Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Organizations
  • Researchers
  • Research Outputs
  • Explore by
    • Organizations
    • Researchers
    • Research Outputs
  • Academic & Publications
  • Sign in
  • 中文
  • English
  1. NTU Scholars
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: https://scholars.lib.ntu.edu.tw/handle/123456789/611227
DC FieldValueLanguage
dc.contributor.authorAN-YEU(ANDY) WUzz
dc.creatorHsu K.-C.; Cho B.-H.; Chou C.-Y.; Wu A.-Y.A.-
dc.date.accessioned2022-05-19T07:46:38Z-
dc.date.available2022-05-19T07:46:38Z-
dc.date.issued2019-
dc.identifier.isbn9.78173E+12-
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85063074656&doi=10.1109%2fGlobalSIP.2018.8646402&partnerID=40&md5=c6eef5b4cb94635595abc3df51248e50-
dc.identifier.urihttps://scholars.lib.ntu.edu.tw/handle/123456789/611227-
dc.description.abstractTo achieve real-time electrocardiography (ECG) telemonitoring, one of the major obstacles to overcome is the scarce bandwidth. Compressed sensing (CS) has emerged as a promising technique to greatly compress the ECG signal with little computation. Furthermore, with edge-classification, the data rate can be reduced by transmitting abnormal ECG signals only. However, there are three main limitations: limited amount of labeled ECG data, tight battery constraint of edge devices and low response time requirement. Task-driven dictionary learning (TDDL) appears as an appropriate classifier to render low complexity and high generalization. Combining CS with TDDL directly (CA-N) will degrade classification and require higher complexity model. In this paper, we propose an eigenspace-aided compressed analysis (CA-E) integrating principal component analysis (PCA), CS and TDDL, sustaining not only light complexity but high performance under exiguous labeled ECG dataset. Simulation results show that CA-E reduces about 67% parameters, 76% training time, 87% inference time and has a smaller accuracy variance to the CA-N counterpart. © 2018 IEEE.-
dc.languageen_US-
dc.relation.ispartof2018 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2018 - Proceedings-
dc.subjectCompressed Analysis; Compressed sensing; Real-Time ECG Telemonitoring; Task-Driven Dictionary Learning-
dc.subject.otherCompressed sensing; Electrocardiography; Principal component analysis; Complexity modeling; Compressed Analysis; Compressive sensing; Dictionary learning; Edge classification; Tele-monitoring; Time requirements; Training time; Biomedical signal processing-
dc.titleLow-complexity compressed analysis in eigenspace with limited labeled data for real-time electrocardiography telemonitoringen_US
dc.typeconference paper-
dc.identifier.doi10.1109/GlobalSIP.2018.8646402-
dc.identifier.scopus2-s2.0-85063074656-
dc.relation.pages459-463-
item.openairetypeconference paper-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextno fulltext-
crisitem.author.deptElectrical Engineering-
crisitem.author.deptElectronics Engineering-
crisitem.author.deptIntel-NTU Connected Context Computing Center-
crisitem.author.deptCenter for Artificial Intelligence and Advanced Robotics-
crisitem.author.orcid0000-0003-4731-8633-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgCollege of Electrical Engineering and Computer Science-
crisitem.author.parentorgResearch Center-
crisitem.author.parentorgInternational Research Centers-
crisitem.author.parentorgResearch Center-
Appears in Collections:電機工程學系
Show simple item record

SCOPUSTM   
Citations

1
checked on Aug 4, 2022

Page view(s)

15
checked on Jul 18, 2022

Google ScholarTM

Check

Altmetric

Altmetric

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Sherpa Romeo網站查詢,以確認出版單位之版權政策。
    Please use Sherpa Romeo to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback