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The dynamics of a lumped-parameter model for describing the behavior of airborne dust in animal 
housing are used in the development of controllers for an airborne dust control system. Proportional(P) 
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Introduction 

Conventional and modern control theories have been 
well developed. Applications of these control theories 
to human and animal environmental control systems 
have been documented by various researchers and can 
be found elsewhere,le6 but these are restricted to the 
heating and air conditioning system control loop. Also, 
the environment inside an animal housing structure is 
very complex and cannot be described simply by tem- 
perature. However, temperature can be seen as a pri- 
mary indicator. Relatively few studies have used con- 
trol theory, especially modern control theory, in the 
design of controllers for controlling airborne dust in 
ventilated animal housing. Airborne dust control sys- 
tems may include fogging, vacuum cleaning, additional 
ventilation, and electrostatic removal. For instance, 
fogging systems are currently used for cooling air and 
lowering airborne dust concentrations in poultry 
houses. An infrared dust transducer has been devel- 
oped to operate and control fogging schedules to lower 
dust levels in turkey grower facilities.’ 
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The objective of this paper is to present initial consid- 
erations on the use of optimal control theory methods 
for designing feedback control systems to efficiently 
control airborne dusts in ventilated animal housing. 
Control logic developed for airborne dusts will incorpo- 
rate other control logic algorithms used for temperature 
and atmospheric contaminants. 

The equation used to describe the dynamic behavior 
of airborne dusts is a linear dynamic equation devel- 
oped by the authors,8 which describes the dynamics of 
airborne dust undergoing turbulent diffusive deposition 
and gravitational sedimentation at any location within a 
ventilated airspace. The linear dynamic equation can be 
represented by the following vector-matrix differential 
form:’ 

hi(t) = -h(t) + V-‘G(t), n(0) = n, 

where n(t) = m-dimensional airborne dust 
concentration vector 

(1) 

B = m x m nonsingular transport matrix 
V -’ = m x m diagonal inverse matrix of air 

volume 
G(t) = m-dimensional dust generation rate 

vector 

If the outdoor supplied dust concentration vector, 
W(t), is included in equation (l), a more general form of 
the linear dynamic equation can be expressed as: 

h(t) = An(t) + CG(t) + DW(t), n(0) = n, (2) 
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inwhichA = -B,C= V-‘,andD = V-‘QS. WhereQ, 
is a m x m diagonal supplied airflow matrix. 

By using modern control theory terminology, the 
following definitions related to equation (2) can be given 
as: 

Thus, for the given plant in equation (3) an optimal 
control vector G(t) is desired that will minimize the fol- 
lowing quadratic cost function, commonly referred to 
as the performance index: ” 

n(t) = vector of state variables, 
G(t) = vector of controllable input variables, and 

W(t) = vector of uncontrollable input variables. 

Before designing a controller, there are two impor- 
tant presuppositions related to a model and control 
problem that require mentioning under the modelling 
and control inseparability principle.’ 

J=;j,ZTXZ+GTYG]dl 
0 

where rf = any specific time 
X = m x m positive semidefinite output 

weighting matrix 

1. 

2. 

A dynamic model is appropriate for a particular 
controller. Therefore, a model and controller can be 
compatible. 
Only “local” properties can be stated concerning 
the model and the controller. This means that param- 
eters of neither dynamic model nor controller can be 
taken to infinity or over a wide range. 

Substituting Z = Hn into equation (4): 

'f 

J=; I 
0 
rt 

1 =- 
2 I 

0 

Optimal P controller design 

To derive the optimal feedback control strategy for the 
system, the linear quadratic regulator (LQR) with state 
feedback will be considered. The LQR has been well 
developed for the past two decades. However, it is not 
possible or economically feasible to measure all state 
variables (airborne dust concentrations) at all locations 
within an animal facility. Therefore, the problem of 
obtaining the optimal or suboptimal output feedback 
control of a time-invariant system is most suitable for 
the system introduced. 

The LQR, however, has one shortcoming that makes 
it inapplicable for a number of practical applications, in 
that only initial condition or impulse type disturbance 
can be considered.” Therefore, the linear dynamic 
system with an impulse type disturbance will be consid- 
ered first. To begin the problem formulation, the modifi- 
cation of equation (2) can be written as: 

ri = An + CG, n(0) = n; (34 

When equation (3a) is subjected to impulsive distur- 
bances 

W;(t) = w,&(t), i = 1,2,. . m 

output relationship becomes: 

(3b) 

Z(t) = Hn(t) (3c) 

where wi = scalar constant for the ith of W 
6(r) = unit function 
Z(t) = m-dimensional output variables vector 

H = m x constant matrix of output state 
vector Z(t) 

This modified equation can be seen as equivalent to 
equation (2) with n(0) = 0, and the impulsive 
bance term DW(t) = n&j(t) (i.e., let D = n;, 
W(t) = s(t)). Using theory terminology, equa- 
tion (3) the plant. The order of the plant is 

to be equal to the order of the controller. 

= x positive definite control 
weighting 

nTHTXHn + GTYG] dt 

[ nTMn + GTYG] dt 

(4) 

(5) 

If the linear plant in equation (3) is observable, then M 
= HTXH is positive semidefinite when X is positive 
semidefinite. 

Observability and controllability of the plant are 
guaranteed if and only if the following matrices: 

Z=[HTIATHTl.. .I(A*p’)THT], and 

0=[ CIACI.. .IA+‘C] 

have rank m, respectively. ” Because J is a scalar, the 
weighting matrices X and Y must be symmetric; that is, 
XT = X and YT = Y. 

The solution of the optimal control vector 6, which 
minimizes equation (5), can be given by the following 
well-known expression:9,” 

& = _ y- ‘cTPfi = _ yp ‘cTPH - ‘2 (6) 

where P = PT is the positive definite solution of the 
Riccati equation: 

p = -PA - ATP + PCY-‘C=P - M, P(T) = 0 

(7) 

In addition, the minimum value of a quadratic cost 
function can be given by:12 

J* = anTPni 
L 

If T approaches infinity, and the system in equation 
(3) is observable and controllable in the Kalman 
sense,‘3.‘4 the optimal control policy becomes a subop- 
timal controller design problem,15 and the suboptimal 
control vector in equation (6) can be expressed by: 

i; = _ y- ‘cTP*$ = _ y- ‘cTP*H - ‘2 (9) 

where P* = P*Tis the unique, positive definite solution 
of the following algebraic Riccati equation: 

-P*A - A=P* + P*CY-‘CTP* - M = 0 (10) 
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Because J* in equation (8) is decreased by choice as 
n(0) approaches zero (the desired operating condition), 
and the airborne dust control system in ventilated ani- 
mal housing is controlled over a semi-infinite period of 
time, then, for this infmite time integral quadratic cost 
function, there is no advantage in choosing a nonzero 
initial condition on the controller. Therefore, the practi- 
cal choice of iz(0) before application of disturbance can 
be zero.9 

Equation (9) is the desired optimal feedback control- 
ler for the output LQR with initial condition. Equation 
(9) shows that the control vector G(t) is proportional to 
the state vector fi(t) and therefore, this procedure can be 
seen as a modern control theory method for designing a 
proportional feedback controller (P controller). 

Optimal PI controller design 

If the disturbance W(t) becomes a steady-state vector 
(W(t) = w), then, in the presence of a disturbance, the 
suboptimal control vector in equation (9) would force 
the output to change in the direction of the desired 
equilibrium condition, Z(t) = 0, and consequently the 
control system changes its output proportionately. 
Eventually, a steady-state condition will be reached. 
This behavior may be entirely unacceptable in these 
regulator applications where output state Z(t) must be 
constantly maintained near zero when subjected to a 
stepwise constant disturbance. Therefore, it is neces- 
sary to reformulate the optimal LQR so that the re- 
sulting optimal feedback controller always brings the 
output state Z(t) to a desired equilibrium condition in 
the presence of any finite constant disturbance. 

The analysis will follow that of Johnson” and Pereira 
et a1.3 on the optimal control of the LQR with constant 
disturbances. Therefore, when considering again the 
plant in equation (3), a more general form is as follows: 

ri = An + CG + DW,n(O) = n,,, G(0) = G, (lla) 

Z = Hn (lib) 

and is subjected to constant disturbances, 

w;(t)=wj,i= 1,2 )...) m (1 lc) 

The quadratic cost function to be minimized can be 
written as: ‘O 

‘f 

J=;$ZTXZ+@Yc?]dt 

0 

! ‘/ [ nTMn + G’YG] dt =- (12) 
LJ 0 

where M = HTXH and X are positive semidefinite, and 
Y is positive definite. 

From a design point of view, the cost function of 
equation (12) differs from the quadratic function in 
equation (5) in that the rates of change of control vari- 
ables are penalized such that large values of control are 
prohibited indirectly rather than the control variables 
themselves.” 

