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Abstract—In this paper, an end-of-line quality control scheme
based on wafer acceptance test (WAT) data is presented. Due to the
multiple-stream and sequence-disorder effects typically present in
the WAT data, an abnormal process shift caused by one machine
at an in-line step may become vague for detection using end-of-line
WAT data. A methodology for generating robust design param-
eters for the simultaneous application of Shewhart and EWMA
control charts to WAT data is proposed. This SHEWMA scheme
is implemented in a foundry environment and its detection and di-
agnosis-enhancing capabilities are validated using both numerical
derivations and fab data. Results show that the SHEWMA scheme
is superior to the current practices in detection speed. Its use is
complementary to the existing in-line SPC for process integration.

Index Terms—Exponentially weighted moving average
(EWMA), multiple-stream, process integration, semiconductor
manufacturing, sequence-disorder, statistical process control
(SPC).

I. INTRODUCTION

A. Motivation

DURING integrated circuit fabrication, various test struc-
tures are fabricated on a wafer to extract information on

the process and device performance for yield management.
Wafer acceptance test (WAT) data come from the electrical
measurements of these test structures after completing the
whole fabrication process. In current WAT practice, several
sites located on the fixed locations of each wafer are selected,
from which over 100 WAT parameters are measured. Statistical
analysis and process diagnosis based on end-of-line WAT data
provide an assessment of overall process performance and its
impact on product yield.

Although quality control should be improved as early as pos-
sible, first in the design stage, followed by the manufacturing
stage, quality control at the end-of-line stage still adds value for
the following reasons [1], [2]:

• statistical stability at the in-line level does not guarantee
stability of the entire IC fabrication process;

• in-line data are often not available owing to time-con-
suming or destructive data collection methods;
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• product performance is usually strongly correlated with
the WAT data;

• abundant WAT data are usually available.

Since WAT measurements reflect the overall results of the
entire fabrication process, their statistical characteristics are
usually complicated. Standard quality control techniques such
as statistical process control (SPC) charts cannot be applied
to WAT data without caution. For example, there are multiple
variation components shown in WAT measurements: lot-to-lot,
wafer-to-wafer, site-to-site, and residual variations, which are
not adequately taken into account in the traditional Shewhart
control chart. Furthermore, there are two complicating features
of the WAT data generation process. First, individual lots of
wafers may go through different streams of machines during
their fabrication processes, which induce the machine-to-ma-
chine variation among lots, and violates the assumption of
standard SPC practices that each lot is identically distributed.
This is called the “multiple-stream” effect. Second, the cycle
time from an in-line step to the WAT step varies among lots,
which makes the WAT lot sequence not the same as the lot
sequence in each in-line step. An abnormal trend such as a
process shift occurring at one machine of an in-line step would
be more difficult to detect at the end-of-line WAT step under
the “sequence-disorder” effect.

B. Related Work

To the authors’ best knowledge, end-of-line quality control
activities in the current industry practices are summarized
below:

1) “Brute Force” SPC Applications:This approach elimi-
nates the sequence-disorder and multiple-stream effects by im-
plementing data sequence trace-back and stratification before
constructing control charts. It first traces back the WAT lot se-
quence at individual machines for each process step, then sorts
and stratifies WAT data accordingly. Statistical inference tech-
niques, such as an analysis of variance (ANOVA) or a SPC con-
trol chart, are then performed to detect potential faults. For ex-
ample, AMD [3] has used the powerful data processing capa-
bility provided by advanced computers to screen and analyze all
the production and process data. Although useful in the above
example, the “brute force” approach may not be feasible in a
multiple-product fab or a foundry fab, in which there may be
more than 300 product types, 300 processing steps, and mul-
tiple machines at each step. A well designed database and pow-
erful data processing capability must be provided to support this
method.

0894–6507/00$10.00 © 2000 IEEE
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Fig. 1. Sequential detection and diagnosis approach for end-of-line quality
control.

2) Sequential Detection and Diagnosis Approach:This
approach detects and diagnoses the process abnormalities in
a sequential manner. As shown in Fig. 1, quality of the in-
coming WAT data is first monitored in the acceptance sampling
test module and the end-of-line SPC module. If there is an
out-of-spec signal detected in the acceptance sampling test
module or out-of-control signal detected in the end-of-line SPC
module, a first-cut diagnosis function is then performed and po-
tential process steps are identified. Based on the trace-back and
stratification data at these critical steps, an in-depth diagnosis is
performed. One current practice of end-of-line SPC is to review
the values of key WAT parameters every two weeks. If any
one of the values is less than the corresponding threshold
values specified by engineers, a problem may have occurred
and the corresponding control charts must be reviewed to see if
there is any significant trend. The philosophy of this approach
is to reduce the sequence-disorder and multiple-stream effects
by plotting the data in a larger batch size such as lot data
of two weeks so that a change in process mean and/or variance
could be identified more easily. Another end-of-line SPC prac-
tice is the use of Shewhart control chart combined with variance
decomposition as proposed by Philips Co. [4]. In their scheme,
the multiple variance components in the end-of-line parametric
measurements are first decomposed and then monitored in a
batch-by-batch manner. In both practices, either control limits
or batch size are usually determined empirically, which could
degrade the detection performance. There should be a more
rigorous rule for the design of these control parameters under
different process conditions.

As for the research work in the general quality control field,
cumulative sum (CUSUM) control chart [5] and exponen-
tially weighted moving average (EWMA) control chart [6]
are designed for a small shift or drift detection. Lucas and
Saccucci [7] compared the effectiveness of the CUSUM and
EWMA control charts and concluded that their performance
are close to each other. They also validated that Shewhart
control chart is superior to CUSUM and EWMA control charts
in a large shift detection and suggested to adopt the combined
Shewhart-CUSUM scheme [8] or combined Shewhart-EWMA
scheme [7] to monitor various magnitudes of process shifts.
However, none of them is designed specifically for the fea-
tures of WAT data. As for the complicating features of WAT
data—multiple-stream and sequence-disorder effects—only the
former has been discussed in the literature. Montgomery [9],
Nelson [10], and Mortell and Runger [11] developed several

kinds of group control charts to detect the variation within
each process stream as well as the variation among different
process streams. But their methods are useful only in the case
that each measurement can be easily stratified in terms of its
corresponding stream. As for control charts for measurements
with multiple variation components, total variation is first
decomposed into various components by using ANOVA tech-
niques and these components are then monitored individually
[12]–[15]. With this variance decomposition technique, the
sensitivity of control charts is greatly enhanced.

C. SHEWMA Scheme

To fully utilize the WAT data for end-of-line quality control,
this paper adopts the “sequential detection and diagnosis”
approach. With this approach, fewer control charts are needed
for each WAT parameter as compared to those needed for
the “brute force” SPC application. Furthermore, the data
trace-back and stratification tasks are performed only at the
critical process steps during the in-depth diagnosis stage. As a
result, the root causes can be discovered much more efficiently
without a significant amount of computing power, which is
important in a multiple-product fab or a foundry fab. Since the
Combined Shewhart-EWMA (CSE) scheme is very effective
to monitor various magnitudes of process shifts, it is extended
into a SHEWMA scheme in this paper for application to the
end-of-line SPC module in Fig. 1. The proposed SHEWMA
scheme is a methodology for generating robust design pa-
rameters for the simultaneous application of Shewhart and
EWMA control charts to WAT data. By carefully designing the
parameters of these charts against different process conditions
and false alarm rate requirements, the SHEWMA scheme is
able to identify the underlying trend from a multiple-streamed
and sequence-disordered data sequence and optimize the trend
detection performance. To be more specific, the goals and
contributions of this paper include

• characterizing the features of WAT data;
• identifying the challenges of applying SPC to WAT data;
• designing robust SHEWMA parameters for industrial ap-

plications;
• implementing SHEWMA scheme within a foundry fab;
• integrating the detection function with the diagnosis func-

tion;
• validating the effectiveness of SHEWMA scheme using

fab data.

D. Organization of this Paper

The remainder of this paper is organized as follows. In Sec-
tion II, the WAT generation process is modeled and special chal-
lenges for SPC applications are discussed. Based on these re-
sults, in Section III, we describe the SHEWMA scheme for
end-of-line SPC and its detailed design algorithm. Section IV
then presents the evaluation results of SHEWMA performance.
In Section V, the SHEWMA scheme is validated by fab data.
The integration of SHEWMA detection function with diagnosis
function is also discussed. Conclusions are finally made in Sec-
tion VI.
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II. I SSUES FORSTATISTICAL PROCESSCONTROL AT WAT

Statistical characteristics of WAT measurements are very
complicated because they are taken at the end-of-line step and
accumulate the effects of various sources of variation in the
in-line processes. To detect special process disturbances in
WAT data, it is necessary to characterize their generation and
common variations.

A. Variations of WAT Data

Consider lots of wafers of the same part type, which are la-
beled by an index according to their sequence of
finishing the WAT step. There are wafers in each lot and
sites are sampled per-wafer at the WAT step. Let be a WAT
measurement taken from siteof the th wafer in lot , where

and . Each WAT measurement can
be partitioned into four independent sources of variations such
that

(1)

where

and

(2)

The four terms on the right hand side of (1) correspond to
lot-to-lot, wafer-to-wafer, site-to-site, and residual variations,
where

1) lot-to-lot variation typically arises because different
lots are processed on different machine in fabrication;

2) wafer-to-wafer variationresults from the nonunifor-
mity of batch processing machines or the nonideal
repeat performance of single-wafer processing ma-
chines;

3) site-to-site variationresults from the nonuniformity of
each processing machine;

4) Residual variationis generated by the random distur-
bance on measurements and other unexplained varia-
tions such as the variation due to wafer and site inter-
action effect.

A set of WAT field data from a foundry fab is used to sup-
port our classification, where 50, 24, and 5.
This set of data was empirically analyzed and judged by process
engineers to be free from abnormal variations. Fig. 2 shows a
multi-vari plot of a representative subset of the data, where a
vertical line connects the largest and smallest observation within
a wafer, and a horizontal tick represents the wafer mean over

Fig. 2. Multi-vari plot for WAT data.

Fig. 3. Wafer effect and site effect within a lot.

five sites. Both the lot-to-lot variation and the within-lot varia-
tion can be clearly observed, and the former is obviously more
significant than the latter. Fig. 3 displays the within-lot data of
five arbitrarily chosen wafers in a lot, where both wafer and
site effects are observed. By applying the VARCOMP proce-
dure of SAS program [16] to the complete data set, it is shown
that the lot-to-lot, wafer-to-wafer, site-to-site, and residual vari-
ations contribute 66.0%, 10.9%, 11.4%, and 11.7% to the total
variation, respectively. The SPC scheme design in this paper fo-
cuses on monitoring the WAT lot average sequence.

B. Modeling the WAT Data

To simplify the notation, let be a random
sequence representing wafer lot averages of a WAT measure-
ment item, where is the lot output sequence index at the WAT
step. Let us now analyze and develop models for the generation
process of a WAT data sequence . Note that the processing
of a lot may require more than 300 steps and each step may be
processed by any one of a machine group. We define astream
as a sequence of machines that a lot goes through during its fab-
rication process. There are many possible streams in a fab and
the resultant WAT measurements among different streams vary
due to machine-to-machine variation. This is defined as themul-
tiple-stream effect. In general, the cycle time from a process step

to the end-of-line WAT step also varies among lots. As a re-
sult, the lot with a sequence labelat step very likely has a
different lot sequence labelat the WAT step. This is defined as
thesequence-disorder effect.

1) Modeling the Multiple-Stream Feature:When the
process is in the in-control situation, ’s are assumed to be
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Fig. 4. Definition of sequence-disorder grade.

i.i.d. with a probability density function (p.d.f.) .
Now consider a model of multiple-stream effect for with
a shift in its process mean. Let machinebe one of the
identical but independent processing machines for step.
Assume that a special variation occurs at machineat step
and it results in a shift of lot averages on . If lot goes
through machine at step during its fabrication process, the
corresponding is assumed to be i.i.d. with a conditional
p.d.f. , in which is the magnitude of
the shift in units of . Otherwise, is in-control and is i.i.d.
with the conditional p.d.f. . Assume a uniform probability
that lot goes through one of the machines for process step,
i.e., . Thus, the probability density function of under
the mutiple-stream effect is

(3)

2) Modeling the Sequence-Disorder Feature:Let be the
in-line lot sequence label at stepand be
the data sequence that reorders the WAT data sequence
according to the in-line sequence at step. Define the sequence-
disorder magnitude of a lot as , where is the
sequence label of a lot at stepand is the sequence label of the
same lot at the WAT step (Fig. 4). Then the range ofover all ,
denoted as , is a characterization
of the sequence-disorder effect from stepto WAT.

When a process is in-control, both and are statis-
tically the same, i.e., and are both i.i.d. with prob-
ability density function . Assume that a process shift of step

occurs at machine starting from the th lot and that the
probability density function of is for . Due to the
sequence-disorder effect, the probability that has a shifted
mean, i.e., lot at the WAT step has an in-line sequence label

at step is defined as

Pr (4)

and the p.d.f. of each can then be inferred as

(5)

C. Challenge for Trend Detection

To demonstrate the challenge in WAT trend detection, an ex-
ample is created using the simulation model of Appendix A.

TABLE I
INPUTS TO THESIMULATION EXAMPLE

(a)

(b)

(c)

(d)

Fig. 5. Simulation to demonstrate the multiple-stream and sequence-disorder
effects. (a) Machine A data sequence. (b) Machine B data sequence. (c) In-line
data sequence. (d) WAT data sequence.

Model parameters are listed in Table I and the in-line sequences
of individual machines are depicted in Fig. 5(a) and (b). It can
be observed that after reordering WAT data of the abnormal ma-
chine A according to its in-line sequence, there is a significant
shift pattern but not for the in-control machine B. Fig. 5(c) il-
lustrates the multiple-stream effect by combining the data se-
quences of the two machines into one. Fig. 5(d) shows the WAT
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Fig. 6. Changes of mean and variance in the simulation case.

sequence, where the sequence-disorder effect is added. It is vi-
sually clear that the trend pattern in Fig. 5(d) is ambiguous and
difficult to identify.

Fig. 6 demonstrates, by using the simulation example, the
changes in both mean and variance of WAT data sequence in
contrast with those of the in-line sequence at machine A. The
results in Fig. 6 are derived from (5)

(6)

and

Var (7)

It can be seen that the in-line process shift ramps and then levels
off in the WAT sequence because of the sequence-disorder ef-
fect. The slope of the ramp of E is approximately,
while E and Var finally reach at the steady values

and , respectively.
It means the larger the sequence-disorder range, the smaller the
slope of the ramp. Also, due to the multiple-stream effect, the
magnitude of the leveling off part is times smaller while the
variance is times larger than that of
the original shift pattern. It is clear that an in-line trend pattern
becomes ambiguous and difficult to detect from the WAT data
sequence.

III. D ESIGN OFSHEWMA SCHEME FORWAT DATA

Our design aims at following goals:

1) to accumulate the evidence of any emerging trend in
WAT data sequence and extract the trend pattern;

2) to be sensitive to real process disturbance without in-
creasing the false alarm rate;

3) to be easy to implement and robust for various process
conditions in a real fab.

A. Overview of SHEWMA System

The SHEWMA scheme has been implemented as a software
system interfacing with the WAT database and the engineering
data analysis (EDA) system. By monitoring the WAT data of
each wafer lot, this system is designed to detect an abnormal
trend and trigger the “sequential detection and diagnosis”
functions (Fig. 1). The architecture and environment of the
SHEWMA system is shown in Fig. 7. Data monitoring by

Fig. 7. SHEWMA system and environment.

the SHEWMA scheme is typically completed within a few
seconds after each lot leaves a WAT tester. If a WAT warning
message is generated, the system will send an e-mail message
to the engineers in charge. Engineers will then query the
corresponding control charts and perform a first-cut diagnosis.
By tracing back the data in the EDA system, engineers may
further correlate the control charts in the SHEWMA system to
the in-line data of potential abnormal process steps and conduct
an in-depth diagnosis.

The SHEWMA system itself consists of two subsystems:
on-line monitoring and off-line parameter generation. In the
on-line monitoring subsystem, lot averages are queried
from the WAT database with the outliers of raw data excluded.
Then the large shift detection module (the Shewhart chart) tests
if the average of a lot is in-control, and the small shift detection
module (the EWMA chart) tests if there is any trend shown
in . Warning messages from these two modules provide
information about process shift size. If only the EWMA chart
detects an abnormal trend, there could be a small process shift.
When there is a large trend in the EWMA chart and a data point
out of Shehwart control limits at the same time, a large process
shift may have occurred.

In the Shewhart control chart, the monitoring statistic is the
lot average sequence . In the EWMA control chart, the
EWMA sequence is generated by

(8)

where , and the initial value is usually set as the
process mean . In summary, SHEWMA scheme parameters
form a triplet , where is the Shewhart control limit
width, is the EWMA weighting factor, and is the EWMA
control limit width. Once the SHEWMA parameters
and the long-term performance are available, control
limits are then set as

Shewhart chart:

(9)

EWMA chart:

(10)

To optimize the scheme performance, an Off-line Parameter
Generation process is required; robust SHEWMA parameters
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are generated based on possible process conditions and the
bound of false alarm rate. Results of these parameters are then
stored in the Default Table for on-line monitoring function.
There are two modules in this subsystem. The first module,
Performance Metrics Calculation, calculates the mean
and variance of a historical WAT lot average sequence

. In specific, the moving range estimator
of [9] is adopted to estimate the variance,

and

(11)

This estimator is unbiased, is robust with respect to shifts in the
process mean [13], and can model the machine-to-machine vari-
ation among lots well. The second module, Robust Parameter
Generation, generates the SHEWMA parameters that maximize
the detection speed while keeping the false alarm rate lower than
a required level .

B. Robust Parameter Generation

In this paper, the average run length, , serves as a per-
formance metric of the SHEWMA scheme. is a random
variable characterizing the average number of observations that
an SPC scheme takes to generate an out-of-control signal after
the occurrence of a process change. In general, is further
classified into and . represents the average
run length when the process is under normal condition while

represents the average run length when an abnormal sit-
uation occurs. The reciprocal of has a meaning of false
alarm rate. One possible way to design the SHEWMA param-
eters is to minimize for a given set of process
conditions and a specified upper bound of false alarm rate. The
process conditions are denoted as a triplet , where is
the sequence-disorder range from the monitored stepto WAT
step, is the total number of machines in the monitored step
, and is the potential magnitude of a shift (in the unit of .

In practice, there may be a wide range of process conditions
in a real fab and exact process conditions cannot be
knowna priori. For the feasibility of implementation, design of
a robust set of SHEWMA parameters is desirable so
that the SHEWMA scheme results in satisfactory performance
over various process conditions.

The design procedure is summarized in Fig. 8. Design in-
puts include a set of process conditions, ,

, , , and an upper bound of the false
alarm rate, . Design output is a robust selection of parame-
ters, . There are two parts in the design procedure. The
first part calculates the feasible parameters with false alarm rate

, from which the optimal parameters are generated by min-
imizing under any given process condition triplet in.
The second part generates a robust design of parameters by min-
imizing the worst case detection delay of the SHEWMA scheme
over all possible conditions in . Interested readers may refer
to Appendices B and C for more discussions.

Fig. 8. Design procedure of the SHEWMA scheme.

IV. PERFORMANCEEVALUATION

The objective of robust SHEWMA design is to optimize the
scheme performance for a wide range of possible process con-
ditions in a real fab. This Section examines if the design is nec-
essary and if the design objective is indeed achieved. First, a
simple simulation example is used to highlight the optimal per-
formance of the SHEWMA scheme in trend identification under
one set of process conditions. Next, a more rigorous sensitivity
study is performed, in which performance against dif-
ferent scheme parameters and process conditions are presented.
Finally, the effectiveness of robust SHEWMA design is demon-
strated by comparing it with the combined Shewhart-EWMA
(CSE) scheme, where the multiple-stream and sequence-dis-
order effects are not considered.

A. Simulation Example

In this simulation example, WAT data sequences are first gen-
erated as described in Appendix A. Lot averagesunder an
in-control condition is assumed to follow a normal distribution

(0, 1). Tables I and II list the process conditions, requirement
of false alarm rate and scheme parameters in this simulation
study. The process conditions are the same as those of the ex-
ample in Section II, where a shift occurs at the 21st data point of
the in-line sequence. Under such process conditions and the re-
quirement of false alarm rate of 0.27%, the optimal SHEWMA
parameters are . To investigate
the effect of weighting factor , Table II includes three more
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TABLE II
FALSE ALARM RATE AND SHEWMA PARAMETERS IN THE

SIMULATION EXAMPLE

Fig. 9. SHEWMA chart of the simulated case in Fig. 5.

sets of SHEWMA parameters besides the optimal one for com-
parison.

