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Abstract: This study quantifies and delineates the spatial distributions, variability and uncertainties of soil arsenic (As) in 

the northern part of Changhua County in central Taiwan by using kriging, sequential Gaussian simulation (SGS) and 

simulated annealing simulation (SAS) in geographic information systems. Thousand realizations of soil As are simulated 

by using SGS and SAS. The impacts of the number of generated realizations on the standard deviation of the soil arsenic 

distributions simulated by SGS and SAS were performed for assessing and mapping spatial variability and distributions of 

soil arsenic. The semivariogram results show that As data exhibited small scale variation in the study area. Kriging cap-

tures spatial distribution of soil As, but underestimate high As concentration area. However, both SGS and SAS well cap-

ture spatial distributions and variability of soil arsenic in the study area, but SGS results in higher average standard devia-

tion than SAS with the same number of realizations. 40 realizations of SAS are reliable to simulate and map the distribu-

tions, variability and uncertainty of soil arsenic, but 100 realizations are needed by using SGS. Both estimates and simu-

lates demonstrated that the high As concentration area distributed around the irrigation ditch systems and industrial plants 

in the study site. Finally, the cumulative distribution of soil As of 100 SGS realizations is obtained and can be used for 

further risk assessment. 
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INTRODUCTION 

 Effective environmental management and risk assess-

ment in soil-contaminated sites rely on the precise delinea-

tion and mapping of spatial distributions, polluted areas and 

the variability of soil pollutants. However, soil pollution data 

such as on heavy metals in soils occasionally exhibit small-

scale discontinuities or variations which can cause difficulty 

in delineating the characteristics of soil pollutants. These are 

a result of natural phenomena and human activity. One 

heavy metal of great concern, arsenic, is a ubiquitous natu-

rally occurring element which is present in almost all soils 

[2]. The arsenic content of soils is related to the geological 

substratum, and a rather wide range of arsenic levels have 

been found in soils around the world with an average of 5-10 

mg/kg in uncontaminated soils [2, 3]. Arsenic may accumu-

late in soil because of human activity such as the discharge 

of waste from metal processing plants, the burning of fossil 

fuels, the mining of arsenic-containing ores and the use of 

arsenical pesticides [2, 3]. It has toxic effects on plants and 

may accumulate in plants, possibly entering the animal and 

human food chain [4]. Therefore, accurately identifying the 

spatial characteristics of soil arsenic promotes accurate and 

effective environmental management, risk assessment and 

remediation in agricultural fields. 

 Geostatistics can be used to characterize and quantify 

spatial variability, perform rational interpolation, and esti-

mate the variance of the interpolated values [1]. Kriging, a 

geostatistical method, is a linear interpolation procedure that  
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provides a best linear unbiased estimator (BLUE) for quanti-

ties that vary in space. The procedure is used to obtain esti-

mates for unsampled sites. Unlike kriging, stochastic simula-

tion does not aim to minimize local error variance but fo-

cuses on the reproduction of statistics such as a sample his-

togram or the semivariogram model, while honoring data 

values [5-8]. A simulated map, which is a realization of the 

adopted RF (Random Function) model, looks more ‘‘realis-

tic’’ than the map of the statistically ‘‘best’’ estimates, be-

cause it reproduces the spatial variability from the sample 

information [7]. Stochastic simulation is thus increasingly 

preferred to kriging for applications that require that the spa-

tial variation of the measured field is preserved [7, 9]. 

 Stochastic conditional simulation - geostatistics, such as 

sequential Gaussian (SGS) and simulated annealing (SAS) - 

can be adopted to generate multiple realizations, including an 

error component, absent from classical interpolation ap-

proaches. The described simulation techniques generate a set 

of values with a specified mean and covariance, and also 

reproduce measured data at various locations. However, 

these realizations match similar sample statistics and the 

conditioning data provide a visual and quantitative measure 

of spatial uncertainty [10]. For example measurements made 

can be used, along with simulated values, to analyze the spa-

tial distribution of the variable of interest. In the SGS proc-

ess, the Gaussian transformation of the available measure-

ments is simulated, such that each simulated value is condi-

tional on the original data and all previous simulated values 

[1, 11]. Basically, in geostatistics, simulated annealing simu-

lation is a brute-force Monte Carlo simulation method that 

perturbs or updates, pixelwise, over many iterations, an ini-

tial pixel grid, until the pixel values honor the proposed his-

togram and semivariogram model [12]. Geostatistical condi-

tional simulations have been recently applied) to simulate the 
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spatial variability and distribution of heavy metal pollution 

in soil to identify polluted areas, support risk assessments 

and support uncertainty analysis [13-20]. Theories concern-

ing such geostatistical simulation techniques can be found in 

various books and articles [11, 8, 21]. 

