Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Organizations
  • Researchers
  • Research Outputs
  • Explore by
    • Organizations
    • Researchers
    • Research Outputs
  • Academic & Publications
  • Sign in
  • 中文
  • English
  1. NTU Scholars
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
Please use this identifier to cite or link to this item: https://scholars.lib.ntu.edu.tw/handle/123456789/86303
Title: 超微粒水泥漿體滲透灌漿於砂性粉土層之可灌性研究
A Study on the Groutability of Permeation Groutingith Microfine Cement Grout to Sandy Silt Soils
Authors: 黃聖修
Huang, Sheng-Hsiu
Keywords: 倒傳遞類神經網路;可灌性;超微粒水泥;滲透灌漿;backpropagation neural network (BPN);groutability;microfine cement;permeation grouting
Issue Date: 2009
Abstract: 
本研究藉由所收集之240筆現地資料,以傳統相對粒徑比可灌性推估公式,與倒傳遞類神經網路,進行可灌性之預測分析。傳統推估公式之預測準確率為45%至68%,明顯可看出其對於超微粒水泥滲透灌漿於砂性粉土層無法有效預測。而類神經網路以七個影響可灌性之因子,即土壤粒徑(d10)、土壤粒徑(d15)、孔隙比(e)、細粒料含量(FC)、土壤均勻係數(Cu)、土壤級配係數(Cz)與水灰比(W/C),作為類神經網路輸入層之神經元,建構一適合台灣地區高細粒料含量之砂性粉土層超微粒水泥滲透灌漿可灌性的網路預測模式。依據本研究之分析結果顯示,以土壤粒徑(d15)、孔隙比(e)、細粒料含量(FC)、土壤均勻係數(Cu)、土壤級配係數(Cz)與水灰比(W/C)作為輸入層之神經元,可得到較佳的預測能力,其準確率為96%。 此外,本研究亦進行室內滲透灌漿試驗,採用與現地資料相同之水灰比(3.34、4.0及4.65)、水泥之爐石含量50%及不同細粒料含量(0%、10%、20%、30%及40%)之砂柱試體,用以針對網路模式進行驗證。以滲透灌漿試驗之結果,進行倒傳遞類神經網路預測模式的驗證,其可灌性預測準確率可達87%。 由本研究之可灌性預測模式及結果分析,前人所提出之相對粒徑比推估公式,對於超微粒水泥滲透灌漿於砂性粉土層之可灌性,明顯無法有效的推估。而應用倒傳遞類神經網路來建構可灌性預測模式,為相當可行之方法,顯示類神經網路在解決此類問題上有相當良好的功效。

In this study, 240 sets of field data were collected and analyzed to evaluate the groutability by using two methods, namely the conventional formula with relative particle size ratio and the backpropagation neural network(BPN). The accuracy of the conventional formula method ranged from 45% to 68%, i.e., this method can not be successfully used to predict the groutability. Seven factors affecting the groutability were used in the BPN methods;they are: the effective soil particle size (d10), the soil particle size(d15), void ratio(e), fines content(FC), uniformity coefficient(Cu), coefficient of gradation(Cz) and the water-to-cement ratio(W/C). These factors used as the neuron of the neural network input layer to establish a suitable network model which may be used to predict the groutability of permeation grouting with microfine cement grout to the sandy silt soils with high content of fines in Taiwan. From the obtained results, it can be found that while the soil particle size(d15), void ratio(e), fines content(FC), uniformity coefficient(Cu), coefficient of gradation(Cz) and the water-to-cement ratio(W/C) were used as the neuron of the input layer, the BPN method showed a better forecast ability with an accuracy as high as 96%. Aside from these, in this study, the permeation grouting experiments were also conducted in the laboratory. The water-to-cement ratio were controlled to be 3.34, 4.0 and 4.65, which were the same as the value used in the field. The slag content of the microfine cement is 50% and five different contents of fines, namely, 0%, 10%, 20%, 30% and 40%, were used. Using the data obtained from the permeation grouting experiments, the BPN forecasting model were verified and its accuracy reached 87%. According to the results of this study, the conventional formula method could not be successfully used to predict the groutability of the permeation grouting with microfine cement grout to sandy silt soils. However, while dealing with these problems, the BPN model showed its superiority and practicality.
URI: http://ntur.lib.ntu.edu.tw//handle/246246/181176
Appears in Collections:生物環境系統工程學系

Files in This Item:
File Description SizeFormat
ntu-98-R96622026-1.pdf23.53 kBAdobe PDFView/Open
Show full item record

Page view(s) 20

52
checked on Dec 7, 2022

Download(s) 5

24
checked on Dec 7, 2022

Google ScholarTM

Check

Related Items in TAIR


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Sherpa Romeo網站查詢,以確認出版單位之版權政策。
    Please use Sherpa Romeo to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback