mask weighted
the right textures. After that, as the block moves toward gistance map, which correspond to the white lines marked in
the texture border, because the areas of both textures in Fig. 8a, b and d, respectively.

- G(i, PpHre (18)

= difference map

i ()

80

40
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right side of the texture border in the difference map. To Step 4: Compute the difference mask weighted dis-
generate the difference mask, a grey-level dilation using tance mapAfter the distance map and difference mask
an M X M (i.e, the block size) square structuring have been derived, the difference mask weighted dis-
element s first applied to the difference map to fill up the tance mapWDIST, may be easily obtained by comput-
regions enclosed by the significant peaks. The grey-leveling WDIST(i, j) = DIST(, j) - DM(i, j), whereDM
dilation operatoiGD(I(i, j), S;), which dilates pixel i, denotes the difference mask. Finally, tNéDIST is

j) of imagel using thep X p structuring elemens,, is smoothed by a Gaussian function and the peaks of the

defined as: smoothedVDISTdefine the potential edges. The Gauss-
ian function is to reduce the noise in tNéDIST. For

GD(I(i, ), S) = maxl,) + max(l,,) + max,) example, the weighted distance map (Fig. 8d) resulting

from the distance map and the difference mask given in
+ maxly), (19) Fig. 4b and Fig. 8c, respectively, has greatly reduced the
possible areas where the desired peaks in the distance

where map (Fig. 4b) might exist. The 53rd line profiles of the
weighted distance map, labeled as “weighted distance
lu=I1(—p/l2:i,] —p/2:])) (20) map” in Fig. 9, clearly show that the difference mask has

successfully eliminated many undesired false peaks in
comparison with the 53rd line profile of the distance map

L =10 —p/2:i,j+1:j+p/2—-1) (21) illustrated in Fig. 5. Finally, one may apply a threshold-
ing technique to determine the desired edges.
lh=I1(+1l:1+p/l2—-1,]—pl2:)) (22) As a summary, the proposed texture edge detector is

composed of four steps. In step 1, the image is decom-
posed into overlapping blocks and t@evector,G(i, j),

for each block,B(i, j), centered at the pixeli(j) is
computed using the Gabor functions defined in the ro-
In words, the grey-level dilation operatGD(I(i, ). S;)  sette map show in Fig. 1. In step 2, the distance map,
replaced (i, j) by the sum of the maximums of the four - p|ST, of the underlying image, which is defined as
regions defined by, I, I, andl,. Following the DIST(, j) = ||G(i, j)| is computed. The peaks in the
grey-level dilation, the dilated difference map is thresh- istance map suggest the edge locations. In step 3, the
olded by its mean value and set the pixels larger than the gitference mask, which is generated from the difference
threshold to 255, which results in a binary image con- 55 10 suppress the false peaks in the distance map is
taining 0-pixels and 255-pixels. At this stage, it is ex- computed. The difference mapJFF, is defined by egn
pecteq that the desired edges wou!d b.e cover_ed by the(18). The difference mask is derived by applying the
255-pixels. .Howe.ver, due to the noise in thg difference grey-level dilation operator defined in eqn (19) to the
map, the binary image may contain undesirable small yittarence map, followed by thresholding, binary erosion
clusters of 255-pixels. Also, the sizes of the 255-pixel and Gaussian smoothing. In step 4, the distance map is
clusters covering the desired edges may be unnecessarilhasked by the difference mask and tWéDIST is
large and can be shrunk. Thus, the binary image is gn,othed with a Gaussian function. The desired edges

eroded by a 3xX 3 structuring element and the eroded are determined from the peaks in the smoottémIST,
image is smoothed by a Gaussian function of SD 1, for example, by thresholding techniques

which gives the difference mask. Because the edges of

the eroded image are step edges, the smoothing operation

is to eliminate the false edges that may be introduced by Texture enhancement

the step edges when using the eroded image as the mask.  Even with a texture edge detector, false edges may
Taking Fig. 4a as an example, Fig. 8a—c shows the be easily generated due to the sporadic spots and arte-
difference map, dilated difference map and difference factsin a US image. Obviously, the conventional denois-
mask of Fig. 4a. The line profiles of the 53rd lines, the ing techniques cannot be used because the texture infor-
difference map and the dilated difference map are plotted mation may be spoiled greatly by the smoothing opera-
in Fig. 9, which correspond to the white lines marked in tions. To preserve the texture patterns used for
Fig. 8a and b, respectively. From Figs. 8 and 9, one can identifying the texture edge with a weak RMGD, a new
see that the dilated difference map has succeeded inconcept of denoising for texture enhancement is pro-
defining a significant region around the border, and the posed in this paper. Instead of smoothing the original
difference mask has effectively excluded a great amountimage, which may destroy the structures of all scales,
of undesired area. smoothing operations are only applied to those of se-

L=1G+1i+p2—1,j+1:j+p/2-1). (23)
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lected scales. To achieve this goal, wavelet analysis is D;(x(n)), stands for the difference in information -be

employed to extract information of different scales. tween the approximated versions of the original signal
Wavelet transform may be viewed as an operation x(n) at two successive resolutions. As a matter of fact,

projecting an image onto subspaces of different resolu- the following iterative relation holds for the detail and

tions (scales). Because wavelet bases have a higher comapproximation signals at two successive levels, where

pact support than sinusoidal functions, wavelet trans- Ag(x(n)) = x(n):

form, in general, provides a much better locality than

Fourier transform. Taking 1-D discrete wavelet trans- A_1(x(n)) = A(x(n)) + Dy(x(n)). 27)

form (DWT) as an example, mathematically, 1-D DWT

up to a levell of depths for a discrete signg{n), neZ,

Similarly, for the 2-D DWT, an image may be
may be formulated as follows: y g y

decomposed into four imagese(, one approximation
and three details) at each level of resolution. These three
details are horizontal, vertical and diagonal details.

To preserve the texture information as much as
possible in the texture enhancement process, our idea to

X(0) = 3 5, i) + 3, ancbu(n),  (24)

and minimize the influence of the false edges is to perform
smoothing operatiore(g, using a Gaussian filter) on the
_ approximation at level (i.e, A) rather than on the
o= : 2
i g X(M;(n) (25) original image. This idea has inherently assumed that the

small-scale texture information is mainly comprised in
n the details at the firsd levels. Note that] is image-
Ay = En: x(n)¢,u(n), (26)  dependent and strongly related to the scales of the struc-
tures to be smoothed. After smoothing, the denoised
image,l4, may be reconstructed from the details in the
first J levels and the smootheil;, denoted a$ A using
a relation similar to eqn (27) for 2-D DWT as follows:

where:

¢(t) = continuous scaling function,
{i(t) = continuous wavelet function,
" (t) = continuous reconstructing wavelet function,

[

; «(n) = discrete version of the scaling function at la = (Hi+ Vi + D) + SA, (28)
scale 2 and positionk, ¢; \(t) =
2724272t — k), For US images, a reasonable choiceld$ J = log,M,

; «(n) =discrete version of the wavelet function at whereM X M is the block size for computation of the
scale 2 and positionk, ; (1) = distance map. The rationale of this choice is as follows.
272y 27V%t — k), Because, in theory, all X M block would extract the

Y «(n) =discrete version of the reconstructing wavelet texture information with texcels not larger thf/2 X
function at scale 2and positiork, i (t) = M/ 2 according to the Nyquist rate, the structures larger
2702y (27V%t — k), than M/2 X M/2 hardly contribute valuable texture

d; = detail coefficients at scalé and positiork, information to the distance map. On the other hand,
ay = approximation coefficients at scalé and because the equivalent resolution Ay is about 2,
positionk. smoothingA; should not ruin any useful texture infor

mation that might be used in the distance map. This
By using 1-D DWT, for aJ levels of decomposition,  texture-enhancement idea can be further generalized to
a discrete signak(n) may be decomposed intblevels multiresolution filtering, if necessary. In other words,
of detail signalsi(e. the detail signals from level 1 to one may apply Gaussian filters of different SDs to the
level J) and an approximation signal at leval The different levels of approximations.
detail signal at levef, denoted asD;(x(n)), may be

computed fromd, , by D;(x(n)) = 2y d, ¥y «(n) and Performance analysis
the approximation signal at levé] denoted a#,(x(n)), Two types of US images have been employed to
may be derived frona; , by Ay(x(n)) = 2y a5 b; k(). evaluate the performance of the proposed edge-detection

The approximation signal at level A;(x(n)), represents  algorithm. One is the synthetic edge image and the other
the approximated (smoothed) version of the original sig- is the clinical US image. The synthetic edge image is a
nalx(n) with a resolution of one point for every points composite bipartite image consisting of two 128128

of the original signal. The detail signal at level US images, as shown in Fig. 4a. Because the border of
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two textures is well defined, the synthetic edge image of (Jain and Farrokhnia 1991), each texture image is
serves for the exact performance evaluation of the pro- filtered with a set of even Gabor functions forming a
posed algorithm. On the other hand, the detected edgesosette map in the frequency domain. Among all filtered
of the clinical US images are compared with the bound- images, the significant filtered images are selected so that
aries manually drawn by an experienced medical doctor. the summed power is 95% of the total power. Following
Because the edges in the clinical US images usually areselection of the significant filtered images, a nonlinear
not well defined, delineating the boundaries of the ob- hyperbolic transform is applied to each filtered image
jects of interest is quite a subjective process. As a result, and the transformed image is averaged with a weighting
the manually delineated boundary of an object frequently window (e.g, a Gaussian function) to measure the local
varies substantially with that of the medical doctor. energy. The energy maps derived from all selected fil-
Therefore, it should be emphasized that this performancetered images form a feature vector for each pixel. A
evaluation can only serve as a reference. clustering algorithm called CLUSTER is employed to

Because the focus of this paper is on those texture find the texture boundary, which recursively assigns each
edges with a weak RMGD, for comparative study, the pixel to the cluster with the shortest Euclidean distance
proposed algorithm has been compared to two nontex- between the feature vector of the pixel and that of the
tural edge detectors and two textural edge detectors usingcentroid of the cluster.
the synthetic edge images. The nontextural edge detec- In the algorithm of (Malik and Perona 1990), each
tors are taken into account because most previous ap-texture image is convolved with a set of filters (DOG and
proaches are nontextural approaches and the textureDOOG) followed by half-way rectification. Two DOG
edges still have detectable RMGD, though weak, that can functions have been used, namely DOG1 and DOG2,
certainly be utilized by the nontextural approaches. The which are defined as:
comparison with the nontextural edge detectors is in-
tended to show the important role of the texture infor- DOG1(o) = a- G(0, 0, o}, o))
mation, even when the RMGD is relatively strong.

The two nontextural edge detectors are the Laplacian- +Db-G(0, 0,00 00 (29)
of-Gaussian (LOG) (Marr and Hildreth 1980) and the
Canny edge detectors (Canny 1986). The LOG is a widely DOG2¢) = a- G(0, 0, gy, ;) + b- G(0, 0, 0, 0)
used edge detector that defines the edges at the zero-cross-
ing points of the second derivative of the Gaussian- +¢-G(0, 0,00 00), (30)
smoothed image. The LOG usually achieves a much better . . .
performance than many other classic approaches, especiaII)Wh(_ere G(Xo, Yo O ay) is the Gaussuf:m function, as
in cases of low signal-to-noise ratio (Parker 1997). The deflned.prewously. For DOGL;: o 9o 1S 0.71.1:1.14
Canny edge detector is an optimal operator with respect to anda:p is 1. —1. FOF D.OG.Z’Ui: 7 o 1S O.62:1:1.6_and
a set of criteriai(e., good detection, good localization, and abzcis 1:-2:1. An inhibition scheme is then applied to
single response). Even though these two nontextural edgesuppregs_ .the weak response based on the so-called
detectors have been designed with a smoother, their perforjz)os’tmh'b'tIon response (RIR)' The PIR selects the stron-
mance on US images is usually unacceptable due to thege.St thrgsholded and we|ghte.d response from the sam-
speckles and tissue-related textures. To ensure the fairnes%:'ng heighborhood .Of ez_ach pixel in each_ channel. T he
of the comparison among different algorithms, the under- t rgshold for each p_lxel n ea}ch channel is the maX|maI
lying principle in the experimental design was to maximize Welghted response in the nelgr_\borhood of the pixel de-
the intended capability of each algorithm. Therefore, for the fined over all channels. The we ighting facjror; are related
LOG and the Canny operators, the speckle reduction algo-to the measure of the effgctlveness of inhibition. .The
rithm proposed by Karaman et al. (1995) has been carrieg €Xture boundarles are Qefmed by_the local peaks n the
out on the synthetic edge images before these two edgetexture gradient, which is the maximum Of. the gradient
detectors were applied. The reason whyaspeckle—reductionOf the PIR smootheq by a Gaussian function among all
algorithm rather than a denoising method is employed is channels for each pixel. .
that the former can usually preserve the object boundary . The pe_rformance of each edge detector is eva}luat.ed
better than the latter, by taking into account the statistical using the figure suggested by Pratt (1980), which is
property of the speckles. In this study, we have employed defined as:
the LOG and the Canny edge detectors provided in the 1 I 1
commercial software tool, MATLAB. E = ( 2) , (31)

The two textural edge detectors are the early vision Eomaxly, 1) &\ 1 + ad
model-based approaches proposed by Jain and Farrokh-
nia (1991) and Malik and Perona (1990). In the approach where
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I=the number of edge pixels found by the edge
detector,
I ,=the actual number of edge pixels,
d; =the shortest distance from tlih detected edge
pixel to the ideal boundary,
a=the scaling factor, which is set to 1 in our
analysis,
E,=the normalization factor to take into account the
discrete nature of a digital image.

not be applicable to the practical situations. Therefore, in
this paper, five differeniv s (.e, w = 20, 40, 60, 80,
and 100) have been considered to account for the possi-
ble influence of the complex nature of a US image. For
succinctness, we will present the performances evaluated
using the five different performance windows only for
the proposed algorithm. The performance comparison
between different algorithms will be made by using one
small performance windoww = 20) and one large
performance windoww = 80), to avoid the possible
The reason for using the Pratt’s figure as the performancebias due to the window size. For each clinical US image,
index is that it not only measures the distance betweenthe performance is evaluated only for those detected
the all detected edges and the corresponding desirededge points that are less than 10 pixels away from the
edges, but also gives penalty to the excessive humber ofmanually delineated boundary in terms of the Euclidean
edge points. For the synthetic edge image, the ideal distance. The size of the performance window is mainly
boundary is an imaginary line at the middle of the 128th limited by the smallest size of the testing objects of

and the 129th columns. Therefore, the best performanceinterest and by the criterion imposed by u®.( using

that an algorithm can achieve is 0.8. In this c&&gis set
to 0.8. For the clinical US image, because the ideal
boundary is manually drawn by an experienced medical
doctor, there is no discrete problem alfglis set to 1.

IMPLEMENTATIONS AND DISCUSSIONS

All US images, including those used to make the
synthetic edge images, are selected by medical doctor
and captured from a Toshiba SSA-380A clinical US
imaging system through a frame-grabber card. The

frame-grabber card was the Meteor-1l card made by the

Matrox Electronic System Ltd., which captured the im-
age from the RGB output of the Toshiba SSA-380A and
stored the image in the BMP format with 8-bit resolution
for each color channel. The operating frequency of the
ultrasound system was 3 MHz.

For both of the synthetic edge images and the clin-
ical US images, the block size used in the proposed
texture edge detector is*8 8. Accordingly, the decom-
position leveld for the texture enhancement is lp§ =
3 as discussed above.

Rather than evaluating the performance using the

S

approximately the same area for inside and outside the
boundary in computing the Pratt’s figure).

Because the performance of each edge-detection
algorithm is quite dependent on the parameter values
used for each image, to avoid an unfair comparison due
to an improper selection of the parameter values, we
have adopted the best performance attainable in the per-
formance comparison. The best parameter values for
each algorithm have been sought by a coarse search
followed by a fine search. The coarse search is to narrow
down the possible ranges of the best parameter values for
each image by using a relatively large step size for each
parameter. The fine search is to find the best parameter
values with a small step size within the range determined
by the coarse search. For the LOG and the Canny edge
detectors, the best performance was found by varying the
only two parametersi.e., the thresholds and the SDs)
specified in the MATLAB commands. For the Jain and
Farrokhnia and Malik and Perona approaches, the best
performance was derived by using the parameter values
given in their papers. In addition, because Malik did not
give the values for the radius of the sampling neighbor-

entire image, for each synthetic edge image, the Pratt's hood and the SD of the Gaussian function in computing

figure has been computed within a performance window,
that is defined as the central 80w pixels (.e., 80 rows

by w/2 columns at both sides of the imaginary bound-
ary). The reasons are two-fold. One is that it is quite
common to perform edge detection within a region-of-

the texture gradients, coarse and fine searches have been
applied to these two parameters to find the best perfor-
mance. For the proposed algorithm, the threshold is
defined as the mean plus the SD multiplied by a factor,
T where the mean and the SD are calculated over the

interest (ROI). In this case, it is more appropriate to entire image. The coarse and fine searches have been
measure the performance of the ROl instead of the entire applied to the SD of the Gaussian function smoothing the
image. The other is that, since it is not easy to find a large WDIST and the factorT,,. Table 1summarizes the
homogeneous area in an clinical US image to make the parameters to which the fine search has been applied as
synthetic edge images, computing the Pratt’s figure in a well as their ranges and step sizes used in the fine search
large region might include edges from other tissues, for each algorithm. For the Jain and Farrokhnia (1991)
which are not necessarily false edges. On the other hand algorithm, no fine search has been conducted because the
evaluating the performance within a small region may parameter values given in the paper have been employed.
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Table 1. The parameters and their ranges and step sizes usec
in the fine search of the best performance for each algorithm

Algorithms Parameters Range Step size
Proposed approach 13-'5 71'15_;2'5 01'1
LOG ThrgthoId 0002)_15%01 g..(l)Ol
Canny Thrgslshold gcl)ig%l (())i)l
Malik and Perona Neighboghgod radius 4—21_68 11
Jain and Farrokhnia none NA NA

On the synthetic edge images

To investigate the effect of the RMGD on the edge-
detection performance, 20 sets of synthetic edge images
have been employed for performance evaluation and
comparison. Each set consisted of five images that were
made of the same two 128 128 US images, but with
different RMGDs. For each set, the RMGDs were set to
0, 10, 20, 30 and 40. The RMGD of each synthetic edge
image was ensured by adjusting the regional mean grey
levels of its two 128x 128 US images so that the RMGD
between the rightmost four columns of the left image and
the leftmost four columns of the right image met the
specified value. As an example, by using the proposed
texture edge detector without texture enhancement, Fig. &=
10 demonstrates the 15th set of the synthetic edge image: =
and the detected edges with the best performance in
terms of the Pratt’s figure. In Fig. 10, the RMGDs of the
five synthetic edge images are 0, 10, 20, 30 and 40 from Fig. 10. The 15th set of synthetic edge images (left column) and
top to bottom. The synthetic edge images are in the left the corresponding detected edges (right column) v_vith the best
_cqumn_ and the corre_spondin_g detected gdge images_ar ?\;fggn;ngscchoirpn%tg?svgg"gl\tﬂhgéeg;tr(ag)ggl\ggBeg'%'; Ige
in the right column, side by side. The white rectangle in  RmGD = 20; (d) RMGD = 30; and (¢) RMGD= 40.
each right image of Fig. 10 indicates the performance
window of size 80x 100.

Without texture enhancement, the best perfor- Gaussian function of SD 5, respectively. For the conven-
mances of the proposed edge detector for the 20 sets oftional algorithms X can be “LOG,” “Canny,” “Malik,”
synthetic edge images are plotted in Fig. 11 for five and “Jain,” which represent the LOG, the Canny, the
different performance windows. In Fig. 11, the vertical Malik and Perona, and the Jain and Farrokhnia algo-
axis gives the Pratt’s figure and the horizontal axis ar- rithms, respectively.
ranges data into five clusters, in terms of the RMGD, that Due to the skewed distribution of the Pratt’s figures
are separated by vertical dashed lines. A cluster containsin each group, the quartile statistics (Vardeman 1994)
the performance statistics of five groups, each consistinginstead of mean and variance has been adopted to de-
of 20 synthetic edge images with the same RMGD and scribe the performance statistics. For each group in Fig.
the same size of the performance window. For conve- 11 (i.e., given an RMGD and a performance window) the
nience, the notation conventiod[w] will be used to Pratt’s figures of the 20 synthetic edge images are first
denote the performance of the algorithéhcomputed sorted in the ascending order. Each vertical rectangular
with the performance window of size 80 w. For the bar corresponds to the mediane( the 11th Pratt's
proposed textural approaches can be “TED,” figure) of the sorted sequence, which stands for the
“ETED3” and “ETEDS5,” which stand for the proposed averaging performance that the underlying algorithm
texture edge detector without texture enhancement, with may achieve for this group. The upper and lower error
texture enhancement smoothed by a Gaussian function ofbars indicate the 15th and the 6th Pratt’s figures in the
SD 3, and with texture enhancement smoothed by a sorted sequence, which are statistically equivalent to the
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Fig. 11. The best performances of the TERD[ w = 20, 40, Fig. 12. The relative performance of the ETER3[to the

