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The video content management has attracted increasing attention in recent years. 

We have proposed a new spatio-temporal knowledge structure, called 3D C-string, to 
represent the spatio-temporal relations between the objects in a video and to keep track 
of the motions and size changes of the objects. In this paper, we propose a video algebra 
to infer the spatio-temporal relations between the objects in a video represented by the 
3D C-string. The algebra contains four kinds of rules, namely, transitive, distributive, 
manipulation, and integration rules. By using those rules, all the binary relations between 
the objects in a video can be derived from a given 3D C-string. The algebra provides the 
theoretic basis for spatio-temporal reasoning and video query inference. 
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1. INTRODUCTION 
 

With the advances in information technology, the amount of multimedia data cap-
tured, produced and stored is increasing rapidly, and hence, the need for organizing this 
data and accessing it from a vast amount of repositories has attracted much attention in 
recent years. Over the last decade, many image/video indexing and retrieval methods 
have been proposed. Bimbo et al. [1] developed a prototype system of image sequence 
retrieval, where video frames were processed and simple events were represented by spa-
tial-temporal logic (STL). Chang et al. [2] proposed a model called VideoQ to analyze 
objects’ motions in a video and provide an efficient and effective content-based retrieval 
mechanism. Naphade et al. [3] proposed a model to map low-level features to high-level 
semantics and to enforce spatio-temporal constraints in a factor graph framework. Ngo et 
al. [4] proposed a motion computation method based on a structure tensor formulation to 
encode visual patterns of spatio-temporal slices in a tensor histogram and to describe the 
motion trajectories of moving objects. VideoQA [5] allowed users to use short natural 
language questions with implicit constraints on contents to retrieve short precise news 
video summaries. Lo et al. [6] presented a framework for retrieving video sequences us-
ing successive modular operations on temporal similarity. Snoek et al. [7] developed the 
TIME framework to classify the semantic events in multimodal video documents. 
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In image database management systems, one of the most important methods for re-
trieving the images is using the perception of objects and the spatial relations between 
the objects in the desired videos. To represent the spatial relations between the objects in 
an image, Chang et al. [8] proposed the concept of the 2D string in which the objects are 
projected onto the x- and y-axes to form two strings representing the relative positions of 
the projections in the x- and y-axes, respectively. This approach provides a natural way to 
construct iconic indexes for images and supports spatial reasoning and image queries. 
There are many follow-up approaches based on the concept of the 2D string including 
2D G-string [9, 10], 2D C-string [11-13], 2D C+-string [14], 2D RS-string [15], 2D 
C-Tree [16], unique-ID-based matrix [17], GPN matrix [18], virtual image [19], BP ma-
trix [20], and 2D Z-string [21].    

To represent the spatial and temporal relations between the objects in a symbolic 
video, many iconic indexing approaches, extended from the notion of the 2D string to 
represent the spatial and temporal relations between the objects in a video, have been 
proposed, for example, 2D B-string [22, 23], 2D C-Tree [24], 9DLT strings [25], 3D-list 
[26], and 3D C-string [27].  

In the 3D C-string [27], we extended the concepts of the 2D C+-string and proposed 
3D C-string to represent the spatio-temporal relations between the objects and to record 
their motions and size changes. We also developed the string generation and video re-
construction algorithms for the 3D C-string. The string generated by the string generation 
algorithm is unique for a given video and the video reconstructed from a given 3D 
C-string is unique too. In comparison with the previously proposed approaches [22-26], 
there is one-to-one correspondence between strings and videos in the 3D C-string repre-
sentation. This approach can provide us an easy and efficient way to retrieve, visualize 
and manipulate video objects in video database systems. 

In this paper, we propose a video algebra for reasoning the spatio-temporal relations 
between the objects in a video represented by the 3D C-string. The algebra contains four 
kinds of rules, namely, transitive, distributive, manipulation, and integration rules. By 
using those rules, all the binary relations between the objects in a video can be derived 
from a given 3D C-string. The algebra can provide the theoretic basis for spatio-temporal 
reasoning and video query inference.  

The rest of this paper is organized as follows. In section 2, a brief introduction of 
the 3D C-string approach is presented. The video algebra of reasoning the spatio-tem- 
poral relations between the objects in a video represented by the 3D C-string is discussed 
in section 3. In section 4, an application is presented to show the effectiveness of our 
proposed approach. Finally, concluding remarks are made in section 5. 

2. 3D C-STRING APPROACH 

In the knowledge structure of 3D C-string, we use the projections of objects to rep-
resent the spatial and temporal relations between the objects in a video. The objects in a 
video are projected onto the x-, y-, and time-axes to form three strings representing the 
relations and relative positions of the projections in the x-, y- and time-axes, respectively. 
These three strings are called u-, v- and t-strings. The projections of an object onto the x-, 
y- and time-axes are called x-, y-, and time-projections, respectively. In comparison with 
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the 2D C-string and 2D C+-string, the 3D C-string has one more dimension: time dimen-
sion. So the 3D C-string is different from the 2D C -string and 2D C+-string that has only 
spatial relations between objects, it has spatial and temporal relations. Hence, it is re-
quired to keep track of the information about the motions and size changes of the objects 
in a video in the 3D C-string. 

In the knowledge structure of 3D C-string, there are 13 relations for two one-    
dimensional intervals. For the x (or y) dimension, there are 13 spatial relations and its 
corresponding spatial operators have been presented in 2D C-string [11] as listed in Ta-
ble 1, where BB(P) and EB(P) are the begin-bound (beginning point) and end-bound 
(ending point) of the x- (or y-) projection of object P. For example, in the x and y dimen-
sions, P < Q represents that the projection of object P is before that of object Q. In the 
time dimension, we also use those 7 operators to describe 13 possible relations between 
two time-projections. According to [11], we know that all the 13 operators except “/” can 
precisely (no ambiguity) represent the relations between two objects. To avoid using op-
erator “/”, we replace P / Q with P ] Q | Q in the 3D C-string representation where Q is 
called a cut object in P ] Q | Q. 

Table 1. The definitions of spatial operators in 2D C-string. 

Notations         Conditions 
P < Q  EB(P) < BB(Q) 
P = Q  BB(P) = BB(Q), EB(P) = EB(Q) 
P | Q  EB(P) = BB(Q) 

P % Q  BB(P) < BB(Q), EB(P) > EB(Q) 
P [ Q  BB(P) = BB(Q), EB(P) > EB(Q) 
P ] Q  BB(P) < BB(Q), EB(P) = EB(Q) 
P / Q  BB(P) < BB(Q) < EB(P) < EB(Q) 

In the knowledge structure of 3D C-string, an object is approximated by a minimum 
bounding rectangle (MBR) whose sides are parallel to the x-axis and y-axis. For each 
object, we keep track of its initial location and size. That is, we keep track of the location 
and size of an object in its starting frame. After keeping track of the initial location and 
size of an object, we record the information about its motions and size changes in the 3D 
C-string. 

There is some metric information defined in the 3D C-string, which is listed as fol-
lows. 

 
1. The size of object P: Ps denotes the size of the x- (y-, or time-) projection of object P, 

where s = EBx(P) − BBx(P) (s = EBy(A) − BBy(A), or s = EBtime(P) − BBtime(P)), where 
BBx(P) and EBx(P) are the x coordinates of the begin-bound and end-bound of P’s 
x-projection, respectively. 

2. The distance associated with operator “<”: P <d Q denotes that the distance between 
the x- (y-, or time-) projection of object P and that of object Q is equal to d, where d = 
BBx(Q) − EBx(P) (d = BBy(Q) − EBy(P), or d = BBtime(Q) − EBtime(P)). 

3. The distance associated with operator “%”: P %d Q denotes that the distance between 
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the x- (y-, or time-) projection of object P and that of object Q is equal to d, where d = 
BBx(Q) − BBx(P) (d = BBy(Q) − BBy(P), or d = BBtime(Q) − BBtime(P)).  

4. The velocity and rate of size change associated with motion operators ↑v,r and ↓v,r: 
Operator ↑v,r denotes that the object moves along the positive direction of the x- (or y-) 
axis. Operator ↓v,r denotes that the object moves along the negative direction of the x- 
(or y-) axis. v is the velocity of the motion and r is the rate of size change of an object.  

 
To represent the time intervals when the states of an object are changed, we intro-

duce one more temporal operator |t in the 3D C-string. For example, P3 |t P5 denotes that 
in the first 3 frames, object P remains in the same state of the motion and size change. 
However, from frame 4 to frame 8, the state of the motion and size change of object P is 
changed into another. Note that in the 3D C-string representation, the motion operators 
are used to describe the states of motions and size changes, and the t-string is used to 
describe how long every state lasts. 

In the 3D C-string representation, Lee et al. [27] also introduced the concept of tem-
plate objects. A template object is a pair of separators, “(” and “)”, containing a set of 
objects. For example, 0(A3 <2 B3) is a template object whose initial location is 0 and 
whose size is 3 + 2 + 3 = 8.  

To see how 3D C-string works, let’s consider the following example as shown in 
Fig. 1. In this example, the video contains two still objects (houses) and two moving ob-
jects (cars). All the objects are approximated by the MBRs. Let’s consider how to gener-
ate the u-string for the video. First of all, we project the initial locations of all objects 
onto the x-axis. Next, we scan the beginning and ending points of the objects from left to 
right to generate the u-string. We find that the x-projects of objects C and D are identical 
and both objects moves along the positive direction of the x-axis with the velocity of 2 
pixels/frame, so we have (C2↑2,1 = D2↑2,1). The template object (C2↑2,1 = D2↑2,1) is joined 
with the x-projection of object A, so we have ((C2↑2,1 = D2↑2,1) | A4). The difference  
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(a) A video contains 6 frames. 
Fig. 1. An example video. 
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u-string: (((C2↑2,1 = D2↑2,1) | A4) <2 B4) 
v-string: (D1↑0,1 <1 (C1↑0,1 <1 (A4 = B4)))
t-string: (A6 = B6 = C6 = D6)  

(b) The corresponding 3D C-string. 

Fig. 1. (Cont’d) An example video. 
 
between the ending bound of template object ((C2↑2,1 = D2↑2,1) | A4) and the beginning 
bound of the x-projection of object B is equal to 2, so we have (((C2↑2,1 = D2↑2,1) | A4) <2 
B4). Note that since both objects A and B are still in the video, there is no velocity associ-
ated with them. The corresponding 3D C-string of the video is shown in Fig. 1 (b). Ob-
jects C and D move along the positive direction of the x-axis with the velocity of 2 units/ 
frame in frames 1-6. Objects A and B do not move or change their sizes, so there are no 
motion operators for both objects. The knowledge structure of 3D C-string provides an 
easy and compact way to represent the spatial and temporal relations between the objects 
in a video.  

3. INFERENCE RULES 

In this section, we present the inference rules to derive the spatial and temporal rela-
tions between each pair of objects in the 3D C-string. There are four kinds of fundamen-
tal rules: transitive rules, distributive rules, manipulation rules and integration rules. In 
these inference rules, we abbreviate the velocities and rates of size changes since both of 
them are not changed in the inference process. After deriving the relation between two 
objects, we can obtain their velocities and rates of size changes from the given 3D 
C-string, and which can be easily applied to reasoning about spatio-temporal relations 
between the objects in a video. 

