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Abstract—in this paper, an end-of-line quality control scheme » product performance is usually strongly correlated with
based on wafer acceptance test (WAT) data is presented. Due to the the WAT data;

multiple-stream and sequence-disorder effects typically present in . ;
the WAT data, an abnormal process shift caused by one machine abundant WAT data are usually available.

at an in-line step may become vague for detection using end-of-line ~ Since WAT measurements reflect the overall results of the
WAT data. A methodology for generating robust design param- entire fabrication process, their statistical characteristics are
eters for the simultaneous application of Shewhart and EWMA  ysyally complicated. Standard quality control techniques such
control charts to WAT data is proposed. This SHEWMA scheme o oiatigtical process control (SPC) charts cannot be applied
is implemented in a foundry environment and its detection and di- . . .

agnosis-enhancing capabilities are validated using both numerical 10 WAT data without caution. For example, there are multiple
derivations and fab data. Results show that the SHEWMA scheme Variation components shown in WAT measurements: lot-to-lot,
is superior to the current practices in detection speed. Its use is wafer-to-wafer, site-to-site, and residual variations, which are
complementary to the existing in-line SPC for process integration. ot adequately taken into account in the traditional Shewhart
Index Terms—Exponentially weighted moving average control chart. Furthermore, there are two complicating features

(EWMA), multiple-stream, process integration, semiconductor of the WAT data generation process. First, individual lots of
manufacturing, sequence-disorder, statistical process control \\fars may go through different streams of machines during
(SPC). their fabrication processes, which induce the machine-to-ma-
chine variation among lots, and violates the assumption of

I. INTRODUCTION standard SPC practices that each lot is identically distributed.

This is called the “multiple-stream” effect. Second, the cycle

time from an in-line step to the WAT step varies among lots,

D URING integrated circuit fabrication, various test strucynich makes the WAT lot sequence not the same as the lot
tures are fabricated on a wafer to extract information Qfbquence in each in-line step. An abnormal trend such as a

the process and device performance for yield managemediscess shift occurring at one machine of an in-line step would

Wafer acceptance test (WAT) data come from the electriggh more difficult to detect at the end-of-line WAT step under
measurements of these test structures after completing {he “sequence-disorder” effect.

whole fabrication process. In current WAT practice, several
sites located on the fixed locations of each wafer are select%d,
from which over 100 WAT parameters are measured. Statistical
analysis and process diagnosis based on end-of-line WAT datdo the authors’ best knowledge, end-of-line quality control
provide an assessment of overall process performance anddsvities in the current industry practices are summarized
impact on product yield. below:

Although quality control should be improved as early as pos- 1) “Brute Force” SPC Applications: This approach elimi-
sible, first in the design stage, followed by the manufacturingates the sequence-disorder and multiple-stream effects by im-
stage, quality control at the end-of-line stage still adds value fplementing data sequence trace-back and stratification before
the following reasons [1], [2]: constructing control charts. It first traces back the WAT lot se-

- statistical stability at the in-line level does not guaranteguence at individual machines for each process step, then sorts
stability of the entire IC fabrication process; and stratifies WAT data accordingly. Statistical inference tech-

« in-line data are often not available owing to time-conRiques, such as an analysis of variance (ANOVA) or a SPC con-
suming or destructive data collection methods; trol chart, are then performed to detect potential faults. For ex-

, . . __ample, AMD [3] has used the powerful data processing capa-
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Acceptance kinds of group control charts to detect the variation within
WAT "  sampling test each process stream as well as the variation among different
data , First-cut process streams. But their methods are useful only in the case
- diagnosis that each measurement can be easily stratified in terms of its
End-of-line i corresponding stream. As for control charts for measurements

SPC with multiple variation components, total variation is first

—— y decomposed into various components by using ANOVA tech-
Root o | In-depth ) Data trace back nigues and these components are then monitored individually

causes diagnosis and stratification [12]-[15]. With this variance decomposition technique, the

sensitivity of control charts is greatly enhanced.
Fig. 1. Sequential detection and diagnosis approach for end-of-line quality

control.
C. SHEWMA Scheme

2) Sequential Detection and Diagnosis Approacthis To fully utilize the WAT data for end-of-line quality control,
approach detects and diagnoses the process abnormalitieli; paper adopts the “sequential detection and diagnosis”
a sequential manner. As shown in Fig. 1, quality of the ipproach. With this approach, fewer control charts are needed
coming WAT data is first monitored in the acceptance samplidgf €ach WAT parameter as compared to those needed for
test module and the end-of-line SPC module. If there is de “brute force” SPC application. Furthermore, the data
out-of-spec signal detected in the acceptance sampling fkage-back and stratification tasks are performed only at the
module or out-of-control signal detected in the end-of-line SPtitical process steps during the in-depth diagnosis stage. As a
module, a first-cut diagnosis function is then performed and ptgsult, the root causes can be discovered much more efficiently
tential process steps are identified. Based on the trace-back @iffiout a significant amount of computing power, which is
stratification data at these critical steps, an in-depth diagnosidfortant in a multiple-product fab or a foundry fab. Since the
performed. One current practice of end-of-line SPC is to reviéwPmbined Shewhart-EWMA (CSE) scheme is very effective
the O, values of key WAT parameters every two weeks. If an{P monitor various magnitu_des .of process shifts,. it i§ extended
one of theC,;, values is less than the corresponding thresholdio @ SHEWMA scheme in this paper for application to the
values specified by engineers, a problem may have occur@if-of-line SPC module in Fig. 1. The proposed SHEWMA
and the corresponding control charts must be reviewed to seéGpeme is a methodology for generating robust design pa-
there is any significant trend. The philosophy of this approaé@meters for the simultaneous application of Shewhart and
is to reduce the sequence-disorder and multiple-stream effde@/MA control charts to WAT data. By carefully designing the
by plotting theC,,, data in a larger batch size such as lot datfdarameters of these chartg against different process conditio.ns
of two weeks so that a change in process mean and/or variafgg false alarm rate requirements, the SHEWMA scheme is
could be identified more easily. Another end-of-line SPC pradble to identify the underlying trend from a multiple-streamed
tice is the use of Shewhart control chart combined with varian@8d sequence-disordered data sequence and optimize the trend
decomposition as proposed by Philips Co. [4]. In their schenfi€tection performance. To be more specific, the goals and
the multiple variance components in the end-of-line parametféntributions of this paper include
measurements are first decomposed and then monitored in & characterizing the features of WAT data;
batch-by-batch manner. In both practices, either control limits « identifying the challenges of applying SPC to WAT data;
or batch size are usually determined empirically, which could « designing robust SHEWMA parameters for industrial ap-
degrade the detection performance. There should be a more plications;
rigorous rule for the design of these control parameters under« implementing SHEWMA scheme within a foundry fab;
different process conditions. « integrating the detection function with the diagnosis func-

As for the research work in the general quality control field,  tion;
cumulative sum (CUSUM) control chart [5] and exponen- e validating the effectiveness of SHEWMA scheme using
tially weighted moving average (EWMA) control chart [6] fab data.
are designed for a small shift or drift detection. Lucas and
Saccucci [7] compared the effectiveness of the CUSUM a o :

EWMA control charts and concluded that their performanclzﬂg Organization of this Paper
are close to each other. They also validated that ShewharfThe remainder of this paper is organized as follows. In Sec-
control chart is superior to CUSUM and EWMA control chartsion 1, the WAT generation process is modeled and special chal-
in a large shift detection and suggested to adopt the combirledges for SPC applications are discussed. Based on these re-
Shewhart-CUSUM scheme [8] or combined Shewhart-EWM#$ults, in Section Ill, we describe the SHEWMA scheme for
scheme [7] to monitor various magnitudes of process shifemd-of-line SPC and its detailed design algorithm. Section IV
However, none of them is designed specifically for the fedhen presents the evaluation results of SHEWMA performance.
tures of WAT data. As for the complicating features of WATn Section V, the SHEWMA scheme is validated by fab data.
data—multiple-stream and sequence-disorder effects—only fhee integration of SHEWMA detection function with diagnosis
former has been discussed in the literature. Montgomery [8]inction is also discussed. Conclusions are finally made in Sec-
Nelson [10], and Mortell and Runger [11] developed severabn VI.
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Il. 1SSUES FORSTATISTICAL PROCESSCONTROL AT WAT

Statistical characteristics of WAT measurements are ver °”

complicated because they are taken at the end-of-line stepa o7}
accumulate the effects of various sources of variation in th |
in-line processes. To detect special process disturbances 2 {

WAT data, it is necessary to characterize their generation ar  *7 |

common variations.

A. Variations of WAT Data

0.69

0.68

Consider lots of wafers of the same part type, which are la ¢

beled by an index = 1,---, I according to their sequence of
finishing the WAT step. There aré wafers in each lot and

sites are sampled per-wafer at the WAT step.Xgj, be a WAT  Fig. 2.
measurement taken from siteof the jth wafer in loté, where
k=1,---.K,andj = 1,---,.J. Each WAT measurement can

be partitioned into four independent sources of variations such
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Fig. 3. Wafer effect and site effect within a lot.

five sites. Both the lot-to-lot variation and the within-lot varia-
tion can be clearly observed, and the former is obviously more
significant than the latter. Fig. 3 displays the within-lot data of
five arbitrarily chosen wafers in a lot, where both wafer and
site effects are observed. By applying the VARCOMP proce-
dure of SAS program [16] to the complete data set, it is shown
that the lot-to-lot, wafer-to-wafer, site-to-site, and residual vari-
ations contribute 66.0%, 10.9%, 11.4%, and 11.7% to the total

The four terms on the right hand side of (1) correspond t@riation, respectively. The SPC scheme design in this paper fo-
lot-to-lot, wafer-to-wafer, site-to-site, and residual variationguses on monitoring the WAT lot average sequence.

where

1) lot-to-lot variation typically arises because differentB- Modeling the WAT Data
lots are processed on different machine in fabrication; To simplify the notation, le{ X;} = {X ..} be a random
2) wafer-to-wafer variationresults from the nonunifor- sequence representing wafer lot averages of a WAT measure-
mity of batch processing machines or the nonideahent item, wheré is the lot output sequence index at the WAT
repeat performance of single-wafer processing mstep. Let us now analyze and develop models for the generation
chines; process of a WAT data sequenck; }. Note that the processing
3) site-to-site variatiomesults from the nonuniformity of of a lot may require more than 300 steps and each step may be
each processing machine; processed by any one of a machine group. We defisieeam
4) Residual variatioris generated by the random disturas a sequence of machines that a lot goes through during its fab-
bance on measurements and other unexplained varigation process. There are many possible streams in a fab and
tions such as the variation due to wafer and site intethe resultant WAT measurements among different streams vary
action effect. due to machine-to-machine variation. This is defined agthle
A set of WAT field data from a foundry fab is used to suptiple-stream effecin general, the cycle time from a process step
port our classification, wheré = 50,.J = 24, andK = 5. p to the end-of-line WAT step also varies among lots. As a re-
This set of data was empirically analyzed and judged by processt, the lot with a sequence labelat stepp very likely has a
engineers to be free from abnormal variations. Fig. 2 showsl#ferent lot sequence labght the WAT step. This is defined as
multi-vari plot of a representative subset of the data, wherettge sequence-disorder effect
vertical line connects the largest and smallest observation withinl) Modeling the Multiple-Stream FeaturéVhen the
a wafer, and a horizontal tick represents the wafer mean oygocess is in the in-control situatioX;’s are assumed to be
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In-line data sequence
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TABLE |
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INPUTS TO THESIMULATION EXAMPLE

Sequence-
Disorder Range

Number of
Machines

Magnitude
Of Shift

R=15

M=2

S=1.5

Total Data
Points

Start Point
of Shift

In-Control
Density Function

=50

n =20

| A =NOD

WAT data sequence

Fig. 4. Definition of sequence-disorder grade.

i.i.d. with a probability density function (p.d.ffy = N (i, 0%).
Now consider a model of multiple-stream effect {o¥; } with
a shift in its process mean. Let machinebe one of theM
identical but independent processing machines for gtep
Assume that a special variation occurs at machinat stepp
and it results in a shift of lot averages ¢ ;}. If lot < goes
through machinern at stepp during its fabrication process, the

p.d.f. fo = N(u+ Sow, a%), in which S is the magnitude of
the shift in units o~ Otherwise X ; is in-control and is i.i.d.
with the conditional p.d.f.fy. Assume a uniform probability
that loti goes through one of the machines for process step
i.e., 1/M. Thus, the probability density function df; under
the mutiple-stream effect is

fv = %fs + <1 - %) Jo-

2) Modeling the Sequence-Disorder Featureet n be the
in-line lot sequence label at stepand{Z,,,n = 1,---,1} be
the data sequence that reorders the WAT data sequeXige
according to the in-line sequence at stepefine the sequence-
disorder magnitude of a lot a&; = ¢ — n, wheren is the
sequence label of a lot at steand: is the sequence label of the
same lot at the WAT step (Fig. 4). Then the rang®gbver allé,
denoted a$l, = max{|D;|,¢ = 1,---, I}, is acharacterization
of the sequence-disorder effect from stefp WAT.

When a process is in-control, boflX; } and{Z,,} are statis-
tically the same, i.e{X;} and{Z,} are both i.i.d. with prob-

®3)

ability density functionf,. Assume that a process shift of steg 25

p occurs at machine: starting from then*th lot and that the
probability density function o, is f; forn > n*. Due to the
sequence-disorder effect, the probability that has a shifted
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mean, i.e., lot at the WAT step has an in-line sequence label
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(d)

n > n* at stepp is defined as
a;(n*) =Pri — D; > n™)
and the p.d.f. of eacK’; can then be inferred as

fx, = ai(n®) fu + (1 — ai(n®)) fo.

C. Challenge for Trend Detection

Fig. 5. Simulation to demonstrate the multiple-stream and sequence-disorder
effects. (a) Machine A data sequence. (b) Machine B data sequence. (c) In-line
data sequence. (d) WAT data sequence.

Model parameters are listed in Table | and the in-line sequences
of individual machines are depicted in Fig. 5(a) and (b). It can
be observed that after reordering WAT data of the abnormal ma-
chine A according to its in-line sequence, there is a significant
shift pattern but not for the in-control machine B. Fig. 5(c) il-

To demonstrate the challenge in WAT trend detection, an dustrates the multiple-stream effect by combining the data se-
ample is created using the simulation model of Appendix Auences of the two machines into one. Fig. 5(d) shows the WAT
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Lot No.

16 (#4,05) \Z,Z;)

s WAT data sequence Performance Possible Range of
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s Generati False Alarm Rate (@)

’ Machine A data seq neration \ SHEWMA -/
1
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Lot Ro. Fig. 7. SHEWMA system and environment.

Fig. 6. Changes of mean and variance in the simulation case. . . .
9 9 the SHEWMA scheme is typically completed within a few

. seconds after each lot leaves a WAT tester. If a WAT warning

sequence, where the sequence-d_isor_der effept is ao_lded. It 'Srﬁ’é'ssage is generated, the system will send an e-mail message
sually clear that the trend pattern in Fig. 5(d) is ambiguous aﬂg the engineers in charge. Engineers will then query the

d'm(,:u“ to identify. ) , ) corresponding control charts and perform a first-cut diagnosis.

Fig. 6 demonstrates, by using the simulation example, t@f/ tracing back the data in the EDA system, engineers may
changes n r?ort]h mea;n r?m.j vlarlance of WAT data ﬁ_equzn(_:r Rher correlate the control charts in the SHEWMA system to
contras_t W't. those o t_ € In-line sequence at machine A. in-line data of potential abnormal process steps and conduct
results in Fig. 6 are derived from (5) an in-depth diagnosis

The SHEWMA system itself consists of two subsystems:
on-line monitoring and off-line parameter generation. In the
on-line monitoring subsystem, lot averagek,} are queried
from the WAT database with the outliers of raw data excluded.
Var(X,) = [ai(n*) (1 _ ai(n*)) S2 4 1} o2, () Then the large shift detection module (the Shewhart chart) tests

- M M if the average of a lot is in-control, and the small shift detection

It can be seen that the in-line process shift ramps and then lev8Rdule (the EWMA chart) tests if there is any trend shown
off in the WAT sequence because of the sequence-disorderigf{X;}. Warning messages from these two modules provide
fect. The slope of the ramp off&; } is 5/2M R approximately, information about process shift size. If only the EWMA chart
while E{X;} and Va{X,} finally reach at the steady valuesdetects an abnormal trend, there could be a small process shift.
pi4-(S /Mo and[(1/M)(1—(1/M))S? +1]027’ respectively. When there is a large trend in the EWMA chart and a data point
It means the larger the sequence-disorder range, the smalleraeof Shehwart control limits at the same time, a large process
slope of the ramp. Also, due to the multiple-stream effect, ti§&ift may have occurred.

magnitude of the |eve|ing off part & times smaller while the In the Shewhart Coﬂrol Chal’t, the monitoring statistic is the
variance i§(1/M)(1— (1/M))S? + 1] times larger than that of lot average sequencgX,}. In the EWMA control chart, the

the original shift pattern. It is clear that an in-line trend pattefaWMA sequence is generated by

becomes ambiguous and difficult to detect from the WAT data

=vd A (n* Qi (n*
B{X}y = (1-=E0) i+ 20+ 505) - (0)

and

sequence. A= 2X, +(1-MA; (8)
where0 < A < 1, and the initial valued, is usually set as the
lll. DESIGN OFSHEWMA SCHEME FORWAT DATA process meap. In summary, SHEWMA scheme parameters
Our design aims at following goals: form a triplet(c, A, k), wherec is the Shewhart control limit

1) to accumulate the evidence of any emerging trend YHdth: A is the EWMA weighting factor, and is the EWMA
WAT data sequence and extract the trend pattern: control limit width. Once the SHEWMA parametefs, A, h)

5 .

2) to be sensitive to real process disturbance without i?_r[“_j the long-term performance, 07) are available, control
creasing the false alarm rate; limits are then setas

3) to be easy to implement and robust for various processSnewhart chart:

conditions in a real fab. SCLy =i+ cos

A. Overview of SHEWMA System SCL =p — cox 9)

The SHEWMA scheme has been implemented as a softwarge\wMA chart:
system interfacing with the WAT database and the engineering

data analysis (EDA) system. By monitoring the WAT data of ECLy =p+ hv/A/(2 = Noz
each wafer lot, this system is designed to detect an abnormal ECLp =pu— h/N (2 = Noz (10)

trend and trigger the “sequential detection and diagnosis”
functions (Fig. 1). The architecture and environment of the To optimize the scheme performance, an Off-line Parameter
SHEWMA system is shown in Fig. 7. Data monitoring byGeneration process is required; robust SHEWMA parameters
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are generated based on possible process conditions and the a Q={(R,M.5)}
bound of false alarm rate. Results of these parameters are then ¢ ¢
stored in the Default Table for on-line monitoring function.
There are two modules in this subsystem. The first module,
Performance Metrics Calculation, calculates the mean
and varianceg% of a historical WAT lot average sequence

Optimal Designs for
Individual Process Conditions
e  Feasible parameters calculation

©'= (e, A, h) | ARLO(C, A, By = L

{X;,i=1,2,---,Iy}. In specific, the moving range estimator 2
of [9] is adopted to estimate the vanarm%, o  Optimal selection of parameters under R, M, S
o o . 2,n)= Arg( 1}/[}71';1@. ARL(c,A,h, R, M, S)
.Z\fff.iE|)(i_|_1—)(i|7 i21,2,---,_[0—1 . ” .
L ol ARLU(R,M,S)= ARLI(c", X' ,h" ,R,M,S)
MR = MR;, and
o1 z; i 7
i—
o< ~0.887TMR. (11) Robust Designs
e  Calculation of delay from optimal detection
This estimator is unbiased, is robust with respect to shifts in the AARL(c,A,h,R,M,S) = ARLI(c,2,h,R,M,S)
process mean [13], and can model the machine-to-machine vari- - ARLI"(R,M,S)
ation among lots well. The second module, Robust Parameter e  Calculation of worst case detection delay

Generation, generates the SHEWMA parameters that maximize
the detection speed while keeping the false alarm rate lower than
a required levetv. e Robust selection of parameters

J(c,A,h) = (RAJ{% QAARLl(c,/l,h,R,M, S)

(c,A,h) = Arg (E%l)};lml.](c,/l,h)

B. Robust Parameter Generation

In this paper, the average run lengthR L, serves as a per- $
formance metric of the SHEWMA scheméRL is a random (e, A1)
variable characterizing the average number of observations that
an SPC scheme takes to generate an out-of-control signal aigrs. Dpesign procedure of the SHEWMA scheme.
the occurrence of a process change. In gengrBIL is further
classified intcARL0 andARL1. ARLO represents the average
run length when the process is under normal condition while
ARL1 represents the average run length when an abnormal sittpe gpjective of robust SHEWMA design is to optimize the
uation occurs. The reciprocal af L0 has a meaning of falseé scheme performance for a wide range of possible process con-
alarm rate. One possible way to design the SHEWMA paraions in a real fab. This Section examines if the design is nec-
eters(c, A, ) is to minimize ARL1 for a given set of process ggsary and if the design objective is indeed achieved. First, a
conditions and a specified upper bound of false alarm rate. T{g,yle simulation example is used to highlight the optimal per-
process conditions are denoted as a triplgt}/, 5), wherelis  formance of the SHEWMA scheme in trend identification under
the sequence-disorder range from the monitoredstepVAT  one set of process conditions. Next, a more rigorous sensitivity
step,M is the total number of machines in the monitored Steﬁudy is performed, in whichiRL performance against dif-
p, ands is the potential magnitude of a shift (in the unitf).  ferent scheme parameters and process conditions are presented.
In practice, there may be a wide range of process conditiog|ly, the effectiveness of robust SHEWMA design is demon-
in a real fab and exact process conditighs 1/, 5) cannot be gyated by comparing it with the combined Shewhart-EWMA

knowna priori. For the feasibility of implementation, design Of(CSE) scheme, where the multiple-stream and sequence-dis-
a robust set of SHEWMA parametefg A, h) is desirable SO qer effects are not considered.

that the SHEWMA scheme results in satisfactory performance
over various process conditions. A Simulation Example
The design procedure is summarized in Fig. 8. Design in- P
puts include a set of process conditiofts= {(R, M, S), R € In this simulation example, WAT data sequences are first gen-
R*, M € Z%, S € R*}, and an upper bound of the falseerated as described in Appendix A. Lot averaggsunder an
alarm rate«. Design output is a robust selection of paramen-control condition is assumed to follow a normal distribution
ters, (¢, A, h). There are two parts in the design procedure. Thg(0, 1). Tables | and Il list the process conditions, requirement
first part calculates the feasible parameters with false alarm rafefalse alarm rate and scheme parameters in this simulation
«, from which the optimal parameters are generated by mistudy. The process conditions are the same as those of the ex-
imizing ARL1 under any given process condition triplettia  ample in Section I, where a shift occurs at the 21st data point of
The second part generates a robust design of parameters by tthie-in-line sequence. Under such process conditions and the re-
imizing the worst case detection delay of the SHEWMA schengglirement of false alarm rate of 0.27%, the optimal SHEWMA
over all possible conditions if2. Interested readers may refeparameters aréc, A, k) = (3.25,0.05,2.693). To investigate
to Appendices B and C for more discussions. the effect of weighting factoi, Table Il includes three more

IV. PERFORMANCE EVALUATION
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TABLE I TABLE Il
FALSE ALARM RATE AND SHEWMA PARAMETERS IN THE SEVEN TEST SCENARIOS FORDESIGN AND ANALYSIS
SIMULATION EXAMPLE
Scenario R M S
False Alarm Rate S1 0 3 1
o =0.27%; ARLO =370 S2 25 3 1
SHEWMA Parameters S3 50 3 1
c A h S4 25 1 1
3.25 0.01 2.069 85 25 5 1
3.25 0.05 2.693 S6 25 3 15
3.25 0.35 3.055 S7 25 3 2
3.25 1 3.250
4.5
35
2.5 %‘
g
E 1.5 4
Sos —R=0
§ —R=25
=05 -==-R=50
13 F—"—00s
s |- 2208 06 08 1
a=1 A
-3.5
1.3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 Fig. 10. Sensitivity ofARL1 to weighting factorA under various? values
WAT Lot Sequence: § with A = 3 andS = 1.
Fig. 9. SHEWMA chart of the simulated case in Fig. 5. v
sets of SHEWMA parameters besides the optimal one for com- e
parison.
Fig. 9 depicts simulation results of the four designs, where
all the monitoring data are normalized to have the same control P M=l
. . -~
limits. As can be seen, the EWMA trend generated by the g :I\ﬁ
optimal parameters (the bold solid line) approaches the upper B
control limit the fastest among the four. The optimal SHEWMA
0.6 0.8 i

scheme generates an out-of-control alarm at the 25th lot while
the other three do not detect until the 39th, 40th and 49th lots
respectively. It can also be observed that when the weightipg. 11. sensitivity of4 R L1 to weighting factorA under various\ values
factor is smaller than the optimal value, the EWMA trendith 2 = 25 andS = 1.

pattern is clearer at a price of slower out-of-control detection.

When the weighting factor is higher than the optimal valugespect to the changes of weighting factoand the process
the EWMA trend pattern becomes blurred without getting amyonditions in Table 11l are examined. For all the seven cases, the

A

benefit in the speed of out-of-control detection. Shewhart control limit width: is set to 3.25 while the EWMA
o _ control limit width 72 is determined based onso that the false
B. Sensitivity Analysis alarm ratex is equal to a frequently used level of 0.27%.

ARL performance against different scheme parameters andrig. 10 shows the sensitivity of R L1 with respect to\ under
process conditions is now characterized. A#eL’s are numer- various values of sequence-disorder rafgehe vertical axis
ically derived by using the methods described in Appendix Bepresents the delay from the optimal detection tih&,RL1,

To validate the accuracy of numerically derivadZ’s, Monte Which is defined in (B7) of Appendix B. It can be seen that the
Carlo simulations are conducted. The differencesddtL’s optimal A value(A* = 0.03) stays the same, i.e., the SHEWMA
between the numerical derivation and simulations are mosggrameten is insensitive to the change in sequence-disorder
within the 95 percent confidence intervals, i.e., two times of tH@ngexR.
standard deviations. Relative differences are all within 4%.  Fig. 11 shows that the optimal weighting factodecreases
Consider a range of process conditions in areal fabas as the number of machinéd increases, which means that a
larger window size of moving average is needed to reveal the
Q={(R,M,S0<R<50,1<M<50<5<2} underlying trend under a stronger multiple-stream effect. This
(12) figure also shows that the sensitivity dffL1 with respect to
A increases a8/ increases. Note that X is set to 0.13 by as-
and design seven cases for sensitivity analysis as listedsimingM = 1, i.e., without considering the multiple-stream
Table Ill. The ARL1 performance of SHEWMA scheme witheffect, there may be a detection delay up to 15(dtsiRL1 =
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Fig. 12. Sensitivity ofARL1 to weighting factorA under variousS values

With B = 25 and M = 3. Fig. 13. Relation ofARL1 to M with R = 25 andS = 1.

110

—SHEWMA
TABLE IV 100 r — Direct use of combined Shewhart-EWMA
RoBUST SHEWMA SCHEME VERSUSCOMBINED SHEWHART-EWMA SCHEME 00
Scheme Robust SHEWMA scheme Combined Shewhart-EWMA 5 80
scheme 2

False Alarm Rate  [0.27% 0.27% < 70t

0<RZ50 R =0
Range of Process 1< M<5 M =1 60
Conditions

0<8<2 0<8<2 50 |
l;:ri’;;tsefgeme (e, A7) =(3.25,0.03,2.523) |(c,2,h)=(3.75, 0.19, 2.866) 40 ] » o

Sequence-disorder Range

. . Fig. 14. Relation ofARL1 to R with M = 3 andS = 1.
15) whenM = 5. On the contrary, if the multiple-stream effect g

is taken into account, thevalue based on the robust design will L e
be around 0.03, which yields a maximum detection delay of no 85 I Direct use of combined Shewhart-EWMA
more than 2 lot§AARL1 = 2) for M ranging from 1 to 5.

In Fig. 12, there is a quick decline in optimalas the magi-
tude of shiftS decreases. The sensitivity df .1 with respect =
to X increases rapidly &S decreases. A detection delayupto 10 <
lots(AARL1 = 10) might occur ifX is set to the optimal value

of 0.19 forS = 2 instead of the robust design value of 0.05. 4 |
C. Robust SHEWMA Scheme versus Combined - 1 | Ls | 2
Shewhart-EWMA Scheme Magnitude of Shift (in unit of standard deviation)

The robust SHEWMA sc_heme is_compared with th_e ngg. 15 Relation ofARL1 to S with 2 = 25 and Al = 3.
scheme for demonstrating its effectiveness. Table 1V lists the

false alarm rate, range of process conditions, and the result&g} part type per day. A SHEWMA scheme with the robust pa-
design parameters by these two schemes. rameters(c, A, h) = (3.25,0.03,2.523) will delay the genera-

Results of tthRLl performance_s with respect to thetion of a warning message only by an average.af5 = 0.48
number of machine¢)), sequence-disorder rang&), and ., oven in the worst case. The worst case detection delay for

shift size (S) are illustrated in Figs. 13-15, respectively. oSE scheme may be as long28s3/5 — 4.06 days
can be seen that as the number of machines increases, the ) '

robust SHEWMA scheme is getting superior to the CSE
scheme. However, thd RI.1 performance seems independent
of the sequence-disorder range. As for the magnitude offhe SHEWMA scheme has been implemented in a foundry
shift, the smaller the shift size, the better the performance fép following the schematic diagram of Fig. 7. To facilitate
robust SHEWMA scheme. In summary, if there exists a muprocess integration, the SHEWMA system is further integrated
tiple-stream effect and if the shift size is small, the superiorityith the EDA system, both of which are running on the same
of our SHEWMA scheme over the CSE scheme will be mo®T server. Process integration engineers can easily access the
significant, with at least 10% reduction in detection time. ~ two systems through the Intranet.

Consider the process conditions in (12). The worst case de- .
tection delays,/..»»’s as defined in (B6) of Appendix B, of A Implementation Issues
SHEWMA and the CSE schemes are 2.4 and 20.3 respectivelyThe establishment of a baseline process model from WAT
Suppose that the average throughput of a foundry fab is 5 lotgta follows the standard industrial practice as follows:

V. APPLICATION TO A FOUNDRY FAB
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1) Identify and remove extreme data points by empirical TABLE V
rules. RELATED PROCESSSTEPS OFRC_N+AND Rs_N+
2) _Draw a propa_blhty plot to ch_eck if there_ is any outlier VAT T Related Process Step
in the remaining data and if the data is of a normal Rec N+ N+ S/D Implant, N+ S/D RTA,
distribution. Contact Photo, Contact Etch,
3) Remove all the outliers and calculate the mean and ?/?%fg%f%%?men
; ; P i/Ti s ug,
variance for setting SHEWMA_controI limits. I hermal Process in Metal 1
4) Exclude the out-of-control-limit data and recalculate Rs N+ N+ S/D Implant, N+ S/D RTA,
the SHEWMA control limits until all the data points Thermal Process in Contact & Metal 1

are within the control limits.
. 'Sl'tr;r]e are two salient issues in implementing the SHEWM'ﬁumber of machine&M) and the magnitude of shifis), they
y1) E>.<traction of Process Conditon Range Paramé® - empirically and easily determined,
! . 9 With the use of the mapping table between WAT data and
ters: Based on process physics and by design of the test g . .
. . . rocess steps, the SHEWMA scheme is integrated with an in-
structures, each WAT item is only correlated to certain proce%?

steps. A straight forward adoption of the process conditiéﬁ ligent diagnosis system (IDS) for the purpose of first-cut di-

range parameters of the whole fab as inputs to the robG nosis [17]. When an abnormal WAT symptom is detected by
ge p . pu! . %‘%\EWMA, the deviation of WAT data is then fed into the IDS
parameter generation module may lead to an increase in wors

case delav for fault detection. This is because the procs stem. The IDS system then calculates the fault causing possi-
y ! P %lﬁty of individual process steps. As a result, a list of possible

condition range parameters of the whole fab is an upper bo ulty process steps are generated for further in-depth diagnosis
to the process condition range parameter for a WAT item. To yP P 9 P g '

correctly extract process condition range parameters from fab
data for individual WAT items, it is crucial to precisely identifyB. Case Study

the correlated process steps of each WAT item. . o ) o
A 0.26 um logic device is selected with a focus on monitoring

2) Integration with the Diagnosis Procesdo find out the ; )
root cause after receiving a fault detection warning messa§é'! items of Rs_N+ and Rc_N+, which represents the sheet

from SHEWMA, a direct diagnosis method is to trace the WARNd contact resistance of N+ structure respectively. The two

data sequence back to the processing machines in all the F}Q@_T items are monitored for evaluating concentration and con-

sibly faulty process steps. An efficient diagnosis obviously réct of NMOS drains/sources fabricated on each wafer. Process

quires not only the information about which WAT items are corStePS related to these two WAT items are listed in Table V. The
related to which process steps but also information about h{PC€SS range condition parameters derived from using histor-
they are correlated. The extraction of such a knowledge bdS@! Production data arg = {(R, M, 5)|10 < R < 30,1 <

from empirical data and physical laws is key to the integré\—/[ <3,0<5 <2}

tion between fault detection by SHEWMA and the diagnosis Da_tafrom 120 lots were coIIected.overaperiod of 1.5 months.
process. The first 50 lots are used for baseline process model construc-

on while the last 70 lots are used for on-line monitoring. The

A solution to the two implementation issues exploits a magé | . ) %. The rob
ping table which correlates WAT data and process steps. pe alarmrate is again setto 0.27%. The robust SHEWMA pa-
Ameters are then generated@s\, ) = (3.25, 0.11, 2.9). The

each WAT item, its sequence-disorder range is extracted fr(? dard deviation for th |
the production data of its correlated process steps/Lbe a 'onJ-term mean (standard deviation) for these 50 lots are 66.01

set of process steps correlated to a WAT item under investié8=768) and 69.93 (0.460) for Rc_N+and Rs_N+, respectively.

tion andp € P is the earliest step in the process flow among

all steps inP. Suppose that there afdots processed at stegp C. Trend Detection via SHEWMA

in one day. The arrival day of each lot at WAT step is assumed _

to be within the range (mean arrival day2.p), wherew, is Figs. 16 and 17 illustrate the SHEWMA control charts of the
the standard deviation of the cycle time from step the WAT RCc_N+ and Rs_N+ respectively. Each figure has a Shewhart
step. Thus the difference among the arrival days offtlats at  chart in part (a) and an EWMA chart in part (b).

WAT step is at mostw,, days. The sequence-disorder radge  In the application of SHEWMA scheme to Rc_N+ data, there
of stepp is therefore estimated by are two warning messages generated by the EWMA chart at the

61stand 64th lots, but all the data points are within the Shewhart

control limits. As EWMA is more sensitive to small shift detec-

tion while Shewhart is better in detecting a large deviation, it is
Ry, = dwpT,,, (13) deduced that Rc_N+ data may have a small shift.

In monitoring the Rs_N+ data, SHEWMA generates four
whereZ}, is the throughput at WAT step. The sequence-disordearning messages, one from the Shewhart chart at the 65th lot
rangeR,, is an upper bound to the sequence-disorder rangesaoid the other three from the EWMA chart at the 27th, 37th,
all other steps inP. Similarly, the sequence-disorder range ofnd 64th lots, respectively. Under the same reasoning as the
the last step in the process flow among all stepg’iserves one above, the deviation of Rs_N+ may be conjectured as a
as a lower bound. As for the other two range parameters, #mall shift when the monitoring procedure is around the 27th
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Fig. 16. Robust SHEWMA control charts of Rc_N+. (a) Shewhart chart at (b)

WAT (¢ = 3.25). (b) EWMA chart at WAT(A = 0.11,h = 2.899). _
Fig. 17. Robust SHEWMA control charts of Rs_N+. (a) Shewhart chart at

WAT (e = 3.25). (b) EWMA chart at WAT(A = 0.11, k = 2.899).
to 37th lots and as a large shift when the monitoring procedes

up to the 65th lot. M1 has a significant machine offset from the 29th to 36th lots
_ _ in its in-line lot sequence as compared to the other machines.
D. SHEWMA and Root Cause Diagnosis Also, there is a process shift occurred at M4 starting from the

The warning messages and control charts of SHEWM@Zth lot in its in-line lot sequence. These results validate the
trigger and assist engineers in root cause diagnosis. WHiht-cut diagnosis and the earlier conjectures that there is a
reviewed by engineerS, the EWMA control chart pro\/ide‘@’na” shift (around the 27th and 37th lots in end-of-line WAT
a visual trend pattern of WAT data sequence and facilitatl¥ sequence) and a large shift (after the 64th lots in end-of-line
intuitive estimation of the type and size of WAT data deviatio¥VAT lot sequence) in Rs_N+.

Such a visualization for each WAT item in turn gives indications ]

for root cause diagnosis. For example, the EWMA values 6f EOL SHEWMA Complementary to In-Line SPC

Rs_N+ in Fig. 17(b) have two slight downward trends around Can the fault be identified by using in-line SPC for the
the 27th lot and the 37th lot respectively and a large downwalktk drain/source implant step? The in-line SPC at the N+
trend after the 64th lot. So, it is conjectured that a smalrain/source implant step monitors the sheet resistance, which
process shift results in the two slight downward trends while taken from the test wafer every 12 h. Both Western Electric
another large process shift generates the large trend-dowules (WER) and CSE schemes are adopted as the in-line SPC
In the EWMA chart for Rc_N+ [Fig. 16(b)], there is also aschemes.

small trend-down after the 64th lot but no abnormal symptomsThe CSE charts for machine M4 at N+ drain/source implant
around the 27th lot and the 37th lot. It is therefore reasoned tis&p during the tracking time of the 70 lots under investigation
the faulty process step affects Rs_N+ more than Rc_N+.  are given in Fig. 19(a) and (b). During the period of process