The derivative of equation (11) with respect to time, 
yields: 

fi = Ari + C6, n(O) = n,, G(0) = Go, 

ri(0) = An, + CG,, + DW (13a) 

i = Hti (1%) 

and defining the following new variables: 

w-&8&[-Z 

Therefore, equations (11) and (13) can be reduced to 
the following pair of vector-matrix differential equa- 
tions: 

ri = w, n(0) = n, (l4a) 

0 = Aw + CO, w(O) = An,, + CG, + DW (14b) 

Z = Hn (14c) 

[=Hw (14d) 

Equation (14) can be compactly expressed as: 

i = A,v + Cc,& n(O) = 7; (15a) 

9 = H<,n (l5b) 

where 

q={:},ni-( % ) 
An,, + CG, + DW 

A,,= [; :].G= [;I. 
Ha= [; ;]A={:} 

Therefore, equation (12) in terms of the new vari- 
ables becomes: 

fi 

J = ;, [qTM<,v + @Y0] dt 
0 

where 

(16) 

M, becomes positive semidefinite since M is positive 
semidefinite. Thus, the original output LQR in equa- 
tions (11) and (12) can be restated in equation (16). 

An optimal control vector f3 that minimizes equation 
(16) subject to agiven linear plant in equation (15) can be 
found. This alternative problem is recognized as a LQR. 
The solution ofthe optimal control vector is given by the 
well-known expression: 

t?i = - yp’c,Tprj (17) 

where P = P* is the positive definite solution of the 
Riccati equation: 

P = -PA, - A,TP + PC, Yp ‘C;P - M,, 

P(T) = 0 (18) 

If the plant in equation (15) is observable and controlla- 
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ble, then as T approaches infinity in equation (16), the 
LQR becomes a suboptimal controller design, and the 
suboptimal control vector in equation (17) becomes: 

6: -y-'cTp*" 
a 77 = -y-'c,TP*H,'d (19) 

where P* = P*Tis the unique, positive definite solution 
of the following algebraic Riccati equation: 

- P*A, - A,TP* + P*C, Y- ‘C,TP* - M, = 0 (20) 

Integrating equation (19) with respect to time and using 
the relations of Z = Hn, the equation becomes: 

G(I) = [L,, + L,,]Hfi(t) 

+ [L,, + L,,]HI A(T)& + 6, (214 
0 

where: 

G;, = G, - [L,, + L,,]Hn, (21b) 

The elements L, in equation (21) are appropriately 
partitioned submatrices of [ - Y- ‘CTP*H; ‘1. 

This is the desired optimal feedback controller to the 
original LQR with external constant disturbances as 
defined in equations (11) and (12). The optimal control 
can be expressed as a combination of a linear function of 
the state vector and the first time integral of a certain 
other linear function of the state vector. For a proposed 
cost function, the optimal control is explicitly indepen- 
dent of the disturbance. Thus, this procedure can be 
seen as a modern control theory method for designing 
the proportional plus integral feedback controller (PI 
controller). A flowchart of the communication process 

PLANT 

-I 
I 
I 

I 

G 
n(t) 

_i+ 

f 
I 

c: 1 1 

I- 
I 

---_---we-me------- 
CONTROLLER 

(a) 

W 
PLANT 

r 
I 1 
I I 
I 1 

-----_---_-_--__---__- 
CONTROLLER -------------_____ 

b 12+42] 

I 
I 

I 
L ---- 

(b) 

Figure 1. Block diagram of message process and optimal controllers: (a) Optimal P controller and (b) optimal PI controller. 
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and the optimal P and PI controllers for control system 
structure is shown in Figure 1. 

The outdoor airborne dust concentration, W,, is sup- 
plied to the upper zone and undergoes a sudden step 
change. Specifically, W, changes from W, = 0 to W, = 
50 particles/cm3. It is assumed that an indoor distur- 
bance occurs as a result of animal activity in the build- 
ing. As a result, the indoor dust source, G,, undergoes a 
sudden step change. Specifically, G, changes from 
G, = 0 to G, = 3 x lo* particles/min. The above 
disturbance is simulated under the optimal P and PI 
regulating actions and presented graphically. 

A numerical example 

The objective of this section is to evaluate the perfor- 
mance of P and PI feedback controllers in a typical 
animal housing application. The example will illustrate 
the procedure and the performance of these controllers 
compared with each other. For simplicity, a two-lump 
model of a typical ventilated animal housing unit with a 
negative pressure ventilation system will be consid- 
ered. The geometric and system parameters used in this 
numerical example are listed in Table 1.’ 

In a two-lump model, the optimal P controller can be 
expressed by equation (9): 

e = - y- ‘CTp*fi = ~fi (22) 

where K is a feedback gain matrix. 
When carrying out the matrix multiplication the 

equation can be written as: 

[ :;I:;] = [ :r: 
(23) 

The matrix K contains four feedback gains, k,, , k,,, k,, , 
and k,,, which are computed for the optimal P control- 
ler. 