Let R = {“<”, “|”, “=”, “[“, “]”, “%”, “|t”} be the set of relation operators. In the 
time dimension, operator “|t” can be inferred as the same as operator “|”. First of all, let’s 
consider the 3-object strings of o1, o2, and o3, where oi, 1 ≤ i ≤ 3, may be a cut subobject 
(subobject for short), an object without any cutting (non-cut object for short) or a tem-
plate object. There are three types of 3-object strings in the 3D C-string representation as 
follows, where L0 is the initial location associated with the template object represented 
by the 3-object string. 

 
Type-I: L0(o1r12(o2r23o3)), where r12 and r23 ∈ R; however, r12 and r23 are not “=” at the 

same time. 
Type-II: L0((o1r12o2)r23o3), where r12 and r23 ∈ R; however, r12 and r23 are not “=” at the 

same time.  
Type-III: L0(o1r12o2r23o3), where both r12 and r23 are “=”. 
 
3.1 Transitive Rules for a 3-Object String 

 
For each type of strings, we can easily infer three binary relations between o1, o2, 

and o3. These inferred binary relations can be denoted by three substrings: λ1: 1 1 12 2( ),L o r o′  
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λ2: 2 2 23 3( ),L o r o′  and λ3: 3 1 13 3( ).L o r o′  Each substring represents a template object which is 
associated with the initial location, namely L1, L2 and L3. If the initial location of the 
template object is equal to 0, it can be omitted. 

Among them, it is easiest for a type-III string to derive the three binary relations by 
intuition, namely, L0(o1 = o2), L0(o2 = o3) and L0(o1 = o3). That is, the derived relation and 
metric information are the same as the original string. For a string of the first two types, 
the derived relations and metric information are shown in the following sections. 
 
3.1.1 The relation transitive rules for type-I and type-II strings 
 

The inferred binary relations of a 3-object string of type-I are shown in Figs. 2 (a-c). 
The inferred binary relations of a 3-object string of type-II are shown in Figs. 3 (a-c), 
where “N” denotes that the case is not available in the 3D C-string representation; “]*”, 
“*[“ and “%*” are the reverse relations of “]”, “[“ and “%”, respectively. That is, A ]* B 
is equal to B ] A. 
 
 

r23  r23 r23 
12r′  

< ⏐ = [ ] %  23r ′ < ⏐ = [ ] % 13r′ < ⏐ = [ ] % 
 < < < < < < <   < < ⏐ = [ ] % < < < < < < < 
 ⏐ ⏐ ⏐ ⏐ ⏐ ⏐ ⏐   ⏐ < ⏐ = [ ] % ⏐ < < ⏐ ⏐ < < 

r12 = [ [ = [ ] =  r12 = < ⏐ = [ ] % r12 = ] ] = [ ] % 
 [ [ [ [ [ [ [   [ < ⏐ = [ ] % [ % % [ [ % % 
 ] % % ] ] ] ]   ] < ⏐ = [ ] % ] ] ] ] % ] % 
 % % % % % % %   % < ⏐ = [ ] % % % % % % % % 

(a) The inferred relation 12.r′      (b) The inferred relation 23.r ′     (c) The inferred relation 13.r′  
Fig. 2. The inference relation tables for a type-I string. 

 
r23  r23 r23 

12r′  
< ⏐ = [ ] %  23r ′ < ⏐ = [ ] % 13r′ < ⏐ = [ ] % 

 < < < < N N N   < < ⏐ [* N N N < < < [* N N N 
 ⏐ ⏐ ⏐ ⏐ N N N   ⏐ < ⏐ [* N N N ⏐ < < [* N N N 

r12 = = = = = = =  r12 = < ⏐ = [ ] % r12 = < ⏐ = [ ] % 
 [ [ [ [ N N N   [ < < *[ N N N [ < ⏐ = N N N 
 ] ] ] ] N N N   ] < ⏐ ]* N N N ] < ⏐ = N N N 
 % % % % N N N   % < < %* N N N % < ⏐ = N N N 

(a) The inferred relation 12.r′      (b) The inferred relation 23.r ′     (c) The inferred relation 13.r′  
Fig. 3. The inference relation tables for a type-II string. 

 
3.1.2 The metric information of the inferred relations for type-I and type-II strings 

 
The metric information of the inferred relations for a type-I string is listed in Fig. 4, 

where “N” denotes that there is not metric information for those cases, M(r) denotes the 
metric information of operator r and Si denotes the size of object i. The metric informa-
tion of the inferred relations for a type-II string is listed in Fig. 5. 
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r23 
12( )M r′  < ⏐ = [ ] % 

 < M(r12) M(r12) M(r12) M(r12) M(r12) M(r12) 
 ⏐ N N N N N N 

r12 = N N N N N N 
 [ N N N N N N 
 ] S1-S2-S3-M(r12) S1-S2-S3 N N N N 
 % M(r12) M(r12) M(r12) M(r12) M(r12) M(r12) 

(a) The inferred metric information of 12.r′  
 

r23 
23( )M r′  < ⏐ = [ ] % 

 < M(r23) N N N N M(r23)
 ⏐ M(r23) N N N N M(r23)

r12 = M(r23) N N N N M(r23)
 [ M(r23) N N N N M(r23)
 ] M(r23) N N N N M(r23)
 % M(r23) N N N N  M(r23)

(b) The inferred metric information of 23.r′  
 

r23 
13( )M r′  < ⏐ = [ ] % 

 < M(r12)+S2+M(r23) M(r12)+S2 M(r12) M(r12) M(r12)+S2-S3 M(r12)+M(r23) 
 ⏐ S2+M(r23) S2 N N S2-S3 M(r23) 

r12 = N N N N N M(r23) 
 [ S2+M(r23) S2 N N S2-S3 M(r23) 
 ] N N N S1-S2 N S1-S2+M(r23) 
 % M(r12)+S2+M(r23) M(r12)+S2 M(r12) M(r12) M(r12)+S2-S3 M(r12)+M(r23) 