The Rs_N+ data sequence is then traced back to the BhHift, there are 23 lots, from the 48th to the 70th lot in Fig. 18(b),
drain/source implant and RTA steps for in-depth diagnosis. Itjisocessed by machine M4 for the N+ drain/source implant step.
found that N+ drain/source implant step is the root cause. Thétewever, in the same period of time, only four data points, from
are four machines, Mt M4, for this step. In tracing back, the 13th sampling point to the 16th sampling point in Fig. 19,
the lot average sequence of Rs_N+ is stratified by the foof sheet resistance are taken for in-line SPC. It can be seen that,
machines [Fig. 18(a)] and reordered by the ot sequence at thging the in-line sheet resistance data, neither the CSE scheme
step [Fig. 18(b)]. It can be clearly observed from Fig. 18(b) thabr the WER detects the large process shift in machine M4. As
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Fig. 18. Shewhart control charts stratified by processing machines. @} 19. SHEWMA control charts of M4. (a) Shewhart chart for in-line SPC
Shewhart chart at WATe = 3.25). (b) Shewhart chart reordered by |n-I|ne(C = 3). (b) EWMA chart for in-line SPGA = 0.15, h = 2.961).
lot sequencéc = 3.25) .

to reveal the underlying trend, a large window size (a small

for the offset of machine M1, it is more difficult to detect byweighting factor)\) is needed. As a result, a smaller value\of
using in-line SPC because only two data points of sheet resig:07) is adopted in the first of the two new sets. On the other
tance are taken from M1 and the offset of M1 is much less thaand, to enhance the sensitivity of EWMA values to process
the magnitude of process shift in M4. change, a larger value of (0.5) is adopted in the second of

There are two reasons that the in-line SPC does not detectihe two new sets. It is expected that the SHEWMA scheme
process shift and machine offset in this case. First, the in-lipgth the empirically determined parameters will slow down the
measurements may be less sensitive to the process changgedsction of small process shift.
compared to the WAT measurements taken from product waferThe EWMA control charts of Rs_N using these two sets of
Second, the sampling rate in in-line level is much less than thgdrameters are demonstrated in Fig. 20(a) and (b), respectively.
of WAT. End-of-line SHEWMA is thus complementary to thet can be observed that both of them detect the large process shift

in-line SPC for process integration. atthe 64th lot, which is the same as that by the robust SHEWMA
parameters. However, for the small shift resulted by machine
F. Necessity of Robust Design offset, the EWMA chart with a smaller weighting factér=

07 generates a warning message at the 37th lot, which delays

. . 0
Through this case study, SHEWMA has been Va“datetﬁe detection by ten lots as compared to the EWMA chart with

as a useful scheme for end-of-line detection and aSS'StSr”?)ust parameters. In the EWMA chart with a larger weighting

diagnosis in a real fab. To simplify the implementation o . L

actor A = 0.5, no warning message is signaled for the small
SHEWMA system, can the procedure of robust parameteﬁ.

. . : . - ift around the 27th and 37th lots.

generation be omitted? To answer the question, in addition 10
the robust SHEWMA parameters used so far, two additional
sets of SHEWMA parameterée, A, h) = (3.25,0.07,2.789)
and (¢, \,h) = (3.25,0.5,3.052), are designed under the In this paper, an end-of-line quality control scheme based
same false alarm rate requirement= 1/370. The two sets on WAT data is presented. In particular, the design and
are selected to evaluate the selection of weighting fagtor implementation of an end-of-line SPC scheme and its inte-
because it is related to the effective moving window size amplation with diagnosis function is detailed. The end-of-line
is important for revealing out the underlying trend pattern ar8lPC scheme, SHEWMA, considers the multiple-stream and
enhancing the detection speed of SHEWMA. In the one harmbquence-disorder effects of WAT data and generates robust

VI. CONCLUSIONS
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é[ 9.8 fo=N(u,0%, fs = N(u + SoZ,0%), andh = N(0, R?/16).

of lots I, starting sequence label of the shift, and the p.d.f.
fo- All these inputs are defined for step

s U R WYV The in-line data sequende”,,,n = 1,---,1} is first gen-
1 4 7101316192225283134374043 46 49 52 55 58 61 64 67 70 erated with a p.d.ffy for n < n* and with a p.d.f.fa; for
WAT Lot Sequence: 1 n > n*. Then, the sequence-disorder effect is addefi4g}

(b) for generating the WAT data sequer{c€;,i = 1,---,I}. Con-

Fig.20. EWMA control charts with arbitrarily-chosen parameters. (a) EWM,E'Id_er alot at step with a sequence labej'. Let.t" be a random

chart with a small weighting factais = 0.07, h = 2.789395). (b) EWMA  variable anch +,, be WAT step completion time of the lot. By

chart with a large weighting factg = 0.5, 2 = 3.051675). sorting the WAT step completion time sequedeet ¢,,} of all
lots{k + t;,k = 1,---,1} in an ascending order, the WAT se-

design parameters for the simultaneous use of Shewhart apoence label is obtained as

EWMA control charts. .

The SHEWMA scheme has been implemented in a foundry i=Tn{k+ty,k=1,---1})
environment for monitoring the lot-to-lot average performancv(shere£ is an ascending order operator
and integrated with the fab EDA system for root cause diag- 9 op ' . i

. . . : . o To ensure the sequence-disorder range is witRinthe

nosis. Its detection and diagnosis-enhancing capabilities have . .

. . . N random variable,, must fall in((—R/2), (R/2)). Assume that

been validated using both numerical derivations and fab daL[a.iS truncated normal. i.e.. its b.d.f. is
Numerical results show the robust SHEWMA scheme reducés 1€, 115 p.a.l

detection time by at least 10% for small shift detection as com- R/2
(t) = h(t) </

(A2)

pared to the direct use of combined Shewhart-EWMA scheme h(6)do | |tn] £ R/2
without considering the multiple-stream and sequence-dis-

order effects. In addition, in the fab data validation study, the ltn| > R/2

SHEWMA scheme reveals the potential faults that are n%ereh ~ N(0, R2/16). Simulation results show that a WAT
ca_ptgreq in. the in-line step. Its.use s .complementary to tla%ta sequenc{aLXn} generated according to (A2) and (A3) has
existing in-line SPC for process integration. the density function of its sequence-disorder grad@pproxi-
mately N (0,0.576R?). This approximation can be used to cal-
culatea;(n*) in (4).