MATERIALS AND METHODS 

 In this study, semivariogram models of measured soil As 

and normalized As data were fitted within a geostatistical 

software GS+ [22]. Ordinary kriging, SGS and SAS were 

performed for As data using OKB2DM (ordinary kriging 2-

dimension), SGSIM (sequential Gaussian simulation) and 

SASIM (simulated annealing simulation) in GSLIB (Geosta-

tistical Software Library) [11]. A thousand realizations of As 

were simulated and estimates were mad using SGS, SAS and 

kriging in a grid with 38 columns x 28 rows, and therefore 

1064 cells. Cells were50m by 50m squares. The impacts of 

the number of generated realizations on the standard devia-

tion of the soil arsenic distributions simulated by SGS and 

SAS were performed for evaluating the simulation consis-

tencies of SGS and SAS, and then the variability and map-

ping distributions of As. The estimated and simulated results 

were transferred into Arcview 3.0 to identify the spatial dis-

tributions, area of potentially high As concentration and high 

variability of soil As at this site [23]. Finally, the area of high 

As concentration was delineated from maps of As distribu-

tions and variability in the Arcview system. The As concen-

tration in the area was simulated by SGS. The cumulative 

distribution of 100 SGS realizations of soil As in high As 

concentration blocks was obtained to support further risk 

assessment. 

Data 

 In 1983, the Environmental Protection Administration 

(EPA) of the Republic of China began a collaborative re-

search program to establish the presence of As, Cd, Cu, Cr, 

Hg, Ni, Pb and Zn trace elements in soil in Taiwan [13]. The 

program also sought to detect soil properties, such as cation-

exchange capacity and pH. These studies sampled 878 sites 

across Taiwan. 

 In this study, 194 topsoil samples of As, collected be-

tween 1981 and 1986, were taken from the program de-

scribed above. They were taken from geographically distrib-

uted sites at target intervals of 100 m and 50 m in a network 

formation. Topsoil was sampled at depths of 0-15 cm. Table 

1 presents descriptive statistics for As in these 194 topsoil 

samples. The county from which the samples were selected, 

Chunghua County, is one of the most important agricultural 

counties in Taiwan. Fig. (1) presents the 194 sampling sites, 

located in the northern part of Chunghua County. Fig. (2) 

displays the industrial plants and irrigation systemin the 

study area. Most of these industrial plants serve the metal-

work, electroplating and metal surface treatment industries, 

as indicated in Fig. (2). 

Variography 

 In geostatistics, semivariograms are used to quantify the 

observed relationships between sample values [16]. An ex-

perimental semivariogram (semivariance) for an interval lag 

distance class h , � zz (h) , is given by 

� zz (h) =
1

2n(h)
[Z(xi + h) � Z(xi )]

2

i=1

n(h)

�           (1) 

 (a) 

 

(b) 

 

Fig. (1). (a) Study area and sampling sites; (b) distributions of 
measured As at 194 sample sites. 

where h  is the lag distance that separates pairs of points; 

Z(x)  is the hydraulic conductivity at location x; Z(x + h)  is 

the hydraulic conductivity at location x + h , and n(h)  is the 

number of pairs that are separated by lag distance h . 

 The experimental cross-semivariogram � xy (h)  of the 

second-order stationary regionalized variables, )(xZ and 

)(xY  (second variable), is given by 

� xy (h) =
1

2n(h)
[Z(xi + h) � Z(xi )]

i=1

n(h)

� [Y (xi + h) �Y (xi )]     (2) 

Kriging 

 Kriging is performed using the weighted sums of the ad-

jacent sampled concentrations. The weights depend on the 

structure of the correlation exhibited. The criterion used to 

determine the weights is whether they minimize the estima-

tion variance. In this context, kriging estimates (BLUE) are 

regarded as the most accurate of all linear estimates. Hence, 

kriging was adopted herein to estimate the value of the ran-

dom variable at an unsampled location X0 based on the 

measured values in linear form: 
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Z *(x0 ) = �i0Z(xi )
i=1

N

� ,            (3) 

where Z *(x0 ) is the estimated value at location x0 ; �i0 is the 

weight in the kriging estimate of Z(xi ) ; ix  is the location of 

the sampling site for variable Z, and N is the number of vari-

able Z involved in the estimation. 

 Based on non-bias constraints and minimized estimation 

variance, the variance in kriging estimate is given by 

� 2
kriging = �i0� zz (xi � x0 ) + �

i=1

N

�            (4) 

where �  is the Lagrange Multiplier. 

Sequential Gaussian Simulation 

 SGS assumes a Gaussian random field, such that the 

mean value and covariance completely characterize the con-

ditional cumulative density function (cdf) [24]. In the SGS 

process, the Gaussian transformation of the available meas-

urements is simulated, such that each simulated value is con-

ditional on the original data and all previously simulated 

values [1, 11]. A value simulated at a one location is ran-

domly selected from the normal distribution function that is 

defined by the kriging mean and variance based on neigh-

borhood values. Finally, the simulated normal values are 

back-transformed into simulated values to yield the) original 

variable. The simulated value at the new randomly visited 

point value depends on both the original data and the previ-

ously simulated values. This process is repeated until all 

points have been simulated. 

Simulated Annealing 

 The annealing algorithm perturbs the image by simulat-

ing thermal perturbation [1, 25, 26]. In SAS, swapping the 

values in pairs of grid nodes that do not contain a condition-

ing datum, modifies the initial field, reproducing a histogram 

[1, 11]. The target constraint is the reproduction of semivari-

ograms, and the corresponding objective function must be 

lowered using the annealing schedule [8]. The objective 

function is defined as a mean squared difference between the 

experimental and given semivariograms. The objective func-

tion (O) is defined as, 

O =
[� *(h) � � (h)]2

� (h)2h
� ,            (5) 

where � (h)  is the pre-specified semivariogram, and � *(h)  

represents the semivariogram of the simulated realization. 

 A temperature function (the Boltzman distribution) in a 

simulated annealing procedure controls the rate of reduction 

of the optimization function by allowing some switches to 

increase its value [11, 27]. The parameter of the temperature 

function is called the temperature in the annealing procedure 

[1]. Increasing the temperature increases the probability that 

an unfavorable swap is accepted [11]. 

 

 

RESULTS AND DISCUSSION 

Semivariogram Model of As 

 The sill is the upper limit toward which a semivariogram 

tends at a large distance (the range of a semivariogram 

model). The sill of the semivariogram model measures the 

variability of the investigated variable; a higher sill corre-

sponds to greater variability. The range of a semivariogram 

model denotes the distance above which measured variables 

become independent each other and are more likely to be 

random. Therefore, a greater range of the semivariogram 

model corresponds to greater continuity of the soil heavy 

metals. Given the large degree of spatial variability, the 

semivariograms of soil heavy metals commonly exhibit a 

marked nugget effect that is caused by field test errors and 

small-scale variability. In this study, experimental semivari-

ograms were obtained for As and normalized As at the same 

active lag and lag interval. A relatively consistent set of best-

fit models with minimal RSS (Model Reduced Sum of 

Squares) and maximal r
2
 values were obtained by the least-

squares fitting of these semivariograms. Figs. (2,3) display 

the best-fit models for As and normalized As. 

(a) 

 

(b) 

 

Fig. (2). Semivariogram of (a) measured As; (b) normalized As. 

 A spherical model with nugget effect = 5.29 (mg/kg)
2
, 

sill = 17.32 (mg/kg)
2
 and range = 704.00m was the best-fit 

model for the As data (r
2
=0.93 And RSS=6.84). The 

semivariogram of normalized As was an exponential model 

with nugget effect = 0.14, sill = 0.94 and range = 186.00m 

(effective range = 558.00m) (r
2
=0.9 And RSS=0.03). The 

small-scale variations (nugget effects) of As and normalized 

As were, respectively, 30.50% and 14.89% of the total  
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variation of the As data and the normalized As with ranges 

704.00 m and 558.00 m, respectively. The variographic re-

sults revealed that the semivariogram models of As with a 

high nugget effect exhibited a large small-scale variation or 

measurement error in the As data in the study area. Addi-

tionally, the ratio of the nugget effect to the total sill of As is 

greater than that of normalized As, revealing that the meas-

ured As exhibited a greater small-scale variation than did the 

normalized As. The ranges of the semivariogram models of 

As and normalized As indicated that the continuity of meas-

ured As data slightly exceeded that of the normalized As. 

Statistics and Spatial Dependence of Estimation and 
Simulations of As Concentration 

 The ordinary kriging estimates, and SGS and SAS simu-

lations were based on the above semivariogram models and 

the 194 soil As and normalized As data. Table 1 summarizes 

the descriptive statistics for ordinary kriging, three realiza-

tions of SGS and three realizations of SAS results. This 

comparison reveals that conditional simulations, such as us-

ing SGS and SAS, produce statistics for the empirical data 

concerning As that are better than those obtained by kriging. 

Table 1. Descriptive Statistics of Kriging Estimates and 

Simulations of As 

 

Variable Mean Med. Std. D Min Max Q25
th

 Q75
th

 

Measured 10.93 10.00 3.86 5.23 30.00 8.75 12.18 

Ok 11.12 10.69 2.81 6.48 25.94 9.25 12.18 

SGS1 11.07 10.00 4.15 5.23 30.00 8.83 12.00 

SGS2 11.16 10.00 3.68 5.23 30.00 8.83 12.92 

SGS3 11.11 10.00 3.93 5.23 30.00 8.84 12.64 

SAS1 10.83 10.00 3.67 5.23 30.00 8.70 12.00 

SAS2 11.00 10.00 4.16 5.23 30.00 8.76 12.00 

SAS3 10.85 10.00 3.87 5.23 30.00 8.62 12.00 

SGS #: SGS simulation #; SAS #: SAS simulation #; Q25th: 25th percentile; Q75th: 75th 
percentile; Unit: (mg/kg). 

 

 The experimental semivariograms of three realizations of 

SGS and SAS were also calculated using GS+, as presented 

in Fig. (3). All experimental semivariograms based on the 

simulations are consistent with the experimental semivari-

ogram for As data. These experimental semivariograms 

show that SGS and SAS effectively reproduce the spatial 

structure, spatial dependence and spatial continuity (experi-

mental semivariogram) of the investigated As values, while 

ordinary kriging does not perform well. 

Local and Global Spatial Variability and Uncertainty 

 The extent of the space of uncertainty increases with the 

number of realizations generated [8]. In this study, Fig. (4) 

plots the relationships between the (average standard devia-

tion of realizations of soil As simulated by SGS and SAS 

associated with number of realizations to determine the spa-

tial variability and distributions of As. When SGS is used to 

simulate As concentration, the average standard deviation  
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Fig. (3). Experimental semivariogram of measured and simulated 
As. 

reaches a plateau when the number of realizations equals 

100. However, when SAS is used, the average standard de-

viation approaches an asymptotic value when the number of 

realizations is 40. Moreover, SGS yielded a larger average 

standard deviation than SAS with the same number of reali-

zations (Fig. 4). The relational analysis revealed that SAS 

consistently produces narrower output distributions of soil 

As than does SGS. 
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Fig. (4). Number of realization associated with the average standard 
deviation of simulated As concentration using SGS and SAS. 

 Differences between realizations of soil As provide a 

model for uncertainty in the spatial distribution of measured 

values [8]. Accordingly, the spatial distributions of standard 

deviations of 100 realizations simulated by SGS and 40 by 

SAS at 1064 grid cells in the study area are mapped in GIS, 

as shown in Figs. (5,6). The figures show that the area of 

high variability area is along the irrigation systems, accord-

ing to the SGS simulations (Fig. 5). The areas of high vari-

ability according to the SAS simulations are in the north part 

and east part of the study area. However, the north part of the 

study area with high variability, identified by both SAS and 

SGS, must be considered in further sampling, and assess-

ments of soil arsenic pollution. Figs. (5,6) also verify that 
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SAS consistently simulates not only the global but also the 

local distributions of soil As in the study area. 

(a) 

 

(b) 

 

Fig. (5). Average standard deviation of (a) 40 SGS realizations; (b) 
1000 SGS realizations. 

Spatial Distribution of Estimation and Simulations 

 Estimates and simulations of soil As were imported and 

mapped in Arcview 3.0a [28]. Fig. (7) presents the kriging 

map of As, in which the high concentration areas were in the 

north and northeast of the investigation area. The ordinary 

kriging estimate map confirmed that kriging tended to 

smooth extreme values of the empirical As data set. Al-

though they show the spatial patterns of these As concentra-

tions, kriging results may overestimate the size of areas of 

high and low concentrations of heavy metals in the soil, and 

underestimate the sizes of areas with extremely high and low 

concentrations of soil As. Stochastic simulation dose not 

seek to minimize a local error variance but focuses on the 

reproduction of the sample histogram or the semivariogram 

model in addition to honoring the data values [8]. Simulated 

maps of soil arsenic look more realistic than the map of the 

statisticall best estimates, because they reproduce the spatial 

variability from sample information [5-7, 8]. Fig. (7) show 

kriging estimates of soil arsenic. Fig. (8) shows selected re-

alizations (realization number 1 of SGS and SAS), an aver-

age of 100 SGS realizations and an average of 40 SAS reali-

zations of soil As. Like the kriging map (Fig. 7), Figs. (8-10) 

also plot distributions of As concentration over the study 

area. The distributions of estimated and simulated As based  

 

(a) 

 

(b) 

 

Fig. (6). Average standard deviation of (a) 40 SAS realizations; (b) 
1000 SAS realizations. 

 

 

Fig. (7). Kriging estimates of As concentration. 

on kriging, SGS and SAS can be verified by the measured 

As at 194 samples in Fig. (1b). Figs. (1b,7-10) also demon-

strated that kriging, SGS and SAS can estimate and simulate 

spatial distributions of As over the study area. Most areas 

with high As concentration (> 10 mg/kg) are strongly associ-

ated with the location of industrial plants and the irrigation 

systems of the study area, as displayed in Figs. (8-10). These 

spatial patterns of soil As are related not only to the indus-

trial plants but also to the irrigation systems in the study 
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area, as presented in Figs. (7-10). These simulated maps also 

reveal that the spatial distributions and spatial variability of 

soil As can be captured by 100 SGS realizations and 40 SAS 

realizations (Figs. 1b,8-10). The simulation results also indi-

cate why stochastic simulation is increasingly preferred to 

kriging in applications in which the spatial variation of the 

measured field must be preserved, such as in the delineation 

of the contaminated area [8]. Additionally, a set of simula-

tions can be conducted with remediation or the land-use pol-

icy to evaluate the uncertainty of the responses, such as 

remediation efficiency or soil productivity [8]. 

(a) 

 

(b) 

 

Fig. (8). As concentration of (a) SGS realization number 1; (b) SAS 
realization number 1. 

 The simulation-based approach has several advantages 

over kriging: (1) it provides a model of spatial uncertainty, 

e.g. the probability that a given threshold is exceeded jointly 

at several locations can be readily computed, (2) conditional 

cumulative distribution function for support larger than the 

measurement support (e.g. remediation units) can be numeri-

cally approximated by the cumulative distribution of block 

simulated values that are obtained by averaging values simu-

lated within block, and (3) the set of realizations allows one 

to study the propagation of uncertainty through global GIS 

operations [21]. In this study, a block of high concentration 

was identified in Arcview based on the average values of 40 

SAS realizations and 100 SGS realizations, as presented in 

Fig. (11). The block is located in the north part of the study  

 

area. Fig. (12) plots the cumulative distribution of the 100 

SGS realizations of As values. The cumulative distribution 

reveals that the probability of exceeding an As concentration 

of 10 (mg/kg) in the block is about 0.7. The cumulative dis-

tribution (Fig. 12) can be used for further assessing the risk 

associated with soil arsenic. 

(a) 

 

(b) 

 

Fig. (9). Average As concentration of (a) 100 SGS realizations; (b) 
1000 SGS realizations. 

(a) 

CONCLUSIONS 

 This study performed kriging estimation, as well as SGS 

and SAS simulations to quantify the spatial distributions, 

variability and uncertainties of soil arsenic in the northern 

part of Changhua County in central Taiwan. Kriging can 

estimate the spatial distribution of soil As, but fails to cap-

ture and identify high soil As concentrations and the areas in 

which the concentrations are high. However, 1000 SGS re-

alizations and 40 SAS realizations of soil arsenic can capture 

both spatial distributions and high As concentration area. 

The kriging results and simulations revealed that the high As 

area was around the irrigation ditch systems and industrial 

plants in the study site. The cumulative distribution of simu-

lated realizations and the estimated and simulated maps of 

soil As can be used in further risk assessment and manage-

ment. 
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(b) 

 
Fig. (10). Average As concentration of (a) 40 SAS realizations; (b) 
1000 SAS realizations. 

 

Fig. (11). Block with high As concentration. 

 

Fig. (12). Cumulative distribution of 1000 SGS realizations of 
block with high As concentration. 
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