(c) The inferred metric information of 13.r′  
Fig. 4. The metric information of inferred relations for a type-I string. 

 
r23 

12( )M r′  < ⏐ = [ ] %
 < M(r12) M(r12) M(r12) N N N
 ⏐ N N N N N N

r12 = N N N N N N
 [ N N N N N N
 ] N N N N N N
 % M(r12) M(r12) M(r12) N N N

       (a) The inferred metric information of 12.r′  
 

r23 
23( )M r′  < ⏐ = [ ] % 

 < M(r23) N N N N N 
 ⏐ M(r23) N N N N N 

r12 = M(r23) N N N N M(r23) 
 [ S1-S2-M(r23) S1-S2 N N N N 
 ] M(r23) N N N N N 
 % S1-S2-M(r12)+M(r23) S1-S2-M(r12) M(r12) N N N 

 
 

(b) The inferred metric information of 23.r′  
Fig. 5. The metric information of inferred relations of a type-II string. 
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r23 
13( )M r′ < ⏐ = [ ] % 

 < S2+M(r12)+M(r23) S2+M(r12) N N N N 
 ⏐ S2+M(r23) S2 N N N N 

r12 = M(r23) N N N N M(r23) 
 [ M(r23) N N N N N 
 ] M(r23) N N N N N 
 % M(r23) N N N N N 

(c) The inferred metric information of 13.r′  
Fig. 5. (Cont’d) The metric information of inferred relations of a type-II string. 

3.1.3 The initial locations 

The initial locations associated with substrings λ1, λ2 and λ3 are the same as the lo-
cations of o1, o2 and o1, respectively. The location of o1 is the same as the initial location 
associated with the original 3-object string. So, we only need to compute the initial loca-
tion associated with substring λ2. The initial location associated with substring λ2, L2, 
can be derived from Figs. 6 (a) and (b) for type-I and type-II strings, respectively. For a 
type-III string, the derived relation and metric information are the same as the original 
string. 
 
 

r23 L2 < ⏐ = [ ] % 
 < L0+S1+M(r12) L0+S1+M(r12) L0+S1+M(r12) L0+S1+M(r12) L0+S1+M(r12) L0+S1+M(r12) 
 ⏐ L0+S1 L0+S1 L0+S1 L0+S1 L0+S1 L0+S1 

r12 = L0 L0 L0 L0 L0 L0 
 [ L0 L0 L0 L0 L0 L0 

 ] L0+S1- 
S2-S3-M(r12) 

L0+S1-S2-S3 L0+S1-S2 L0+S1-S2 L0+S1-S2 L0+S1-S2 

 % L0+M(r12) L0+M(r12) L0+M(r12) L0+M(r12) L0+M(r12) L0+M(r12) 
(a) The initial location associated with substring λ2 for a type-I string. 

 
r23 L2 < ⏐ = [ ] % 

 < L0+S1+M(r12) L0+S1+M(r12) L0 N N N 
 ⏐ L0+S1 L0+S1 L0 N N N 

r12 = L0 L0 L0 L0 L0 L0 
 [ L0 L0 L0 N N N 
 ] L0+S1-S2 L0+S1-S2 L0 N N N 
 % L0+M(r12) L0+M(r12) L0 N N N 

(b) The initial location associated with substring λ2 for a type-II string. 

Fig. 6. The initial location associated with substring λ2 for type-I and type-II string. 

 
Now, let’s consider a type-I string 10(A7 <2 (B3 | C2)), where the subscript 10 is the 

initial location associated with the template object and the relations of r12 and r23 are “<” 
and “|”, respectively. We can derive the following substrings: ω1: (A7 < B3) from Fig. 2 
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(a), ω2: (B3 | C2) from Fig. 2 (b), and ω3: (A7 < C2) from Fig. 2 (c). The distance associ-
ated with operator < in substring ω1 is equal to M(<2) = 2 from Fig. 4 (a), operator | in 
substring ω2 does not have metric information from Fig. 4 (b), and the distance associ-
ated with operator < in substring ω3 is equal to M(<2) + SB = 2 + 3 = 5 from Fig. 4 (c). 
The initial location associated with substring ω2 is equal to 10 + SA + M(<2) = 10 + 7 + 2 
= 19 from Fig. 6 (a). 

The relation and metric information between any two objects in a 3-object string can 
be derived from the tables as shown in Figs. 2 to 6. For a 3D C-string containing more 
than 3 objects, we need more inference rules and discuss them in following subsections.  
 
3.2 Transitive Rules for the String with More Than 3 Objects 
 
(TR-1) If r12 ∈ R, and r(i-1)i ∈ {“=”, “[“, “]”, “%”}, 2 < i ≤ n, and the first level of the 3D 
C-string is of type-I, the string will be in the form of L0(o1r12(o2r23(o3r34(…(o(n-1)r(n-1)n 
on)…)))). Let o′3 be (o3r34(…(o(n-1)r(n-1)non)…)). The string can be rewritten as L0(o1r12(o2 
r23o′3)). So, we can get the following three substrings.  
 
λ4: L0(o1r′12o2), where r′12 can be derived from Fig. 2 (a), 
λ5: L2(o2r23o′3), that is, L2(o2r23(o3r34(…(o(n-1)r(n-1)non)…))), where L2 can be derived from 

Fig. 6 (a), 
λ6: L0(o1r′13o′3), that is, L0(o1r′13(o3r34(…(o(n-1)r(n-1)non)…))), where r′13 can be derived from 

Fig. 2 (c). 
 
For example, for a 3D C-string L0(A % (B ] (C [ D))), we will have the following three 

substrings: ω4: L0(A % B), ω5: L2(B ] (C [ D)), and ω6: L0(A % (C [ D)), where the metric 
information is omitted. Because the substrings ω5 and ω6 are in the form of rule (TR-1), 
rule (TR-1) can be recursively applied to find every binary relation between the objects. 
 
(TR-2) If r(n-1)n ∈ {“<”, “|”, “|t”}, and r(i-1)i ∈ {“=”, “[“, “]”, “%”}, 1 < i < n, and the first 
level of the 3D C-string is of type-II, the string will be in the form of L0((o1r12(o2r23(… 
(o(n-2)r(n-2)(n-1)o(n-1))…)))r(n-1)non). Let o′2 be (o2r23(…(o(n-2)r(n-2)(n-1)o(n-1))…)). The string can 
be rewritten as L0((o1r12o′2)r(n-1)non). So, we will have the following three substrings.   
 
λ7: L0(o1r12o′2 ), that is, L0(o1r12(o2r23(…(o(n-2)r(n-2)(n-1)o(n-1))…))),   
λ8: L2(o′2 r′(n-1)non), that is, L2((o2r23(…(o(n-2)r(n-2)(n-1)o(n-1))…))r′(n-1)non), where r′(n-1)n and L2 

can be derived from Fig. 3 (b) and Fig. 6 (b), respectively, 
λ9: L0(o1r′1non), where r′1n can be derived from Fig. 3 (c).  
 

For example, for a 3D C-string, L0((A [ (B ] (C % D))) | E), we will have the following 
three substrings: ω7: L0(A [ (B ] (C % D))), ω8: L2((B ] (C % D)) < E), and ω9: L0(A | E), 
where the metric information is omitted. Substring ω7 is in the form of (TR-1), and sub-
string ω8 is in the form of (TR-2), so (TR-1) and (TR-2) can be recursively applied to 
find every binary relation between the objects. 
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3.3 Distributive Rules 
 
We have discussed the 3D C-strings with the form of nested parentheses in the pre-

vious section. To infer the relations between the objects in the 3D C-strings of another 
form, we first consider a four-symbol string in the form of L0((o1r12 o2)r23(o3r34o4)). Let o′3                  
be (o3r34o4). The string can be rewritten as L0((o1r12o2)r23o′3    ) which is of type-II. So, we 
can have following three substrings: λ10: 0 1 13 3( )L o r o′ ′  which is 0 1 13 3 34 4( ( )),L o r o r o′ λ11: 2 2(L o  

23 3 )r o′ ′  which is 2 2 23 3 34 4(( ( )),L o r o r o′  and λ12: L0(o1r12o2). 
Or, we can replace (o1r12o2) with o′2                  . The string can be rewritten as L0(o′2      r23 (o3r34o4))    

which is of type-I. So, we can have the following three substrings: λ13: 0 2 23 3( ),L o r o′ ′  that is, 
0 1 12 2 23 3(( ) ),L o r o r o′  λ14: 2 3 34 4(( ),L o r o  and λ15: 0 2 24 4( ),L o r o′ ′  that is, 0 1 12 2 24 4(( ) ).L o r o r o′   

After the distribution, we can easily apply the transitive rules to infer the relations 
between each pair of objects. 

For example, for a 3D C-string, L0((A % B) < (C [ D)), we can replace (A % B) with 

2.o′  The string can be written as 0 2(L o′ < (C [ D)) which is of type-I. So, we can have the 
following three substrings: ω10: 0 2(L o′ < C) which is L0((A % B) < C), ω11: 0 2(L o′ < D) which 
is L0((A % B) < D), ω12: L2(C [ D). For the substrings ω10 and ω11, we can apply the transi-
tive rules to infer the relations between the objects.  

Table 2. The manipulation rules.  

Rule String format 
Resultant 

string 
Size of P Size of Q 

Metric of the 
relation 

MR-1 (P1|(P2…|(Pn-1|Pn)…)) P 
SP=SP1+SP2+…
+SPn 

 N 

MR-2 
((P1=Q1)|((P2=Q2)| 
(…|(Pn=Qn)…))) 

P=Q 
SP=SP1+SP2+…
+SPn 

SQ=SQ1+SQ2+
…+SQn 

N 

MR-3 ((P1=Q1)|(P2[Q2)) (P[Q) SP=SP1+SP2 SQ=SQ1+SQ2 N 
MR-4 ((P1=Q1)|P2) (P[Q) SP=SP1+SP2 SQ N 
MR-5 ((P1[Q)|P2) (P[Q) SP=SP1+SP2 SQ N 
MR-6 (P1|(P2]Q)) (P]Q) SP=SP1+SP2 SQ N 
MR-7 (P1|(P2=Q)) (P]Q) SP=SP1+SP2 SQ N 
MR-8 ((P1]Q1)|((P2=Q2)) (P]Q) SP=SP1+SP2 SQ=SQ1+SQ2 N 
MR-9 (P1|(P2%Q)) (P%Q) SP=SP1+SP2 SQ M(%)=M(%)+SP 

MR-10 (P1|(P2[Q)) (P%Q) SP=SP1+SP2 SQ M(%)=SP1 
MR-11 ((P1]Q1)|(P2[Q2)) (P%Q) SP=SP1+SP2 SQ=SQ1+SQ2 M(%)=SP1-SQ1 
MR-12 ((P1]Q)|P2) (P%Q) SP=SP1+SP2 SQ M(%)=SP1-SQ 
MR-13 ((P1%Q)|P2) (P%Q) SP=SP1+SP2 SQ M(%)=M(%) 
MR-14 (P1|(P2/Q)) (P/Q) SP=SP1+SP2 SQ M(/)=M(/) 
MR-15 (P1|(Q[P2)) (P/Q) SP=SP1+SP2 SQ M(/)=SP2 
MR-16 ((P1]Q1)|(Q2[P2)) (P/Q) SP=SP1+SP2 SQ=SQ1+SQ2 M(/)=SP2+SQ1 
MR-17 ((P]Q1)|Q2) (P/Q) SP SQ=SQ1+SQ2 M(/)=SQ1 
MR-18 ((P/Q1)|Q2) (P/Q) SP SQ=SQ1+SQ2 M(/)=M(/) 
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3.4 Manipulation Rules 
 
In the 3D C-string representation, the subobjects would only be present in the rela-

tion of part_overlap, “/”. It is necessary for us to manipulate (merge) the subobjects. The 
manipulation rules are used to merge together the subobjects in one string (or substring). 
The integration rules in section 3.4 are used to merge together the subobjects in two 
strings (or substrings). We present 18 manipulation rules in this subsection as shown in 
Table 2 and 21 integration rules in the next subsection. In Table 2, the first column shows 
the name of a rule, and the second column presents the original string format, where Pi, 1 
≤ i ≤ n, are the subobjects of P. The merged result is listed in the third column, and the 
size of P or Q and metric of the relation are shown in the remaining columns, where ‘N’ 
denotes that there is not metric information for those cases, and SP denotes the size of 
object P. 

We do not use operator / in the 3D C-string representation; however, we do use op-
erator / in the inference process. The distance associated with operator /, P /d Q, is equal 
to the distance between the x- (y- or time-) projection of object P and that of object Q, 
where d = EBx(P) – BBx(Q) (d = EBy(P) – BBy(Q), or d = EBtime(P) – BBtime(Q)).  

These manipulation rules are used to merge the subobjects in a string together. The 
location of merged object keeps unchanged. Let’s consider an example as follows, where 
objects A and B are partitioned into several subobjects in a string, (A2 | (A2 | (((A4 ] B2) | 
((A2 = B2) | (A2 = B2))) | (B2 | B2)))). We can merge objects A and B together in the follow-
ing steps. 

 
(A2 | (A2 |(((A4 ] B2) | ((A2 = B2) | (A2 = B2))) | (B2 | B2)))) 

(MR-1)   (A2 | (A2 | (((A4 ] B2) | ((A2 = B2) | (A2 = B2))) | B4))) 
(MR-2)   (A2 | (A2 | (((A4 ] B2) | (A4 = B4)) | B4))) 
(MR-8)   (A2 | (A2 | ((A8 ] B6) | B4))) 
(MR-17)  (A2 | (A2 | (A8 /6 B10))) 
(MR-14)  (A2 | (A10 /6 B10)) 
(MR-14)  (A12 /6 B10) 

 
where the underline parts will be merged together in the next step. Finally, the relation 
between A and B is (A12 /6 B10).  

 
3.5 Integration Rules 

 
The integration rules are used to merge the subobjects in several substrings together. 

There are 21 integration rules in total as shown in Table 3. In Table 3, the first column 
shows the name of a rule, the second and third columns present the two substrings to be 
combined. The integrated result is listed in the next column, and the size of P or Q and 
metric of relation are shown in the remaining columns, where “N” denotes that there is 
not metric information for those cases, M1 and M2 are the metric information of the op-
erators in String 1 and String 2, respectively. 
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Table 3. The integration rules. 

Rule String 1 String 2 Resultant 
string Size of P Size of Q Metric of the relation 

IR-1 (P1<Q) (P2<Q) (P<Q) SP=SP1+SP2 SQ M(<)=Min(M1(<), M2(<)) 
IR-2 (P<Q1) (P<Q2) (P<Q) SP SQ=SQ1+SQ2 M(<)=Min(M1(<), M2(<)) 
IR-3 (P1<Q) (P2|Q) (P|Q) SP=SP1+SP2 SQ N 
IR-4 (P|Q1) (P<Q2) (P|Q) SP SQ=SQ1+SQ2 N 
IR-5 (P1=Q1) (P2=Q2) (P=Q) SP=SP1+SP2 SQ=SQ1+SQ2 N 
IR-6 (P1=Q1) (P2[Q2) (P[Q) SP=SP1+SP2 SQ=SQ1+SQ2 N 
IR-7 (P1=Q) (Q|P2) (P[Q) SP=SP1+SP2 SQ N 
IR-8 (P1[Q) (Q<P2) (P[Q) SP=SP1+SP2 SQ N 
IR-9 (P1<Q) (P2]Q) (P]Q) SP=SP1+SP2 SQ N 
IR-10 (P1|Q) (P2=Q) (P]Q) SP=SP1+SP2 SQ N 
IR-11 (P1]Q1) (P2=Q2) (P]Q) SP=SP1+SP2 SQ=SQ1+SQ2 N 
IR-12 (P1<Q) (P2%Q) (P%Q) SP=SP1+SP2 SQ M(%)=M(%)+SP1 
IR-13 (P1|Q) (P2[Q) (P%Q) SP=SP1+SP2 SQ M(%)=SP1 
IR-14 (P1]Q1) (P2[Q2) (P%Q) SP=SP1+SP2 SQ=SQ1+SQ2 M(%)=SP1-SQ1 
IR-15 (P1]Q) (Q|P2) (P%Q) SP=SP1+SP2 SQ M(%)=SP1-SQ 
IR-16 (P1%Q) (Q<P2) (P%Q) SP=SP1+SP2 SQ M(%)=M1(%) 
IR-17 (P1<Q) (P2/Q) (P/Q) SP=SP1+SP2 SQ M(/)=M2(/) 
IR-18 (P1|Q) (Q[P2) (P/Q) SP=SP1+SP2 SQ M(/)=SP2 
IR-19 (P1]Q1) (Q2[P2) (P/Q) SP=SP1+SP2 SQ=SQ1+SQ2 M(/)=SP2+SQ1 
IR-20 (P]Q1) (P|Q2) (P/Q) SP SQ=SQ1+SQ2 M(/)=SQ1 
IR-21 (P/Q1) (P<Q2) (P/Q) SP SQ=SQ1+SQ2 M(/)=M1(/) 

 
These integration rules can be used to merge the subobjects in several substrings 

together. For example, object A is partitioned into two subobjects: 
1
2A  and 

2
3A , and B is 

partitioned into three subobjects: 1
3B , 2

3B , and 
3
4B . Those subobjects appear in six sub-

strings: ω13: 
1 1
2 3( | ),A B  ω14: 

2 1
3 3( ),A B=  ω15: 

1 2
2 3( | ),A B  ω16: 

2 2
3 3 3( ),A B<  ω17: 

1 3
2 7 4( ),A B<  

and ω18: 
2 3
3 4 4( ).A B<  We can use the integration rules to derive the relation between ob-

jects A and B in the following steps. 
 
(IR-10)  Integrate ω13 and ω14 to ω19: 

1,2 1
5 3( ] )A B  

(IR-3)   Integrate ω15 and ω16 to ω20: 
1,2 2
5 3( | )A B  

(IR-1)   Integrate ω17 and ω18 to ω21: 
1,2 3
5 4 4( )A B<  

(IR-20)  Integrate ω19 and ω20 to ω22: 
1,2 1,2
5 3 6( / )A B  

(IR-21)  Integrate ω21 and ω22 to ω23: 
1,2 1,2,3
5 3 10( / )A B  => (A5 /3 B10) 

 
where a superscript denotes a sequence number of the subobject and a subscript denotes 
the size of a subobject. Finally, the relation between A and B is (A5 /3 B10). 
 
3.6 Relation Derivation Algorithm 

 
After presenting the inference rules, we propose the relation derivation algorithm to 

infer the spatio-temporal relations between the objects in a 3D C-string. Assume that 
there are k levels of template objects and m objects in a given 3D C u-string (v- or 
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t-string), and those objects are numbered from 1 to m. For each subobject of object i, we 
assign a sequence number to it. For example, if object i is cut into three subobjects, those 
subobjects are numbered as i.1, i.2 and i.3, where 1, 2, and 3 are the sequence numbers. 
The relation derivation algorithm can infer a list of relations between any two objects in 
a given 3D C u-string (v- or t-string). The relation derivation algorithm is described in 
detail in Fig. 7.  

 
Algorithm  relation derivation 
Input: a 3D C-string u-string (v- or t-string). 
Output: ϕ, the relations between any two objects. 
1.   Let the relation list ϕ be null and the string list ψ be null. 
2.   Assign a sequence number to each subobject of object i. 
3.   Add the input string to ψ. 
4.   while (ψ is not empty) do 
5.  Remove the first string η from ψ. 
6. if (η contains subobjects) then 
7. Apply the manipulation rules to merge the subobjects in η. 
8. end if 
9. Apply the transitive or distributive rules to η. 
10. for each generated substring ρ do 
11.  if (ρ contains only two objects and is not in ϕ) then 
12.  Append ρ to ϕ. 
13.  elseif (ρ is not in ψ) 
14.      Append ρ to ψ. 
15. end if 
16.      end for 
17.  end while 
18.  Apply the integration rules to the strings in ϕ. 

Fig. 7. Relation derivation algorithm. 

 
In this algorithm, we process a template object for each loop in steps 4-17. In steps 

6-8, if η contains subobjects, we use the manipulation rules to merge the subobjects in η. 
Then, we apply the transitive or distributive rules to infer the relations between objects in 
step 9. In steps 10-16, if the generated substring ρ contains only two objects, collect it 
into ϕ; otherwise, collect it into ψ. The substrings in ψ need to be processed in the later 
steps. In the last step, we apply the integration rules to merge the subobjects in ϕ. 
 
Lemma 1  For a 3D C u- (v-, or t-) string, the time complexity of the relation derivation 
algorithm is bounded to O(k2

 + c × m × t + c2 × t2), where c is the maximum number of 
cuttings among all individual objects, m is the number of objects, t is the number of cut 
objects, k is the number of levels of the template object in the input string.  
 
Theorem 1  For a 3D C-string, the time complexity of the relation derivation algorithm 
is bounded to O(k2 + c × m × t + c2 × t2), where c is the maximum number of cuttings 
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among all individual objects; m is the number of objects in the input string; k is the 
maximum value of k1, k2, k3; k1, k2, k3 are the numbers of levels of the template objects in 
the u-, v-, and t-strings, respectively; and t is the maximum value of t1, t2, t3; t1, t2, t3 are 
the numbers of cut objects in u-, v-, t-strings, respectively.  

 
Let’s consider the example as shown in Fig. 1. The u-string of the video is 0(((C2↑2,1 

= D2↑2,1) | A4) <2 B4), which is of type-II. We can use the transitive rules to generate the 
following three substrings: ω24: 0((C2↑2,1 = D2↑2,1) | A4), ω25: 2(A4 <2 B4), and ω26: 0((C2↑2,1 
= D2↑2,1) <6 B4). 

