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ABSTRACT

This research concerns two fundamental problems in distributed computing--—
mutual exclusion and object tracking. The mutual exclusion problem has a longer
history and is more extensively studied, while object tracking is a key problem in the
management of mobile objects which has attracted much attention recently. For a
variant of the mutual exclusion problem where the network topology is taken into
account, all existing distributed solutions use the idea of a unique token. It tumns out
that these token-based solutions for mutual exclusion can also be adapted for object
tracking, as the token behaves very much like a mobile object does.

We present a comparative survey of existing token-based mutual exclusion
algorithms contrasting their basic ideas. To handle objects with replications, we go
on to consider the more general &-exclusion problem which seems not to have been
studied in a network setting. We propose two solutions for the &-exclusion problem
and show how they can be adapted for tracking replicated mobile objects.

Keywords: Directory Service, Distributed Algorithms, Fault Tolerance, Mobile
Objects, Mutual Exclusion, Network Protocols, Object Tracking, Replicated Objects,
Routing Protocols.
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Abstract

This research concerns two fundamental problems in distributed computing—mutual ex-
clusion and object tracking. The mutual exclusion problem has a longer history and is more
extensively studied, while object tracking is a key problem in the management of mobile
objects which has attracted much attention recently. For a variant of the mutual exclusion
problem where the network topology is taken into account, all existing distributed solutions
use the idea of a unique token. It turns out that these token-based solutions for mutual
exclusion can also be adapted for object tracking, as the token behaves very much like a
mobile object does.

We present a comparative survey of existing token-based mutual exclusion algorithms
contrasting their basic ideas. To handle objects with replications, we go on to consider the
more general k-exclusion problem which seems not to have been studied in a network setting.
We propose two solutions for the k-exclusion problem and show how they can be adapted
for tracking replicated mobile objects.

Keywords: Directory Service, Distributed Algorithms, Fault Tolera.ﬁce, Mobile Objects, Mu-
tual Exclusion, Network Protocols, Object Tracking, Replicated Objects, Routing Protocols.

1 Introduction

A distributed system stores and manages various shared resources so that they can be conve-
niently accessed by users of the system. We refer to an instance of any of these resources as
an object. The mutual exclusion problem is fundamental in such a system, as a shared object
typically may be accessed by one user at a time to ensure consistency. Locating an object so
as to deliver messages (such as operation requests) intended for the object is also fundamental;
the problem becomes more complicated when objects may move. We first outline the problem
setting and explain the similarity between the two problems. We then highlight the main results
of this report along with related work,



Networks of Processes

As a general model of typical distributed systems we consider networks of processes whose
topology is given by an undirected graph, where the nodes represent the processes and the edges
represent the communication links. A communication cost is associated with each link. Two
neighboring processes (that are connected by a communication link) may communicate with
each other by exchanging messages directly over the link that connects the two processes. A
message from one process to another non-neighboring process will have to be routed through

other processes.

Mutual Exclusion

Under the network model, the privilege to exclusively access a shared object, or enter the critical
section (in the terminology of the mutual exclusion problem), is typically materialized by the
possession of a unique token. The token is initially held by one of the processes. To obtain the
privilege, a process sends out a request that is relayed to the the token holder. An algorithm
for the mutual exclusion problem essentially needs to address (1) how a request is forwarded to
the token holder and (2) how processes change their states, while the token is being transfered

to the requesting process, to reflect the new location of the token.

Mutua! exclusion in a network of processes is very different from that in a shared memory
system. Algorithms that assume a uniform cost of communication between pairs of processes
are unlikely to be efficient for a network of processes.

Object Tracking

The task of locating an object in a distributed system is usually performed by a directory service
or name service of the system [CDK94]. The relevant directory service may be centralized at a
particular server or distributed across a number of servers or even the entire system. Disregarding
these variations, certain distributed data structure has to be maintained to keep track of the
objects so that a request can be routed to the intended object. Forwarding a request to the
node where a particular mobile object resides is very similar to forwarding a request to the token
holder in a mutual exclusion algorithm. The distributed data structure of a mutual exclusion
algorithm intuitively can be adapted as the distributed directory for tracking a mobile object.

Most existing systems that support mobile objects (such as a cellular network) use home-based
tracking strategies. In a home-based directory, every object has a fixed home and all messages
for an object for at least the first of messages in the same session) must be routed through
its home. When an object moves, it reports its new location to its home which updates the
couting table accordingly. This type of protocols is vulnerable to node or link failures. An
object becomes inaccessible when its home fails or communications to its home are blocked.



Replicating the home is one possible solution. However, stationary replicated homes may not
respond efficiently to a dynamically changing network.

Main Results

‘We present a comparative survey of existing token-based mutual exclusion algorithms contrasting
their basic ideas. To handle objects with replications, we go on to consider the more general k-
exclusion problem where at most & processes are allowed in the critical section at any time. The
k-exclusion problem was first defined by Fischer [FLBB79]. A number of algorithms have been
suggested [ADGS94, AM94, AV99], all designed for shared-variable systems. To the best of our
knowledge, the problem has not been studied in a network setting. Based on the idea of a token-
based mutual exclusion algorithm, we derive two k-exclusion algorithms for the network model.
We then show how these algorithms can be adapted for tracking replicated maobile objects.

Related Work

Van de Snepscheut [VdS87] was probably the first to give solutions to the mutual exclusion
problem in a generef network of processes, extending the earlier work for rings by Martin [Mar85).
He first assumed that the network is a tree and then extended the solution to one for a general
network. His idea was to orient the edges so that they point to the process with the token;
when the token moves, the directions of the edges are updated accordingly. Raymond [Ray89]
later presented an algorithm based on a spanning tree of the network. The algorithm is identical
to the restricted solution of Van de Snepscheut. However, he gave a more detailed analysis of
the average case message complexity, which is O(log N}, and showed how node failures may be
handled.

Naimi et al. [NTA96] presented yet another tree-based solution. Unlike the previous algorithms,
the edge set of the tree maintained by their algorithm changes over time. They assumed that
the network topology is a complete graph and were also able to derive an average case message
complexity of O(log ¥). Demmer and Herlihy [DH98] proposed the so-called arrow distributed
directory protocol for keeping track of mobile objects in a distributed system. The algorithmic
technique is essentially a combination of those of Van de Snepscheut and Naimi et al.

Mullender and Vitanyi [MV88] formalized the general problem of distributed match-making,
They showed that mutual exclusion and object tracking {or name service, in their terminology)
can be formulated as special instances of the distributed match-making problem. However, the
formulations seem to be biased toward particular types of algorithms. Peleg [Pel93] defined the
concept of distance-dependent directories and presented efficient constructions of such directories
that may be used to implement a name service. Awerbuch and Peleg [AP95] designed directory
services that are organized as a hierarchy of subdirectories. They showed that the communication
overhead of their tracking mechanism is close to optimal. Plaxton et al [PRR97] presented a
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randomized algorithm for accessing shared objects that tends to satisfy each access request with
a nearby copy. They also considered dynamic changes in both the network and the set of object

" copies.

2 Token-Based Algorithms for Mutual Exclusion

We surveyed four token-based mutual exclusion algorithms, namely Van de Snepscheut [VdS87),
Raymond [Ray89], Naimi et ol. [NTA96], and Demmer and Herlihy [DH98]. The four algorithms
are similar in that they all maintain distributed tree-like structures {plus some auxiliary struc-
tures) that guide the routing of a request to the token hoider or an eventual token holder. Van
de Snepscheut went further to extend the idea to using more general directed acyclic graphs;
however, he did not pursue the fault-tolerance potential of the extended algorithm.

Van de Snepscheut and Raymond

Raymond’s algorithm and the tree-version of Van de Snepscheut’s algorithm are in fact identical.
The algorithms start with a spanning tree of the network whose root is the node holding the
unique token. A node wishing to enter the critical section must first acquire the token. As the
token travels around the tree, the root changes its location accordingly.

It is convenient to think of each tree edge as being oriented such that the edge points from
the child to the parent. Every node thus has exactly one directed path pointing to the root.
When a node wants to enter the critical section, it sends a request along the first edge of the
unique directed path. The request is routed along the unique path to the root (every node in
the path participates in relaying the request). When the request eventually arrives, the root
can simply send the token along the path that the request has traveled (in the reverse order).
The direction of an edge is reversed when the token passes through it and arrives at the aother
end (in accordance with the view that every tree edge points from the child to the parent). The
more elaborate part is in the handling of simultaneous requests,

After sending out a request (either as an originator or a leg in relay}, a node may subsequently
receive some other requests from its other children. Any of these subsequent requests will be
put in a local queue of the node. When the token arrives in response to the outstanding request,
the node enters the critical section if it was the originator of the request. Otherwise, the node
passes the token via the edge from which the outstanding request was recejved and, if there is
any request in the local queue, the node removes the first from the queue and sends it over the
same edge (which now points to the root, where the token is}.



More about Van de Snepscheut

In his original paper, Van de Snepscheut actually did not talk of spanning trees. He first
considered tree-shaped networks and devised the previously described mechanism of routing
requests and the token and he then extended the idea to general networks. His final algorithm
orients the edges of the network such that the network becomes a directed acyclic graph. The
token holder is the single sink of the directed acyclic graph. Unlike in the tree case, a node
now may have more than one directed path pointing to the token holder. The routing scheme
is modified as follows.

When a node wants to enter the critical section, it sends a request along the first edge of one of
the directed paths to the token holder. The next node in the path will either relay the request
along one of its outgoing edges or put the request in the local gueue. As before, the token is
routed in the reverse order along the path that the request has traveled. The direction of each
edge incident to a node is updated to point to the node, when it receives a token; this maintains
acyclicity and also ensures that the token holder is the only sink of the entire graph.

Naimi et al.

Naimi et al.’s algorithm also uses 2 tree structure, but their tree is for routing requests only and
is more dynamic with a changing set of edges. An additional distributed queue tells the token
holder and subsequent holders which node is the next in line waiting for the token. The root
of the tree is not intended to be the token holder, but rather the node at the tail of the queue,
where some other process may be added. In other words, the tree provides routing information
far a process to join the distributed waiting queue. They assume that the network is a complete
graph. Initially, the tree is a star-shaped one with the token holder as the root and the parent
of every other node (any spanning tree would do); the token haolder is also the only node, the
head, and the tai] of the queue.

When a node wants to enter the critical section, it sends a request to its parent. It then regards
itself as the new root (by nullifying the pointer to parent) expecting that, once its request is
received by the current root, it will be added to the queue and become the new tail. Other
nodes on the directed path to the current root, upon receiving the request, make the requester
their new parent. As the request travels to its destination, tree edges are removed and added
and the tree is temporarily split into two smaller trees (which are also dynamic). Finally, the
current 1oot inserts the requester behind itself in the queue (by setting a local pointer to the
requester} and also make the requester its new parent, turning itself into a non-root node and
thus merging the two smaller trees back into one. The head of queue, after holding the token
for a finite amount of time, will pass out the token to the next node and remove itself fiom the
queue. Every node in the queue eventually will get the ioken.



More than one processes may be trying to enter the critical section. Though the overall changes
to the tree and the queue may be more complicated, processes behave just as described above. A
new root may receive some other request even before it is actvally added to the queue; it handles
the request just as the current root would do. The isolated segment of queue gets hooked to the
distributed queue when the new root is eventually inserted. A root (in each of its incarnations)
allows just one process to be added behind it in the queue. Once such an addition occurs, the
root has got a new parent, i.e., the requester; a second request will be forwarded to its new
parent (which may receive yet another request at an earlier time and will have to forward the

second request to the earlier requester).

The assumption of a complete communication network makes jt possible for a node to switch
its parent to any other node and hence for the tree to change so dynamically. Practically, this
assumption boils down to working in a general network with an underlying routing service. The
“physical link” between each pair of nodes corresponds to the “logical link” (realized by the
routing service) between the pair in the general network. Demmer and Herlihy, to be introduced
next, also assumes an underlying routing service.

Demmer and Herlihy

Demmer and Herlihy’s algorithm closely resembles that of Naimi et al. However, their tree has a
fixed set of edges which is more like the tree in Van de Snepscheut’s and Raymond'’s algorithms,
They also use a distributed queue for lining up the processes waiting for the token which is
identical to that of Naimi ef al; the tree tells where the tail of queue is. An underlying routing
service is assumed for transmitting the token; as we pointed out earlier, the routing service
provides a logical complete communication network that Naimi ez al. assumed.

Their algorithm starts with a spanning tree of the network whose root is the node holding the
unique token. Changes to the orientation of the edges occur while requests are processed. When
a node wants to enter the critical section, it sends a request to its parent and then regards itself
as the new root. The algorithm differs from Naimi et of.’s in how a node changes its parent. Each
of the intermediate nodes on the directed path to the current root, after forwarding the request
to the next node, makes the precedent node its new parent (the direction of the corresponding
edge is reversed). Finally, the current root inserts the requester behind itself in the queue and
also makes the precedent node its new parent. When this is done, the direction of the path that
the request has traveled is reversed, pointing to the new root.

More than one processes may be trying to enter the critical section. But again, like in Naimi et
al’s algorithm, although the overall changes to the tree and the queue may be more complicated,
processes behave just as described above. '



3 Algorithms for k-Exclusion

We now consider the k-exclusion problem. Based on the idea of Van de Snepscheut’s mutual
exclusion algorithm, we derive two k-exclusion algorithms.

3.1 Algorithm 1

Algorithm 1 is essentially a generalization of the tree version of Van de Snepscheut’s algorithm.
The basic ideas are as follows. Initially, the & tokens are distributed arbitrarily among the nodes
of the network. Each node records the number of tokens it holds and, for each tree edge, it
also records the number of tokens held by the nodes on the subtree that the edge leads to. Ifa
node wants to enter the critical section and does not have a free token, it sends a request along
a tree edge with the highest (and nonzera) number of “free” tokens. A receiving node of the
request that is without a free token passes the request also along a tree edge with the highest
number of free tokens. The request eventually will reach either a node with a free token or a
node where further forwarding will be fruitless. In the first case, the token backtracks the path
that the request has traveled. In the second case, the request is put into the local queue of the
last receiving node and will be forwarded when it emerges Lo the head of queue and there is a

tree edge with nonzero free tokens.

To identify an edge with the highest number of “free” tokens, each node maintains two variables
te and r. for each incident edge e. The variable f. indicates “the number of tokens in the subtree
that e leads to”, while r, indicates “the number of outstanding requests sent along edge e”. The
number ¢, — r, is then the number of “free” tokens on the subtree that e leads to.

It is interesting to note that Algorithm 1 degenerates into the mutual exclusion algorithm of
Van de Snepscheut when & equals 1.

3.2 Algorithm 2

Algorithms that utilize a spanning tree of the network have a fow drawbacks. Whenever a com-
munication link that is a tree edge fails, the network is partitioned. Tokens cannot be exchanged
between two partitions until the failed link recovers. Moreover, as messages are always routed
through the tree edges, some links may become communication bottlenecks. To strengthen tol-
erance toward link failures and to reduce chance of bottlenecks, we propose a second k-exclusion
algorithm that maintains a directed acyclic graph (DAG) instead of a spanning tree, again
- inspired by the work of Van de Snepscheut.

Algorithm 2 works as follows. Initially, a primary token is assigned to one of the processes in
the network. The algorithm maintains a directed acyclic graph of the network such that all
edges are directed toward the primary token. Every request is routed along the directed edges



until it reaches the primary token holder; any path may be chosen if there exist more than one
paths to the primary token. If the primary token is not in use, it is sent to the requester; the
direction of the edges change accordingly as the token moves. Otherwise, the primary token
holder generates a secondary token and sends it to the requester; the movement of a secondary
token does not change the direction of an edge. A counter in the primary token records the
number of secondary tokens currently in the system so as to guarantee that there are at most
k — 1 of them at a time. Any process holding either the primary token or a secondary token

may enter the critical section.

We next describe what should be done to a token when a process leaves the critical section. If
the token is primary and the queue of requests is not empty, the process sends it to the first
requester in the queue and forwards all other requests in the queue to the new token holder. If
it is secondary, the process sends it to the primary token holder, which will destroy the token

and increment the secondary token count.

It is not necessary for a request to be always routed to the primary token. The request may be
intercepted by a node that has relayed a secondary token on one of its incoming edges. When
the secondary token is returned and arrives at this node, the token can be sent directly to
the originator of the intercepted request (without being returned to the primary token holder).
Intercepting a request reduces the number of exchanged messages, but may increase the response
time (depending how quickly the secondary token is released by its holder).

4 Adaptations for Object Tracking

There are many possibilities regarding what a process wants from an object. However, our main
concern is for a process to find the whereabout of a mobile object. We assume that a requesting
process always wants the object to be moved to its own site and then performs a read or write
operation on it. Any object tracking solution needs to meet the following requirements.

o (Safety) There is at most one (legal) copy of the object in the system at any time.

¢ {Liveness) A requesting process will eventually acquire the object.

With the object replaced by a token, the above two requirements become those for a token-
based solution to mutual exclusion. The distributed data structure of a token-based algorithm
can therefore be adapted as the distributed directory for tracking a mobile object.

An object may sometimes be replicated to enhance availability. We assume that some other
mechanism controls the replication of an object and is not part of the object tracking problem;
however, the number of copies never exceeds a predefined bound k. The requirements for tracking

replicated objects are as follows:
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o (Safety) There are at most & (legal) copies of the object in the system at any time.

¢ (Liveness) A requesting process will eventually acquire a particular copy of the object that
it requested. (This does not rule out the possibility that a process may want just any copy
of the object for making a read operation.)

Demmer and Herlihy have outlined a solution for tracking replicated objects in [DH98]. They
assumed that one copy of the object is designated as the primary copy. A process wishing
to write the object must first acquire the primary copy and then “invalidate” the rest & — 1
secondary copies { without actually moving them). They tackled the object tracking problem
directly rather than adapting exiting solutions to exclusion problems. However, their solution is
essentially a combination of a mutual exclusion algorithm and a (k — 1}-exclusion algorithm. The
mutual exclusion algorithm is used for acquiring the primary copy, while the (k — 1)-exclusion
algorithm is for acquiring or invalidating a secondary copy. Algorithm 1 may play the role of
(k — 1)-exclusion algorithm in Demmer and Herlihy’s solution.

Another solution can be obtained by adapting Algorithm 2. When a node wishes to write the
object, it sends a special request to ask for the primary token. The special request can only
be satisfied by the primary token. After getting the primary token, it waits until all secondary
tokens (there are k — 1 or less out there) are returned. The option of intercepting a request, as
discussed earlier, will have to be removed though.

5 Concluding Remarks

Operations on an object can be more sophisticated than what we have considered. For example,
copies of a mobile object may be created or destroyed dynamically. To what extent solutions to
exclusion problems can be applied to object tracking deserve further study.

Algorithms that use a spanning tree are vulnerable to link or node failures. These include the
mutual exclusion algorithms we reviewed and Algorithm 1 for k-exclusion. Van de Snepscheut’s
algorithm and Algorithm 2 have better fault-tolerance, as they utilize a directed acyclic graph.
The algorithms still work even if some links fail as long as the failures do not lose the token or
disconnect the network. However, both algorithms lack a mechanism for handling link recoveries.
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