Fig. 9 depicts simulation results of the four designs, where
all the monitoring data are normalized to have the same control
limits. As can be seen, the EWMA trend generated by the
optimal parameters (the bold solid line) approaches the upper
control limit the fastest among the four. The optimal SHEWMA
scheme generates an out-of-control alarm at the 25th lot while
the other three do not detect until the 39th, 40th and 49th lots
respectively. It can also be observed that when the weighting
factor is smaller than the optimal value, the EWMA trend
pattern is clearer at a price of slower out-of-control detection.
When the weighting factor is higher than the optimal value,
the EWMA trend pattern becomes blurred without getting any
benefit in the speed of out-of-control detection.

B. Sensitivity Analysis

performance against different scheme parameters and
process conditions is now characterized. The ’s are numer-
ically derived by using the methods described in Appendix B.
To validate the accuracy of numerically derived ’s, Monte
Carlo simulations are conducted. The differences of ’s
between the numerical derivation and simulations are mostly
within the 95 percent confidence intervals, i.e., two times of the
standard deviations. Relative differences are all within 4%.

Consider a range of process conditions in a real fab as

(12)

and design seven cases for sensitivity analysis as listed in
Table III. The performance of SHEWMA scheme with

TABLE III
SEVEN TEST SCENARIOS FORDESIGN AND ANALYSIS

Fig. 10. Sensitivity ofARL1 to weighting factor� under variousR values
with M = 3 andS = 1.

Fig. 11. Sensitivity ofARL1 to weighting factor� under variousM values
with R = 25 andS = 1.

respect to the changes of weighting factorand the process
conditions in Table III are examined. For all the seven cases, the
Shewhart control limit width is set to 3.25 while the EWMA
control limit width is determined based onso that the false
alarm rate is equal to a frequently used level of 0.27%.

Fig. 10 shows the sensitivity of with respect to under
various values of sequence-disorder range. The vertical axis
represents the delay from the optimal detection time, ,
which is defined in (B7) of Appendix B. It can be seen that the
optimal value = 0.03) stays the same, i.e., the SHEWMA
parameter is insensitive to the change in sequence-disorder
range .

Fig. 11 shows that the optimal weighting factordecreases
as the number of machines increases, which means that a
larger window size of moving average is needed to reveal the
underlying trend under a stronger multiple-stream effect. This
figure also shows that the sensitivity of with respect to

increases as increases. Note that if is set to 0.13 by as-
suming , i.e., without considering the multiple-stream
effect, there may be a detection delay up to 15 lots
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Fig. 12. Sensitivity ofARL1 to weighting factor� under variousS values
with R = 25 andM = 3.

TABLE IV
ROBUSTSHEWMA SCHEME VERSUSCOMBINED SHEWHART-EWMA SCHEME

15) when . On the contrary, if the multiple-stream effect
is taken into account, thevalue based on the robust design will
be around 0.03, which yields a maximum detection delay of no
more than 2 lots 2) for ranging from 1 to 5.

In Fig. 12, there is a quick decline in optimalas the magi-
tude of shift decreases. The sensitivity of with respect
to increases rapidly asdecreases. A detection delay up to 10
lots might occur if is set to the optimal value
of 0.19 for instead of the robust design value of 0.05.

C. Robust SHEWMA Scheme versus Combined
Shewhart-EWMA Scheme

The robust SHEWMA scheme is compared with the CSE
scheme for demonstrating its effectiveness. Table IV lists the
false alarm rate, range of process conditions, and the resultant
design parameters by these two schemes.

Results of the performances with respect to the
number of machines , sequence-disorder range , and
shift size are illustrated in Figs. 13–15, respectively. It
can be seen that as the number of machines increases, the
robust SHEWMA scheme is getting superior to the CSE
scheme. However, the performance seems independent
of the sequence-disorder range. As for the magnitude of
shift, the smaller the shift size, the better the performance of
robust SHEWMA scheme. In summary, if there exists a mul-
tiple-stream effect and if the shift size is small, the superiority
of our SHEWMA scheme over the CSE scheme will be most
significant, with at least 10% reduction in detection time.

Consider the process conditions in (12). The worst case de-
tection delays, ’s as defined in (B6) of Appendix B, of
SHEWMA and the CSE schemes are 2.4 and 20.3 respectively.
Suppose that the average throughput of a foundry fab is 5 lots

Fig. 13. Relation ofARL1 toM with R = 25 andS = 1.

Fig. 14. Relation ofARL1 toR withM = 3 andS = 1.

Fig. 15. Relation ofARL1 to S with R = 25 andM = 3.

per part type per day. A SHEWMA scheme with the robust pa-
rameters will delay the genera-
tion of a warning message only by an average of
day even in the worst case. The worst case detection delay for
CSE scheme may be as long as days.

V. APPLICATION TO A FOUNDRY FAB

The SHEWMA scheme has been implemented in a foundry
fab following the schematic diagram of Fig. 7. To facilitate
process integration, the SHEWMA system is further integrated
with the EDA system, both of which are running on the same
NT server. Process integration engineers can easily access the
two systems through the Intranet.

A. Implementation Issues

The establishment of a baseline process model from WAT
data follows the standard industrial practice as follows:
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1) Identify and remove extreme data points by empirical
rules.

2) Draw a probability plot to check if there is any outlier
in the remaining data and if the data is of a normal
distribution.

3) Remove all the outliers and calculate the mean and
variance for setting SHEWMA control limits.

4) Exclude the out-of-control-limit data and recalculate
the SHEWMA control limits until all the data points
are within the control limits.

There are two salient issues in implementing the SHEWMA
system.

