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ABSTRACT

A map illustrating the total Hg content in soils of Taiwan was developed using the geo-
statistics and geographic information systems. Data were collected from Environmental Protec-
tion Administration’s study targeting at agricultural soils in the 1980s. The range and arith-
metic mean of the Hg contents in the topsoil (0 to 15 cm) of the study samples were as fol-
lows:0.01 to 2.61, 0.16 (mg/kg dry soil). An exponential variogram model was fitted using
least squares and used to krige a grid covering Taiwan. This study emphasized that the map
delineated gross trends in total soil Hg on the scale of conterminous Taiwan. Small-scale re-
gional or localized spatial variability might be inadequately represented. The results showed
that Soils in Toufen, Changhua and Pingtung areas tended to contain higher levels of Hg than
the average. The map will be useful in future research in determining the geographic distribu-
tion of the regional patterns of fish Hg content, the relationship between Hg and parent soil
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material, and industrial emission.

INTRODUCTION

Mercury is widely used in amalgams, scientif-
ic instruments, batteries, arc lamps, the extrac-
tion of gold and silver, and the electrolytic produc-
tion of chlorine. Its salts are used as fumigants in
combating plant diseases and insect pests. Mer-
cury may occur in several forms ranging from ele-
mental to dissolved organic and inorganic species;
however, some microorganisms have the ability to
convert less hazardous organic and inorganic forms
of mercury to the highly toxic methyl and
dimethyl mercury [1]. The most devastating inci-
dent of mercury poisoning in human history re-
sulted from the ingestion of sea {food taken from
Minamata Bay, Japan, during the late 1950s. Out
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of the total 111 cases reported, 43 people died.
Babies born of afflicted mothers suffered congeni-
tal Defects [2]

Map illustrating the geographic distribution of
soil Hg in Taiwan should contribute to the better
understanding of the correlation between the soil
Hg content and the emission of mercury from in-
dustries. In addition, the map will be useful in
considering the consequences of Hg content in
fish.

Geostatistics provides a means to characterize
and quantify spatial variability, to use this infor-
mation in rational interpolation, and to estimate
the variance of the interpolated values. Variance
estimation provides valuable information on the
sampling density and configuration necessary for
estimating a property to a specified precision.
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Geostatistics has been used to characterize spatial
variability and to map a variety of soil properties at
scales ranging from centimeters to kilometers, and
it may prove useful across even greater distances
[3,4]. Examples of other works include those of
Burgess and Webster [5], Bierkens and Burrough
[6], Bourennane et al/. [ 7], Davies [8], and
Smith et al. [9] among others.

Studies by the Environmental Protection Ad-
ministration (EPA) in a collaborative research
program initiated in 1983 aimed to determine the
As, Cd, Cu, Cr, Hg, Ni, Pb and Zn trace ele-
ment contents in soils and other soil properties,
such as cation-exchange capacity and pH. Soils
were sampled from 897 sites representing impor-
tant agricultural production areas across Taiwan as
described in reports on the elemental contents of
soils in Taiwan. Total soil Hg ranged {rom 0.01 to
2.61 mg kg™ !, with an estimated arithmetic mean
of 0.16 mg kg !. In another study, Chen and Lee
[10] have detailed the Hg contents of 101 soils in
21 representative agricultural soil profiles in Tai-
wan, ranging from 0.04 to 1.62 mg Hg kg~ ! with
an arithmetic mean of 0.23 mg kg~ !.

The primary objective of this study was to de-
velop a map illustrating the geographic distribution
of Hg in surface soil horizons of Taiwan using geo-
statistics and geographic information systems
(GIS). We used variography, linear regression,
and sensitivity analysis to characterize the spatial
variability of soil Hg using based on the data from
EPA-ROC. We used geostatistical interpolation,
i.e., punctual kriging, to estimate and map the
total soil Hg content throughout Taiwan

MATERIALS AND METHODS
1. Data

Data were derived from the EPA-ROC studies
described above. The sampling sites for the study
are shown in Fig. 1. The sampling was conducted
from 1983 through 1986. Samples were taken
from geographically well-distributed sites at a tar-
get interval of 4 km network. Soils were sampled
at a depth of 0-15 em. Total soil Hg for 897 sam-
ples was determined by mean of acid digestion,
followed by cold vapor atomic absorption technic.

2. Geostatistical Methodology

Geostatistics [ 11-13] consists of a collection
of techniques for the analysis of spatially correlated
data. Such geostatistical techniques as kriging in-
corporate the spatial or temporal characteristics of
actual data into statistical estimation processes.
These techniques can be lincar, such as point krig-

Grade Hg(mg/kg)
]2 (<01
3 (0.1-0.39)
4  (0.4-20)
5 (>20)
Sampling Sites
n=897

Fig.1. General map showing the soil sampling
sites and Hg grades in Taiwan.

ing, ordinary kriging and block kriging.

Geostatistics provides a model for the spatial
correlation of data within a statistical framework,
including spatial and temporal covariance func-
tions. Not surprisingly, these models are generally
referred to as spatial or temporal structures, and
are defined in terms of the correlation between any
two points separated by either spatial or temporal
distances. A great deal of collected environmental
data indicate that points which are closer in a giv-
en direction display higher correlation values than
do those that are separated farther.

Geostatistical estimates are calculated as
weighted sums of the adjacent sampled concentra-
tions. These weights depend on the exhibited cor-
relation structure. To illustrate, if data appear to
be highly continuous in space, those points closer
to the estimated points receive higher weights
than do those farther away. The criterion for the
selection of these weights is the minimization of
the estimation variance. In this framework, geo-
statistical estimates may be regarded as most accu-
rate among all linear estimators (i.e., the Best
Linear Unbiased Estimator).
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3. Geostatistical Structural Analyses

The first task in any geostatistical investiga-
tion is to identify the variogram of the investigated
variable in space or time. This task, referred to as
variography, is usually performed by determining
the estimated variogram of the data collected.
Variography is initiated by grouping the available
pair-values into a number of lags or distance class-
es in accordance with their in-between distances.
Variograms provide a means of quantifying the
commonly observed relationship where samples
close together tend to have more similar values
than samples farther apart. The variogram ¥ (/)
is defined as

y(h) = 2Varlz(z) = Z(x + 1)) (1)
where (h) is the lag distance separating pairs
of points and Var is the variance of the argument.
Z(x) is the value of the regionalized variable of
interest at location x , and Z(x + k) is the value at
the location x + h. An experimental variogram

y*(h), is given by
7 () = (/20 12+ ) - Z(e) R ()

where n (k) is the number of pairs separated by
the lag distance h .

The main features of a typical variogram are
threefold: the (1) range, (2) sill, and (3)
nugget effects. Range is the distance at which the
variogram reaches its maximum value. A pair of
samples whose in-between distance is greater than
the range is uncorrelated. This means that the
range is regarded as a measure of the spatial conti-
nuity of the investigated variable. Sill, as the up-
per limit of the variogram which tends to level off
at large distances, is a measure of the population
variability of the investigated variable; generally,
the higher the sill, the greater the variability in
the population. The nugget effect is exhibited by
the apparent jump in the variogram at the origin,
a phenomenon which may be attributed to the
small-scale variability of the investigated process
and/or to measurement errors. The most accura-
teestimations can be determined if the investigated
variable is well structured. Such a variable will
have a variogram with a long range (i.e., high
continuity), low sill values (i.e., small population
variance) and a small nugget effect (i.e., insignif-
icant small-scale variabilities or measurement er-
TOrS ).

Exploratory data analysis by linear regression
were done using STATISTICA, Windows Ver-
sion [14]. Geostatistical analysis was done using
GS+ Version 3.1 [15]. We calculated variograms
at lag intervals ranging from 1 km to 10 km across
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Fig.2. Frequency distributions of soil Hg for
conterminous Taiwan.