With the multiple-stream and sequence-disorder models com-
bined, the p.d.f. of; can be related tg, and f, of step p as APPENDIX B

. 1 1 . In view of the fact that in (8), each EWMA valug; is an
fx, = ai(n”) {Mfs + <1 - M) fO} + (1 —ai(n®)) fo- interpolation of its former valued;_; and the present lot av-
(A1) erageX;, the calculations oARL0 and ARL1 are approxi-
mated by modeling the SHEWMA scheme as a Markov chain
A simulation model for generating.X;} based on (A1) is [18]. To be more specific, the transient probability between two
shown in Fig. 21. Inputs include the sequence-disorder ranglarkov states is derived by the p.d.f. of WAT lot average se-
R, number of machinesZ, magnitude of shiffS, total number quence{X,} and the SHEWMA parametefg, A, h). As de-

2 (A3)

APPENDIX A
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rived in (A1), the p.d.f. of{X,} is generated by combiningis then to choose a robust set of parameters, ) that mini-

an in-control p.d.f.f, and an out-of-control p.d.fs with a mize the worst case detection delay over all process conditions
fixed proportion, which is determined by the process conditions €2, i.e.,

(R, M, S). As a result, when a process shift occuddiL1 is a — )

function of both process conditiof&, A/, .S) and SHEWMA (€A ) = arg e inhl)n@ Jean (B8)
parameterge, A, h). However, when a process is in-control, the o

p.d.f. of {X;} is exactlyf,. Therefore ARLO is only a function

of SHEWMA parameteréc, A, ). APPENDIX C
1) Search Space ReductioBiven a set of: and A, choose
A. Optimal Designs for Individual Process Conditions B’ so thatARLO(c, \, k') = (1/a). The valuek’ is clearly a

Under a given process condition tripleR, A/, S) and the function of c and A and let us denote it &s(c, A). Intuitively,
upper bound of false alarm rate the SHEWMA parameter whenc and are fixed, the tighter the, the smaller the values

design problem is to of ARLO and ARL1. Therefore, for alk > &/
Minimize ARL1(c, \, h, R, M, S) ARLO(c, A\, 1) > ARLO(c, \, W/ (¢, \)) = 1/« (C1)
(e,A\h)
1 and
subject toARLO(¢c, A, h) > —. (B1)
@

ARL1(c, \,h) > ARL1(c, \, K (c, \)). (C2)

Let ¢ be the feasible set of parameters, where To satisfy the requirement of false alarm r&teRL0O > 1/«)

1 and to increase the detection speed (minimizeAd.1) at the
¢ = {(07 A MARLO(¢c, A, h) 2 5} : (B2) same time, the value of parameteshould be exactlyi’(c, ).
Consequently, the search space can be reduced from tkhe set
To minimize overARL1 over ®, the search space can be ret0 a set®’, where
!
duced from the seb to a setd’, where & = {(c, A\, )b = I(c, \)}-

o = {(c,)\,h)|ARLO(c, AR = 1}. (B3) = e A RARLO(e, A ) = 1/at. - (C3)
“ 2) Equation (B4) Solution Procedure:
As a result, given a set of process condit{dh M, 5), the op- P1)Determine the range of search spaceDefine
timal parameters are determined by ARILOgsp(e, A\, h), ARLOg(X\,h) and ARLOg(c) as
the ARLO's of SHEWMA, EWMA and Shewhart
(" N h)rms=arg min  ARLl(c, X\ h, R M,S) schemes respectively. Let’ be a value at which
(e R)cer ©4) ARLOs(¢) = (1/a). As the SHEWMA scheme adopts

the Shewhart and EWMA control charts simultaneously,
its run length is the minimum of the run lengths of
Shewhart and EWMA control charts, i.e.,

ARL1*(R, M, S) = ARL1(c*, X", h", R, M, S).  (BY) ARLOsg(c', A\ h) < ARLOs(d) =1/a.  (C4)

and the corresponding optimal average run length is

Reasoning of the search space reduction and the solution proce- SinceARLOsg(c, A, h) is decreasing whendecreases,
dure for (B4) are briefly summarized in Appendix C.
ARLOsg(c,\,h) < ARLOsp(d,\ h) (C5)

B. Robust Design forall ¢ < ¢. It then follows from (C4) and (C5) that to

The optimal SHEWMA parameters under one set of process  satisfy the requirement of false alarm rét¢RLOsr =
conditions may not be optimal under another set of process con- 1/«), the feasible value of parameteshould be larger
ditions. Define a metric of maximum delay from the optimal than or equal ta’. By definition of EWMA, the search
SHEWMA detection by space of weighting factor i8 € [0, 1]. Thus the search

space in (C3) can be further expressed as
Jean= max AARLI(c,\ h,R,M,S) (B6)
(R,M,S)eQ & ={(c,\,h)|c>,0 < A<, h=HF(c,N)}. (C6)

where P2)Quantatize the searching space/ef)): Closed-form de-
sign of SHEWMA parameters is not available because
AARLI(c, A, h, R, M, S) = ARL1(c, A\, h, R, M, 5) of the problem complexity. Therefore, (B4) is solved by
— ARL1*(R,M,S) (B7) numerical evaluation. The search spaceg ahd A are
first quantatized into{¢’ + 0.05,¢ + 0.1,---,¢,} and
is the delay ofARL1 when using nonoptimal SHEWMA pa- {0.01,0.02,---,1} respectively, where;, is the upper
rameters as compared to using the optimal ones. The goal here bound ofc and is empirically set as + 1.
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P3)Approximate the control limit width’ for each pair of  [15] K.-S. Kim and B.-J. Yum, “Control charts for random and fixed compo-

P4)Search all the quantatized data poinfshe solution to

(07 )\): Although the derivation of a closed-form expres- nents of variation in the case of fixed wafer locations and measurement
. . , . . . positions,”|EEE Trans. Semiconduct. Manufaatol. 12, pp. 214-228,

sion of the functior/(c, A) is formidable, it can be nu- May 1999.

merically approximated by a bisection procedure [19] for[16] SAS Institute Inc., “SAS/STAT User Guide,” SAS Institute Inc., 1994.

various values of and ). [17] R. S. Guo, C. K. Tsai, J. H. Lee, and S. C. Chang, “Intelligent process

diagnosis based on end-of-line electrical test dataProc. Int. Elec-

tronics Manufacturing Technology Sym@ct. 1996, pp. 347-354.

(B4) is solved by searching th&RL1’s over all quanta- [18] M. S. Saccucci and J. M. Lucas, “Average run lengths for exponentially

tized data point$c, A, h’(c, )\)) If the approximated op- weighted moving average control schemes using the Markov chain ap-

. I val f dd d proach,”J. Qual. Techno).vol. 22, pp. 154-162, Apr. 1990.
timal value ofc occurs on or neaf,, add one ta, an [19] R.L.BurdenandJ.D. FaireNumerical Analysis Boston, MA: PWS-

repeat the procedures P2—P4. Although such a brute force  Kent, 1989.
search approach takes a lot of time, it only needs to be im-

plemented one time and all the searched data points can

be used for robustness analysis in Appendix B.B. Chih-Min Fan (S'98) received the B.S. degree
in control engineering from National Chiao Tung
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