60, 80 and 100, for the 20 sets of synthetic edge images. TED[w] (i.e, (ETED3[w]-TED[w])/TED[w], w = 20, 40,
60, 80 and 100) for the 20 sets of synthetic edge images.

first and the third quartiles of the distribution. The length
of the error bar is statistically called the interquartile Figs. 12 and 13, itis clear that using the texture enhance-
range, which characterizes the spread of the middle half ment may achieve a substantial improvement over those
of the distribution. implementations without using the texture enhancement,
Generally speaking, Fig. 11 shows that the proposed though it may also degrade the performance. The im-
edge detector without texture enhancement provides aprovement basically increases as the RMGD decreases,
reasonably high performance, even for a synthetic edgedue to the more and more important role that the texture
image with a small RMGD. As the RMGD increases, the information plays in texture edge detection. For a small
median performance monotonically increases and the RMGD (e.g, less than 30) the improvement computed
interquartile range monotonically decreases, which using a large window tends to be better than that using a
means that the proposed scheme promises a more relismall window. Moreover, the ETED#®]] is generally
able performance for a larger RMGD. It is because, as better than the ETED®], except wherw = 20, given
the RMGD increases, the second two terms in egn (17) a small RMGD. The reason is that a larger smoother, (
increase. These two terms basically represent the powera Gaussian with a larger SD) may eliminate more false
due to the difference of the mean grey level of the block edges than a smaller smoother as intended by the texture
and that of each texture. It implies a larger total power enhancement. This effect becomes more obvious in a
for a block containing the texture border and, hence, a performance window larger tham = 20. However, it
large value in the distance map. Consequently, as theought to be noted that the SD of the Gaussian function
RMGD increases, the peaks of the false edges becomeused in the texture enhancement should not be too large
less significant and, hence, the false edges may be greatlybecause the edge information due to the RMGD will also
reduced due to the stronger local maxima contributed be weakened when the false edges are being smeared out.
from the texture border. As the size of the performance
window increases, the performance generally decreases,
mainly caused by the increased false edges and tissue soor

T T
B(ETEDS[20-TED{20]VTED(20]

edges included in the larger area. However, this phenom- Sorsel g e B (ETEDS{40} TED{OYTED{40]
enon becomes less evident as the RMGD increases be- “**™ WETINS PRIAD)
cause of the stronger local maxima resulting from the 55 |- _ OUETEDS[100}-TED{100)/TED{100] |

texture border. From Fig. 10, one may see that fewer el
false edges have been produced and the detected edge 2% = i
are more coincident with the texture border as the
RMGD increases.

10.00%

To see the effect of the texture enhancement, like oo B il ] || s |
Fig. 11, the relative performance of the proposed algo- ) | |
rithms, that is (ETED3]-TED[w])/TED[w] and S w | wm . we w
(ETED5[w]-TED[w])/TED[w], are plotted in Figs. 12 RMGD

and 13, respectively, for five sizes of performaqce win- Fig. 13. The relative performance of the ETER§[to the
dows. The vertical axes give the percentages of improve- TED[w] (i.e., (ETED5[w]-TED[w])/TED[w], w = 20, 40,
ment attained by using the texture enhancement. From 60, 80 and 100) for the 20 sets of synthetic edge images.
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(b)

(c)

Fig. 14. (a) Left: the original synthetic edge image in the 15th set with the RMQD which is the same as Fig. 10a;

right: the edges detected derived by the TED[100] algorithm. (b) Left: the texture-enhanced synthetic edge image using

a Gaussian function of SD 3; right: the edges detected derived by the ETED3[100] algorithm. (c) Left: the texture-

enhanced synthetic edge image using a Gaussian function of SD 5; right: the edges detected derived by the ETED5[100]
algorithm.