1) Extraction of Process Condition Range Parame-
ters: Based on process physics and by design of the test
structures, each WAT item is only correlated to certain process
steps. A straight forward adoption of the process condition
range parameters of the whole fab as inputs to the robust
parameter generation module may lead to an increase in worst
case delay for fault detection. This is because the process
condition range parameters of the whole fab is an upper bound
to the process condition range parameter for a WAT item. To
correctly extract process condition range parameters from fab
data for individual WAT items, it is crucial to precisely identify
the correlated process steps of each WAT item.

2) Integration with the Diagnosis Process:To find out the
root cause after receiving a fault detection warning message
from SHEWMA, a direct diagnosis method is to trace the WAT
data sequence back to the processing machines in all the pos-
sibly faulty process steps. An efficient diagnosis obviously re-
quires not only the information about which WAT items are cor-
related to which process steps but also information about how
they are correlated. The extraction of such a knowledge base
from empirical data and physical laws is key to the integra-
tion between fault detection by SHEWMA and the diagnosis
process.

A solution to the two implementation issues exploits a map-
ping table which correlates WAT data and process steps. For
each WAT item, its sequence-disorder range is extracted from
the production data of its correlated process steps. Letbe a
set of process steps correlated to a WAT item under investiga-
tion and is the earliest step in the process flow among
all steps in . Suppose that there arelots processed at step
in one day. The arrival day of each lot at WAT step is assumed
to be within the range (mean arrival day , where is
the standard deviation of the cycle time from stepto the WAT
step. Thus the difference among the arrival days of thelots at
WAT step is at most days. The sequence-disorder range
of step is therefore estimated by

(13)

where is the throughput at WAT step. The sequence-disorder
range is an upper bound to the sequence-disorder ranges of
all other steps in . Similarly, the sequence-disorder range of
the last step in the process flow among all steps inserves
as a lower bound. As for the other two range parameters, the

TABLE V
RELATED PROCESSSTEPS OFRc_N+AND Rs_N+

number of machines and the magnitude of shift , they
are empirically and easily determined.

With the use of the mapping table between WAT data and
process steps, the SHEWMA scheme is integrated with an in-
telligent diagnosis system (IDS) for the purpose of first-cut di-
agnosis [17]. When an abnormal WAT symptom is detected by
SHEWMA, the deviation of WAT data is then fed into the IDS
system. The IDS system then calculates the fault causing possi-
bility of individual process steps. As a result, a list of possible
faulty process steps are generated for further in-depth diagnosis.

B. Case Study

A 0.26 m logic device is selected with a focus on monitoring
WAT items of Rs_N+ and Rc_N+, which represents the sheet
and contact resistance of N+ structure respectively. The two
WAT items are monitored for evaluating concentration and con-
tact of NMOS drains/sources fabricated on each wafer. Process
steps related to these two WAT items are listed in Table V. The
process range condition parameters derived from using histor-
ical production data are

.
Data from 120 lots were collected over a period of 1.5 months.

The first 50 lots are used for baseline process model construc-
tion while the last 70 lots are used for on-line monitoring. The
false alarm rate is again set to 0.27%. The robust SHEWMA pa-
rameters are then generated as (3.25, 0.11, 2.9). The
long-term mean (standard deviation) for these 50 lots are 66.01
(0.768) and 69.93 (0.460) for Rc_N+ and Rs_N+, respectively.

C. Trend Detection via SHEWMA

Figs. 16 and 17 illustrate the SHEWMA control charts of the
Rc_N+ and Rs_N+ respectively. Each figure has a Shewhart
chart in part (a) and an EWMA chart in part (b).

In the application of SHEWMA scheme to Rc_N+ data, there
are two warning messages generated by the EWMA chart at the
61st and 64th lots, but all the data points are within the Shewhart
control limits. As EWMA is more sensitive to small shift detec-
tion while Shewhart is better in detecting a large deviation, it is
deduced that Rc_N+ data may have a small shift.

In monitoring the Rs_N+ data, SHEWMA generates four
warning messages, one from the Shewhart chart at the 65th lot
and the other three from the EWMA chart at the 27th, 37th,
and 64th lots, respectively. Under the same reasoning as the
one above, the deviation of Rs_N+ may be conjectured as a
small shift when the monitoring procedure is around the 27th
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(a)

(b)

Fig. 16. Robust SHEWMA control charts of Rc_N+. (a) Shewhart chart at
WAT (c = 3:25). (b) EWMA chart at WAT(� = 0.11,h = 2.899).

to 37th lots and as a large shift when the monitoring procedes
up to the 65th lot.

D. SHEWMA and Root Cause Diagnosis

The warning messages and control charts of SHEWMA
trigger and assist engineers in root cause diagnosis. When
reviewed by engineers, the EWMA control chart provides
a visual trend pattern of WAT data sequence and facilitates
intuitive estimation of the type and size of WAT data deviation.
Such a visualization for each WAT item in turn gives indications
for root cause diagnosis. For example, the EWMA values of
Rs_N+ in Fig. 17(b) have two slight downward trends around
the 27th lot and the 37th lot respectively and a large downward
trend after the 64th lot. So, it is conjectured that a small
process shift results in the two slight downward trends while
another large process shift generates the large trend-down.
In the EWMA chart for Rc_N+ [Fig. 16(b)], there is also a
small trend-down after the 64th lot but no abnormal symptoms
around the 27th lot and the 37th lot. It is therefore reasoned that
the faulty process step affects Rs_N+ more than Rc_N+.

The Rs_N+ data sequence is then traced back to the N+
drain/source implant and RTA steps for in-depth diagnosis. It is
found that N+ drain/source implant step is the root cause. There
are four machines, M1 M4, for this step. In tracing back,
the lot average sequence of Rs_N+ is stratified by the four
machines [Fig. 18(a)] and reordered by the lot sequence at the
step [Fig. 18(b)]. It can be clearly observed from Fig. 18(b) that

(a)

(b)

Fig. 17. Robust SHEWMA control charts of Rs_N+. (a) Shewhart chart at
WAT (c = 3:25). (b) EWMA chart at WAT(� = 0:11, h = 2:899).

M1 has a significant machine offset from the 29th to 36th lots
in its in-line lot sequence as compared to the other machines.
Also, there is a process shift occurred at M4 starting from the
62th lot in its in-line lot sequence. These results validate the
first-cut diagnosis and the earlier conjectures that there is a
small shift (around the 27th and 37th lots in end-of-line WAT
lot sequence) and a large shift (after the 64th lots in end-of-line
WAT lot sequence) in Rs_N+.

E. EOL SHEWMA Complementary to In-Line SPC

Can the fault be identified by using in-line SPC for the
N+ drain/source implant step? The in-line SPC at the N+
drain/source implant step monitors the sheet resistance, which
is taken from the test wafer every 12 h. Both Western Electric
Rules (WER) and CSE schemes are adopted as the in-line SPC
schemes.

The CSE charts for machine M4 at N+ drain/source implant
step during the tracking time of the 70 lots under investigation
are given in Fig. 19(a) and (b). During the period of process
shift, there are 23 lots, from the 48th to the 70th lot in Fig. 18(b),
processed by machine M4 for the N+ drain/source implant step.
However, in the same period of time, only four data points, from
the 13th sampling point to the 16th sampling point in Fig. 19,
of sheet resistance are taken for in-line SPC. It can be seen that,
using the in-line sheet resistance data, neither the CSE scheme
nor the WER detects the large process shift in machine M4. As
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(a)

(b)

Fig. 18. Shewhart control charts stratified by processing machines. (a)
Shewhart chart at WAT(c = 3:25). (b) Shewhart chart reordered by in-line
lot sequence(c = 3:25) .

for the offset of machine M1, it is more difficult to detect by
using in-line SPC because only two data points of sheet resis-
tance are taken from M1 and the offset of M1 is much less than
the magnitude of process shift in M4.

There are two reasons that the in-line SPC does not detect the
process shift and machine offset in this case. First, the in-line
measurements may be less sensitive to the process change as
compared to the WAT measurements taken from product wafer.
Second, the sampling rate in in-line level is much less than that
of WAT. End-of-line SHEWMA is thus complementary to the
in-line SPC for process integration.

F. Necessity of Robust Design

Through this case study, SHEWMA has been validated
as a useful scheme for end-of-line detection and assists in
diagnosis in a real fab. To simplify the implementation of
SHEWMA system, can the procedure of robust parameter
generation be omitted? To answer the question, in addition to
the robust SHEWMA parameters used so far, two additional
sets of SHEWMA parameters,
and , are designed under the
same false alarm rate requirement . The two sets
are selected to evaluate the selection of weighting factor,
because it is related to the effective moving window size and
is important for revealing out the underlying trend pattern and
enhancing the detection speed of SHEWMA. In the one hand,

(a)

(b)

Fig. 19. SHEWMA control charts of M4. (a) Shewhart chart for in-line SPC
(c = 3). (b) EWMA chart for in-line SPC(� = 0:15, h = 2:961).

to reveal the underlying trend, a large window size (a small
weighting factor is needed. As a result, a smaller value of
(0.07) is adopted in the first of the two new sets. On the other
hand, to enhance the sensitivity of EWMA values to process
change, a larger value of (0.5) is adopted in the second of
the two new sets. It is expected that the SHEWMA scheme
with the empirically determined parameters will slow down the
detection of small process shift.

The EWMA control charts of Rs_N using these two sets of
parameters are demonstrated in Fig. 20(a) and (b), respectively.
It can be observed that both of them detect the large process shift
at the 64th lot, which is the same as that by the robust SHEWMA
parameters. However, for the small shift resulted by machine
offset, the EWMA chart with a smaller weighting factor

generates a warning message at the 37th lot, which delays
the detection by ten lots as compared to the EWMA chart with
robust parameters. In the EWMA chart with a larger weighting
factor , no warning message is signaled for the small
shift around the 27th and 37th lots.

VI. CONCLUSIONS

In this paper, an end-of-line quality control scheme based
on WAT data is presented. In particular, the design and
implementation of an end-of-line SPC scheme and its inte-
gration with diagnosis function is detailed. The end-of-line
SPC scheme, SHEWMA, considers the multiple-stream and
sequence-disorder effects of WAT data and generates robust
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(a)

(b)

Fig. 20. EWMA control charts with arbitrarily-chosen parameters. (a) EWMA
chart with a small weighting factor(� = 0:07, h = 2:789 395). (b) EWMA
chart with a large weighting factor(� = 0:5, h = 3:051 675).

design parameters for the simultaneous use of Shewhart and
EWMA control charts.

The SHEWMA scheme has been implemented in a foundry
environment for monitoring the lot-to-lot average performance
and integrated with the fab EDA system for root cause diag-
nosis. Its detection and diagnosis-enhancing capabilities have
been validated using both numerical derivations and fab data.
Numerical results show the robust SHEWMA scheme reduces
detection time by at least 10% for small shift detection as com-
pared to the direct use of combined Shewhart-EWMA scheme
without considering the multiple-stream and sequence-dis-
order effects. In addition, in the fab data validation study, the
SHEWMA scheme reveals the potential faults that are not
captured in the in-line step. Its use is complementary to the
existing in-line SPC for process integration.

APPENDIX A

With the multiple-stream and sequence-disorder models com-
bined, the p.d.f. of can be related to and of step p as

(A1)

A simulation model for generating based on (A1) is
shown in Fig. 21. Inputs include the sequence-disorder range

, number of machines , magnitude of shift , total number

Fig. 21. Simulation of the WAT data generation process, where
f = N(�; � , f = N(�+ S� ; � ); andh = N(0; R =16).

of lots , starting sequence label of the shift, and the p.d.f.
. All these inputs are defined for step.
The in-line data sequence is first gen-

erated with a p.d.f. for and with a p.d.f. for
. Then, the sequence-disorder effect is added to

for generating the WAT data sequence . Con-
sider a lot at step with a sequence label. Let be a random
variable and be WAT step completion time of the lot. By
sorting the WAT step completion time sequence of all
lots in an ascending order, the WAT se-
quence label is obtained as

(A2)

where$ is an ascending order operator.
To ensure the sequence-disorder range is within, the

random variable must fall in . Assume that
is truncated normal, i.e., its p.d.f. is

(A3)

where . Simulation results show that a WAT
data sequence generated according to (A2) and (A3) has
the density function of its sequence-disorder gradeapproxi-
mately . This approximation can be used to cal-
culate in (4).

APPENDIX B

In view of the fact that in (8), each EWMA value is an
interpolation of its former value and the present lot av-
erage , the calculations of and are approxi-
mated by modeling the SHEWMA scheme as a Markov chain
[18]. To be more specific, the transient probability between two
Markov states is derived by the p.d.f. of WAT lot average se-
quence and the SHEWMA parameters . As de-
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rived in (A1), the p.d.f. of is generated by combining
an in-control p.d.f. and an out-of-control p.d.f with a
fixed proportion, which is determined by the process conditions

. As a result, when a process shift occurs, is a
function of both process conditions and SHEWMA
parameters . However, when a process is in-control, the
p.d.f. of is exactly . Therefore, is only a function
of SHEWMA parameters .

A. Optimal Designs for Individual Process Conditions

Under a given process condition triplet and the
upper bound of false alarm rate, the SHEWMA parameter
design problem is to

Minimize

subject to (B1)

Let be the feasible set of parameters, where

(B2)

To minimize over over , the search space can be re-
duced from the set to a set , where

(B3)

As a result, given a set of process condition , the op-
timal parameters are determined by

(B4)

and the corresponding optimal average run length is

(B5)

Reasoning of the search space reduction and the solution proce-
dure for (B4) are briefly summarized in Appendix C.

B. Robust Design

The optimal SHEWMA parameters under one set of process
conditions may not be optimal under another set of process con-
ditions. Define a metric of maximum delay from the optimal
SHEWMA detection by

(B6)

where

(B7)

is the delay of when using nonoptimal SHEWMA pa-
rameters as compared to using the optimal ones. The goal here

is then to choose a robust set of parameters that mini-
mize the worst case detection delay over all process conditions
in , i.e.,

(B8)

APPENDIX C

1) Search Space Reduction:Given a set of and , choose
so that . The value is clearly a

function of and and let us denote it as . Intuitively,
when and are fixed, the tighter the, the smaller the values
of and . Therefore, for all

(C1)

and

(C2)

To satisfy the requirement of false alarm rate
and to increase the detection speed (minimize the at the
same time, the value of parametershould be exactly .
Consequently, the search space can be reduced from the set
to a set , where

(C3)

2) Equation (B4) Solution Procedure:

P1)Determine the range of search space:Define
, and as

the ’s of SHEWMA, EWMA and Shewhart
schemes respectively. Let be a value at which

. As the SHEWMA scheme adopts
the Shewhart and EWMA control charts simultaneously,
its run length is the minimum of the run lengths of
Shewhart and EWMA control charts, i.e.,

(C4)

Since is decreasing whendecreases,

(C5)

for all . It then follows from (C4) and (C5) that to
satisfy the requirement of false alarm rate

, the feasible value of parametershould be larger
than or equal to . By definition of EWMA, the search
space of weighting factor is . Thus the search
space in (C3) can be further expressed as

(C6)

P2)Quantatize the searching space of : Closed-form de-
sign of SHEWMA parameters is not available because
of the problem complexity. Therefore, (B4) is solved by
numerical evaluation. The search spaces ofand are
first quantatized into and

respectively, where is the upper
bound of and is empirically set as .
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P3)Approximate the control limit width for each pair of
: Although the derivation of a closed-form expres-

sion of the function is formidable, it can be nu-
merically approximated by a bisection procedure [19] for
various values of and .

P4)Search all the quantatized data points:The solution to
(B4) is solved by searching the ’s over all quanta-
tized data points . If the approximated op-
timal value of occurs on or near , add one to and
repeat the procedures P2–P4. Although such a brute force
search approach takes a lot of time, it only needs to be im-
plemented one time and all the searched data points can
be used for robustness analysis in Appendix B.B.
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