Table 1. Statistical summary of soil Hg data set
and kriged estimates for conterminous

Taiwan

Units Original Kriged

n 879 8969
min mg Hg kg ™! 0.01 0.02
max mg Hg kg™! 2.61 0.48
media mg Hg kg™! 0.12 0.13
mean mg Hg kg ™! 0.16 0.14
std mg Hg kg ™! 0.16 0.07
KS-c 0.027 0.009
KS 0.182 0.114
KS/KS-c 6.768 13.353
Skewness 5.503 1.212
kurtosis 61.96 1.491

the full extent of the data (382.8km). Ordinary
kriging was carried out into a rectangular 106 col-
umn by 211 row grid consisting of 22366 2 by 2
km cells. Sixty-four neighboring data points were
used to krige each cell. Kriged estimates and esti-
mated standard deviations were transferred to Mi-
crosoft Excel 97 [16], sorted to conform with the
vector display format of the GIS, Arc/Info [17],
and then transferred to Arcview 3.0 [18] for anal-
ysis, reclassing, and display.

RESULTS AND DISCUSSION

Descriptive statistics and frequency distribu-
tion histograms for the data sets are shown in
Table 1 and Fig. 2. The kriged estimates of total
soil Hg are shown on the interpolated map (Fig.
3).

1. Variography

A global experimental variogram calculated at
a representative lag interval of 3 km across the full

extent (251.4 km) of the data (#n =897) is shown
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Table 2. Least squares best-fit variogram model parameters at various lag intervals. In all cases, the best
fit was an exponential model: y(h)=Cy+ C[1~ exp( —h/Ag)], where 7(h )= variance at lag
interval i, Cp=nugget variance, C = tructural variance, and Ay =range parameter

Maximum Lag Nugget Sill Range® Estimated® Model Model
lag interval parameter range reduced sum

distance of squares

(MLD) () (Co) (C+Cy) (Ag) (3A9) R?
(km) (km) mg’Hgkg ~? (km) (km) x 1074
251.4 1.0 0.000 0.026 3.7 11.1 57.460 0.168
251.4 1.5 0.002 0.026 5.6 16.8 28.200 0.212
251.4 2.0 0.003 0.026 4.5 13.5 18.170 0.200
251.4 2.5 0.003 0.027 5.3 15.9 12.890 0.275
251.4 3.0° 0.005 0.027 7.8 23.4 10.390 0.289
251.4 3.5 0.004 0.027 6.5 19.5 7.852 0.287
251.4 4.0 0.005 0.026 2.4 7.2 6.593 0.044
251.4 8.0 0.006 0.027 3.5 10.5 2.764 0.052
251.4 10.0 0.006 0.027 6.2 18.6 2.061 0.123
382.8 4.0 0.000 0.023 3.6 10.8 0.205 0.015

* in the exponential model is not the range but a parameter indicative of the range.
b Range in the exponential variogram model is usually assumed to be the point at which the model attains about 95 % of the sill (C+ Cy),

which can be estimated as 3 Ay.

¢ Parameters of the adjusted least squares best-fit model at a lag interval of 3 km, with Copand Ag adjusted to provide better fit at the smallest

lags. This is the model used for kriging.

in Fig. 4. At short to moderate lags, i.e., 1 to 10
km, the variogram was relatively stable. The vari-
ance increased from a nugget variance of approxi-
mately 0.000 mg? Hg kg2 to approach a sill of
about 0.006 mg® Hg kg 2, which remained rela-
tively constant up to a lag distance of about 251 .4
km. Beyond 251.4 km, the variance increased and
then became extremely large. Instability in the
variogram at long lag distances has been noted by
others [19], and as a result, variograms are typi-
cally calculated only to one-half the maximum dis-
tance between points {20].

Experimental variograms were calculated for
the data at a variety of lag intervals to a maximum
lag of 251.4 km. Least squares model fitted of
these variograms generated a relatively consistent
set of best-fit models. Parameters from represen-
tative models are shown in Table 2. An exponen-
tial model always had the best fit compared with
the other models (linear, linear with sill, spheri-
cal, or Gaussian) available in the software. The
exponential model is of the form

7(h) = Co+ C[1 - exp(— h/Ap)] (3)

where Cyis the nugget variance (Cg==0), C is the
structural variance (C = Cy), and Ag is a range
parameter, different from the true range in a
spherical or linear-sill model. Range in the expo-
nential variogram model is usually assumed to be
the point at which the model attains about 95 % of
thesill (C + Cy), which can be estimated as 3 Ag.

The modeled nugget variance ranged from
0.000 to 0.006 mg? Hg [ Zorresponding to a stan-
dard deviation of from 0.111 to 0.181 mg Hg .

The experimental error in Hg determinations was
usually less than this, suggesting the presence of
spatial variability at lags smaller than those in the
data set. The soil element content exhibited dif-
ferent levels of spatial variability at different
scales, and the variogram across the extent proba-
bly contained localized spatial variation nested
within it [21]. The modeled sill was very consis-
tent, ranging from 0.023 to 0.027 mg® Hg kg2,
less than the sample standard deviation of 0.16 mg
Hg kg™ '. The range estimated from the model
range parameter varied from 2.4 to 7.8 km, be-
yond which the soil Hg exhibited no significant
spatial correlation.

2. Interpolation via Kriging

Kriging from several of the variogram models
shown in Table 2 produced only minor differences
in the results, so we only present here results ob-
tained with a representative lag interval of 3 km.
The least squares best-fit model for the variogram
calculated with a 3 km lag interval is shown super-
imposed on the variogram in Fig. 5; model pa-
rameters appear in Table 2. Kriging is particularly
sensitive to model parameters at the shortest lags,
but a least squares best-fit model may not fit the
variogram well at the smallest lag intervals
[11,19]. To obtain a better fit for the nugget
variance and the initial portion of the variogram,
the best-fit model nugget variance (Cg) and range
parameter (Ag) were adjusted slightly. Weighted
least squares methods giving greater emphasis on
points at smaller lags are an alternate approach
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Fig.3. Map of the Kriged estimates of the total
soil Hg for conterminous Taiwan.
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Fig.4. Global experimental variogram of total
soil Hg calculated using a lag interval of
3 km across the full extent of the data.

[22]. The adjusted model is shown superimposed
on the variogram in Fig. 5, and the adjusted mod-
el parameters are listed in Table 2.

Kriging from the adjusted least squares best-
fit model (Fig. 5) and classifying the results by
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Fig.5. Global variogram of total soil Hg calcu-
lated using a lag interval of 3 km and a
maximum lag distance of 251. 4 km,
and using the least squares best-fit vari-
ogram model.
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Fig. 6. Map of the estimated standard devia-
tions of the kriged estimates of total
soil Hg for conterminous Taiwan.

means of deciles produced the map of total soil Hg
shown in Fig. 3. We chose decile classification be-
cause it provided a geographical representation of
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the frequency distribution of the kriged estimates.
No other statistical differentiation between these
classes is meant, nor should it be inferred. De-
scriptive statistics for the 22366 Hg estimates in-
cluded in this map are shown in Table 1, and the
estimated standard deviations of the kriged esti-
mates are mapped in Fig. 6. The mean total soil
Hg for Taiwan estimated from kriging was similar
to that from the original data, 0.16 vs. 0.14 mg
Hg kg ™!, respectively. The kriged estimates had
a smaller range than the original data, with both
the minimum and maximum truncated slightly.
Kriging also normalized the data somewhat, re-
ducing the skewness and kurtosis compared with
the original data.

The kriging estimated standard deviations of
Hg ranged from 0.111 to 0.181 mg Hg kg!,
with a mean of 0.14 mg Hg kg™ !. These estin .t-
ed standard deviations reflect both the variability
of soil Hg, as indicated by the standard deviation
of the original data (0.16 mg Hg kg™!), and the
uncertainty inherent in interpolating from widely
dispersed sites. The nugget variance comprises
both of these sources of variability, and repre-
sents, in effect, the minimum variance that can be
expected for a kriged estimate. Expressed as a
standard deviation, the modeled nugget variance
was equivalent to 0.005 mg Hg kg~™!. In compari-
son, the estimated standard deviations for the
kriged estimates were quite reasonable. The high-
est estimated standard deviations (Fig. 6) oc-
curred where data were sparsest (Fig. 1). This
consequence of the fact that variances estimated
from kriging depend only on the variogram model
and the sample site configuration; they are not a
direct measure of the variance of the neighboring
data used to estimate an unsampled point. Acquir-
ing additional data in undersampled areas would
reduce estimation variance.

The kriged map of total soil Hg indicated that
there were three hot spots in Taiwan around
Toufen, Changhua and Pingtung areas. The ma-
jor source ¢~ the mercury emission was suspected
to be from chlor-alkali plants employing electrode,
metal finishing and industry park discharge re-
spectively.

Kriging is a statistically based interpolation
method that has proven effective in mining, soil
analysis, ecology, and other disciplines. Kriging is
considered to be very sensitive to violations of the
basic assumptions, yet it has proven very robust in
many circumstances. Simple sensitivity analysis
was useful here in judging the effects of anisotropy
estimation via kriging. Other studies have shown
that simple punctual kriging following careful ex-
ploratory statistical analysis and proper variogra-
phy can yield reasonable results despite the viola-
tions of the assumptions. Statisticians are working

to develop more robust geostatistical methods to
handle difficult data [19,20,22,23].

Geostatistical analysis of total soil Hg data
from 897 sites across Taiwan produced an inter-
pretable exponential variogram (Fig. 5). Soil Hg
showed spatial correlation at distances up to 23.4
km, a much greater range than reported for other
soil properties. Interpolation by kriging produced
digital maps showing the geographic distribution
of soil Hg (Fig. 3) and estimates of the standard.
deviations of the interpolated values (Fig. 6). Es-
timation of the variance associated with interpola-
tion is a major benefit of kriging, and one that
other interpolators lack. The estimated standard
deviations for soil Hg were high relative to the es-
timates themselves, emphasizing the uncertainty
inherent in interpolating across large areas from
variable and widely scattered data. The standard
deviation map will be useful in guiding additional
sampling or data acquisition to improve map accu-
racy and precision. Digital maps facilitate such im-
provements, allow analysis and manipulation in a
GIS, and permit electronic data transfer.

Readers are cautioned to consider the nature
of the original data, their extent and spatial vari-
ability, the kriging resolution, and the estimated
standard deviations when using and interpreting
these maps. There are biases inherent in the data
set used. The EPA study sampled agricultural
soils where Hg content might have increased by
the addition of Hg-containing sludge. Some soils
exhibit considerable variation in the total Hg con-
tent in different horizons within the profile [10].
Further, we emphasize that the maps delineate
gross trends in total soil Hg on the scale of conter-
minous Taiwan. Small-scale interpolated maps
show broad, average trends, and may misrepre-
sent them as continuous or as having greater preci-
sion than the data allow. In reality, local situa-
tions may be much more complex, e.g., where
parent materials change abruptly within relatively
small distances. A global variogram determined
across a large and diverse land area may be inade-
quate to represent regional or localized spatial vari-
ability. Therefore, regional analyses of spatial
variability, with regions based perhaps on soil par-
ent material, may provide more accurate and pre-
cise estimates of the total soil Hg. The magnitude
of the standard deviations emphasizes the uncer-
tainty inherent in interpolating from variable,
widely spaced data. The map of estimated stan-
dard deviations indicates clearly where an invest-
ment in obtaining more data would reduce estima-
tion variances and improve the map.
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CONCLUSIONS

This study has shown the ordinary kriging
following careful exploratory statistical analysis
and proper variography can yield reasonable re-
sults. The kriged map of total soil Hg indicated
that there were three hot spots in Taiwan around
Toufen, Changhua and Pingtung areas. The mer-
cury emission from industry like chlor-alkali plants
might be the predominant factor. Geostatistics
and GIS are essential tools for analyzing georefer-
enced information and advancing our understand-
ing of spatial variability at various scales. Geo-
statistics and GIS will be indispensable in charac-
terizing and summarizing this information to pro-
vide quantitative support for decision and policy
making for agriculture, health and natural re-
source management.
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