Empirically, one may expect a reasonable improvement window (.e., w = 80). Figures 15 and 16 give the
by using a Gaussian function of SD 3 to 5 for the texture relative performances between each classic approach and
enhancement. the proposed TED algorithm computed by using the
Take the left image in Fig. 10a as an example, small and the large performance windows, respectively.
which is the original synthetic edge image in the 15th set From Figs. 15 and 16, it is apparent that the TED
with the RMGD = 0. Figure 14b and c shows the algorithm outperforms all of the four classic approaches.
texture-enhanced images in the left column and the de- Moreover, the performance improvement over the classic
tected edges with the best performance in the right col-
umn by using the ETED3 and the ETED5, respectively.
The size of the performance window is 80100. Figure 0.00%
10a, which contains the original synthetic edge image
and the detected edges, is repeated in Fig. 14a forease o~
comparison. It is clear from Fig. 14 that the texture _om
enhancement not only improves the edges around the
texture border, but also reduces the false edges. 0005
In performance comparison, because the relative
performance among the TED, the ETED3, and the " {
ETED5 algorithms have been presented above, without -100.00% ST T T TR
loss of generality, the TED algorithm has been chosento | s |nuafﬂl?ﬂl-ml_mnrrﬁmzr_n O(Mali(20}-TEDR0TED[0] |
represent the proposed algorithms in comparison with 0 10 20 30 n
the classic approaches. Two sizes of performance win- RMGD
dows haye been considellfed to avoid the possible pias dueFig. 15. The relative performance between the classic ap-
to the window size. One is a small performance window proaches and the TED algorithm for a small performance
(i.,e, w = 20) and the other is a large performance window (.e., w = 20).

20.00%

-80.00%
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|-lmnsm_w_umsu1v_rmsu1 (L0GI80} TEDSO) TED{R0] [ Fig. 17. RMGD= 17.2, Pratt's figure= 0.338. (a) The original
12000% T Ll P R LD 212 L2 image 4; (b) The manually drawn boundary; (c) The edges
0 10 20 30 40 detected by the proposed approach. The contrast and brightness
RMGD of these three images have been linearly adjusted in the same

. . . way for better visualization.
Fig. 16. The relative performance between the classic ap-

proaches and the TED algorithm for a large performance win-
dow (.e, w = 80).
images have been used in this study. The objects of

approaches is more significant for a large performance interest are hepatic tumors, such as hepatocellular carci-
window. Because the texture enhancement also has ahoma (HCC), cavernous hemangiomas, metastatic liver
better performance in a large performance window, it is cancer, hyperplastic nodule, and so on. Limited by the
expected that the ETED3 and ETED5 may attain a much tumor size, the performance on each US image is eval-
more significant improvement over the classic ap- uated only for those detected edge points that are less
proaches. Note that all the vertical rectangular bars arethan 10 pixels away from the manually delineated
plotted in the negative direction. Although the Jain and boundary in terms of the Euclidean distance. The bound-
Farrokhnia and the Malik and Perona algorithms were aries are drawn by an experienced medical doctor by
designed to detect the texture edges, they perform poorlyusing a self-developed image-processing software called
in US image edge detection probably because of their MediaX, which allows a user to make delineation using
global approaches to extracting the texture information a mouse or a tablet system. The tablet system used in this
in the frequency domain. When the two textures forming study is the Intuos 6x 8 tablet (GD0608) made by
the texture edge do not generate a prominent frequencyWACOM company. The RMGDs of the 20 tested tumors
pattern in the spectrum of the entire image, it is very are the difference of the mean grey levels between the
likely that the global approaches cannot capture enoughpixels outside and inside the tumor satisfying the 10-
texture information to determine the texture edge. pixel constraint. The RMGDs of the 20 tumors range

When the performance window is small, the LOG from 7.8 to 48.5. As examples, Figs. 17-20 show the
and the Canny edge detectors perform reasonably welldetected edges for the tumors in images 4, 7, 11 and 20,
for a relatively large RMGD. It is because the speckle the RMGDs of which are 17.2, 19.5, 26.2, and 48.5,
reduction process has largely removed the interference ofrespectively. In each figure, the left image is the original
the speckles and the tissue-related textures, while pre-image, the middle one gives the manually drawn bound-
serving the grey-scale edges due to the relatively large ary, and the right one shows the derived edges.
RMGD. In addition, one may find that the Canny algo- The best performances of the proposed algorithm on
rithm is slightly better than the LOG algorithm. How-
ever, when the performance window is large, the relative
performance of the Canny algorithm to the TED algo-
rithm degrades rapidly, even for those images with a
large RMGD. In contrast, although the relative perfor-
mance of the LOG algorithm to the TED algorithm also
degrades for a large window, the LOG algorithm is much
better than the Canny algorithm when the RMGD is
large. These results partially support that a nontextural
approach may still be useful in US edge detection, as (a)
long as the RMGD is large enough.