For the optimal PI controller, equation (21) is appro- 
priate for atwo-lump model: 

k II k,, k,, h, 

k 21 k22 k2, k24 I 

f 

I li,(~) d7. 

0 
I 

I 
fi,( T) d7 

0 

fi,(r) 

4(f) 

+ [ ::j - [ ::: :1:1[:::1 (24) 
Thus for the optimal PI controller, there are eight 
feedbackgains,k,,,k,,,k,,,k,,,k,,,k,,,k,,,andk,,, that 
need to be determined. 

Table 1. Input parameters used in the numerical examples. 

Geometric parameters 

System volume = 120 m3 (10 x 6 x 2 m) 
System surface = 64 m2 
System height = 2 m 

System parameters 
Ventilation airflow rate during cold weather = 420 m3/hr 
Entrainment ratio = 5.0 (slot width = 10 cm) 
Temperature = 20°C. RH = 30-40% (1 atm) 
Average particle radius = 2.5 pm 
Reynolds number = 2000-3000 
Particle settling velocity = 0.0776 cm/set 
Effective diffusion coefficient = 0.00375 cm2/sec 
Concentration boundary layer thickness = 0.085 cm 

The first step in numerical investigation is to deter- 
mine matrices A, C, and H. The determinations ofA and 
C are followed by the definitions already developed by 
the authors.* Matrix H in the output relationship, Z = 
Hn, is selected as a diagonal matrix. The values of h,, 
and h,, may be chosen from the results of model verifi- 
cation between model predictions (state variables) and 
measurements (outputs) for a lumped-parameter model 
presented by the authors.16 These values are h,, = 1.1 
and h,, = 1.3, respectively. 

Having defined the matrices A, C, and H, the state 
controllability and observability ofthe systems then can 
be verified. Next, the effect of weighting matricesxand 
Y in the quadratic cost functions was investigated. 
Usually X and Y are selected to be diagonal. 

The corresponding scalar expressions of the qua- 
dratic cost function for a two-lump model in optimal P 
and PI control systems can be attained by equations (4) 
and (12): 

J = ; (x, ,Z: + x,,Z: + y, ,G: + yz2G:) dt (25) 
0 

x 

J = ; 
/ 

(x, ,Z: + x~~Z: + y, ,c;: + yz2G;:) dt (26) 
0 

Weighting matrices can be chosen in the following 
way to achieve specified performance bounds:” 

x 

Z:(t) dt 5 at, and 
0 

/ G?(t) dt 5 &, i = 1,2 (27) 
0 

The root mean squared (RMS) values of the multiple 
outputs and inputs can be used to determine the perfor- 
mance bounds: 

ZiRMs = [i Z:(t) dr]l:‘, and 

G;RMS= [j-G:(i)df]“2, i= 1,2 (28) 

In this particular case, it may be required to simulta- 
neously limit the RMS values of output airborne dust 
concentrations as, Z ,RMS 5 30 particles/cm3, Z,,,, 5 
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Figure 2. Transient responses of airborne dust concentration in upper (n,(t)) and animal zones h,(t)) under optimal P COntrOl. 
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Figure 3. Transient responses of airborne dust concentration in upper (n,(t)) and animal zones (n,(t)) under optimal PI control. 
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10 particles/cm3, and the RMS values of input dust 
generation rate as, G ,RMS 5 lo8 particles/min, GZRMs 5 
lo9 particles/min. Because no general criterion could 
be found, it is assumed that GIRMs = G,,,,, and G,,,, 
= G,,,? 

Having determined the values of Z,,,,, G,,,,, 
Z ZRMS? and G2RMS~ the elements in the weighting matri- 
ces can be calculated as follows by a scaling factor 
method:3 In equation (25), letx Z2 -x z2 II IRMS - 22 ZRMS, then 
x,,/x,, = Z&Ms/Z:RMs = 0.11, and therefore, xz2 = 
9.09x,,; and similarly yz2 = lofty,,. In this numerical 
example, y, 1 is kept constant throughout at 1, and only 
x1, is varied. The approach to the numerical solution of 
the nonlinear algebraic Riccati equation is followed by a 
simple nonrecursive method,” which is applicable to 
the case of nonsingularity of matrix A in the plant. 

quadratic regulators (LQRs) with output feedback of a 
linear-invariant system are defined to determine an out- 
put feedback control loop such that the integral qua- 
dratic cost function meets its minimum value. Both 
initial condition and constant external disturbances are 
formulated, and the optimal P and PI controllers are 
synthesized. In the numerical example, the optimal P 
and PI control have been simulated and compared with 
each other in a typical animal housing application. The 
result shows that the PI controller is preferable to the P 
controller. 
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