Fig. 18. RMGD= 19.5, Pratt’s figure= 0.380. (a) The original

.. . image 7. (b) The manually drawn boundary. (c) The edges

On the clinical ultrasound images detected by the proposed approach. The contrast and brightness
To evaluate the performance of the proposed algo- of these three images have been linearly adjusted in the same

rithm in detecting the real boundaries, 20 clinical US way for better visualization.
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Prat's figure

@ ®) © /”"_"' e

[
Fig. 19. RMGD= 26.2, Pratt’s figure= 0.471. (a) The original
image 11. (b) The manually drawn boundary. (c) The edges  ° " ., . . o . & 15 o 1 .
detected by the proposed approach. The contrast and brightness image
of these three images have been linearly adjusted in the same
way for better visualization. Fig. 21. The best performances of the proposed algorithm on

the 20 US images, in which “Pratt’s figure” denotes the Pratt's
figure and “RMGD” the RMGD of a tumor.

the 20 US images are plotted in Fig. 21. Like for the

synthetic edges, the best parameter values are determined

by the fine search listed in Table 1. Because the RMGD The second factor is that the human beings perform
varies with the image, the Pratt’'s figure of each image higher functions €.g, extrapolating the missing edges,
along with its RMGD is provided in Fig. 21, instead of smoothing the edges, etc.), rather than simply following
using the quartile statistics. As its name implies, in Fig. the edges in drawing the boundary. As one can see, the
21, “Pratt's figure” denotes the Pratt's figure and manually drawn boundaries in Figs. 17-20 are much
“RMGD” the RMGD of each tumor. All images are smoother than the detected boundaries. However, this
sorted in the ascending order of the RMGDs. In general, factor may become less significant as the RMGD in-
Fig. 21 reveals the tendency of performance increment ascreases because the boundary is usually better defined for
the RMGD increases, though not monotonically, which a larger RMGD. The third factor is that different medical
is quite consistent with the experimental results on the doctors or the same medical doctor, but at the different
synthetic edge images. However, the Pratt’'s figure at- times, may define different boundaries for the same
tained on a clinical US image is generally smaller than object. Because of the time-variant and the person-de-
that on a synthetic edge image with a similar RMGD, pendent nature, it is suggested that only the performance
which may be ascribed to three factors. The first factor is comparison with the manually delineated boundaries be
that, like most edge detectors, the proposed algorithm used for a reference.

selects edges mainly according to the peak magnitudes of The experimental results on US images actually
the distance map. Nevertheless, a medical doctor notbring out two fundamental problems of the general edge-
only refers to the edge strengths but also, more impor- detection techniques based on mathematical models in
tantly, incorporates the medical knowledge in determin- practical applications. One is that the edges may not be
ing the tumor boundary. For example, the medical doctor clinically correct because no notion of medical knowl-
chose the weaker edge for the lower-right portion of the edge has been included in the algorithms. The other is
boundary, whereas the proposed algorithm took the that the edges may not be coincident with those defined
stronger one in Fig. 17. by a human observer because most edge-detection algo-
rithms simply aim to capture the local edge information.
Therefore, a second step is usually required to seek a
better boundary. For example, one may employ a de-
formable model, such as a snake model, that takes ad-
vantage of the edge information and incorporates the
medical knowledge, to find the desired boundary.

CONCLUDING REMARKS

Edge detection has been recognized as a hard prob-
_ o o lem in quantitative US image analysis, especially for the
Fig. 20. RMGD= 48.5, Pratt’s figure= 0.553. (a) The original class of edges that we have focused on in this stuey (

image 20. (b) The manually drawn boundary. (c) The edges . .
detected by the proposed approach. The contrast and brightnes%he texture edges with a weak RMGD). In this paper, we

of these three images have been linearly adjusted in the samehave proposed a new textural approach for detection of
way for better visualization. the texture edges with a weak RMGD in US images. The
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proposed approach comprises two major techniques. Oneuted to theG-vector found in Chen (1994), with which

is a new texture edge detector that generates a weightedhe similarities between two textures may be predicted
distance map based on an early vision model. The local closely in agreement with those obtained by the psycho-
maxima of the weighted distance map define the edges inphysical experiments.

the US images. The other technique is a texture-enhance- , , _

ment scheme that performs smoothing operations onS0CHSIOETENSES otk wes supeoned i bt by Netonel
low-resolution information utilizing the wavelet analysis, R.0.c., under the grant numbers NSC 86-2213-E-002-056 and
and attempts to alleviate the interference of the artefacts DOH86-HR-310. The authors are grateful to the reviewers for their
and the sporadic spots in edge detection. We have shown'2/uable comments on improving the paper.
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