The relations associated with substrings ω25 and ω26 can be derived from Figs. 3 (b) 
and (c). The metric information and initial location of substring ω25 can be derived from 
Fig. 5 (b) and Fig. 6 (b), and the metric information of substring ω26 can be derived from 
Fig. 5 (c). That is, M(r13) = S2 + M(r23) = 4 (the size of object A) + 2 (metric of operator 
“<”) = 6. Likewise, we can apply the same rule to substrings ω24 and ω26. From substring 
ω24, we can obtain the substrings ω27: 0(C2↑2,1 = D2↑2,1), ω28: 0(D2↑2,1 | A4) and ω29: 
0(C2↑2,1 | A4). From substring ω26, we can obtain the substrings ω30: 0(C2↑2,1 = D2↑2,1), ω31: 
0(D2↑2,1 <6 B4) and ω32: 0(C2↑2,1 <6 B4). Hence, we can get all the relations between each 
pair of objects in the x dimension. 

Similarly, from v-string (D1↑0,1 <1 (C1↑0,1 <1 (A4 = B4))) we can derive the relation 
between each pair of objects in the y dimension. First of all, we apply the transitive rules 
to the v-string and obtain the following three substrings: ω33: 0(D1↑0,1 <1 C1↑0,1), ω34: 
2(C1↑0,1 <1 (A4 = B4)), and ω35: 0(D1↑0,1 <3 (A4 = B4)). Second, we can obtain the following 
substring: ω36: 2(C1↑0,1 <1 A4), ω37: 4(A4 = B4) and ω38: 2(C1↑0,1 <1 B4) from ω34, and ω39: 

0(D1↑0,1 <3 A4), ω40: 4(A4 = B4) and ω41: 0(D1↑0,1 <3 B4) from ω35. Similarly, from t-string 
(A6 = B6 = C6 = D6), that is of type-III, we can easily derive the relations between the ob-
jects, namely, the relation between each pair of objects in the time dimension is “=”. That 
is, ω42: 0(A6 = B6), ω43: 0(A6 = C6), ω44: 0(A6 = D6), ω45: 0(B6 = C6), ω46: 0(B6 = D6), and ω47: 
0(C6 = D6). 

From substrings ω25, ω37 and ω42, we know that the relations between objects A and 
B are 2(A4 <2 B4) in the x dimension, 4(A4 = B4) in the y dimension and 0(A6 = B6) in the 
time dimension. So, we can find that objects A and B are both still, disjoined, and of the 
same size. From the substrings ω27, ω33 and ω47, we know that the relations between ob-
jects C and D are 0(C2↑2,1 = D2↑2,1) in the x dimension, 0(D1↑0,1 <1 C1↑0,1) in the y dimen-
sion and 0(C6 = D6) in the time dimension. So, we can find that objects C and D are mov-
ing at the same speed and object D is one unit below object C in the y dimension. 

Let’s consider another example. We add six more frames to the video shown in Fig. 
1, where a moving car, E, has the same initial location and velocity as object C in frames 
7~12. Hence, the corresponding 3D C-string for the video is shown as follows: u-string: 
(((C2↑2,1 = D2↑2,1 = E2↑2,1) | A4) <2 B4), v-string: (D1↑0,1 <1 ((C1↑0,1 = E1↑0,1) <1 (A4 = B4))), 
t-string: ((A12 = B12) = ((C6 = D6) | E6)). Then, we can infer the relation between objects C 
and E and obtain the following relations: 0(C2↑2,1 = E2↑2,1) in the x dimension, 0(C1↑0,1 = 
E1↑0,1) in the y dimension, and 0(C6 | E6) in the time dimension. Both objects C and E 
have the “=” relation and the same velocity in the x and y dimensions. In the time dimen-
sion, both objects have the same size and “|” relation. That is, object E appears right after 
object C disappears. Therefore, with these rules, a user can easily derive the relations 
between the objects in a video represented by the 3D C-string. 
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4. AN APPLICATION 

In this section, we demonstrate a video query example to show the effectiveness of 
our video algebra. The query video V of an overtaking event is shown in Fig. 8, where 
car A is overtaking car B. The query video is shown in Fig. 8 (a) and the corresponding 
3D C-string is shown in Fig. 8 (b).  

A B  A B 

 

BA

 

A B

 

B 
A

 

A
B 

 
Frame 1                   Frame 2                    Frame 3 

(a) A query video. 
 

u-string: (A16↑0,1.4 <20 B14↑0,1.2) 
v-string: ((B12↓15,1.4 ] A10↓30,1.4) | A6) 
t-string: (A3 = B3) 

(b) The corresponding 3D C-string. 

Fig. 8. A video query example of an overtaking event. 

 
u-string: (A42↑0,1.4 | ((D45 ] B12↑0,1.2) | (C38↑0,1.2 [ B28))) 
v-string: ((B62↓32,1.6 ] A20↓45,1.8) | ((A40 = C40↓30,1.5) ] D30))
t-string: ((A60 = B60) ] (C50 ] D1)) 

Fig. 9. The 3D C-string of the matched video. 

 
To find the videos similar to V from a database, we first choose the database videos 

that contain more than one car object. For example, let’s consider a database video 
containing four car objects A, B, C, and D, and its corresponding 3D C-string is shown 
in Fig. 9. 

Next, from the u-string, we can use the video algebra to infer the relation between 
each pair of objects in the x dimension, and obtain the following six substrings, ω48: 
0(A42↑0,1.4 <33 B40↑0,1.2), ω49: 0(A42↑0,1.4 <45 C38↑0,1.2), ω50: 0(A42↑0,1.4 | D45), ω51: 33(B40↑0,1.2 
/28 C38↑0,1.2), ω52: 42(D45 /12 B40 ↑0,1.2), and ω53: 42(D45 | C38↑0,1.2).  

Similarly, from the v-string, we can derive the relation for each pair of objects in the 
y dimension, and obtain the following six substrings, ω54: 0(B62↓32,1.6 /20 A60↓45,1.8), ω55: 
62(A60↓45,1.8 ] C40↓30,1.5), ω56: 62(A60↓45,1.8 ] D30), ω57: 0(B62↓32,1.6 | C40↓30,1.5), ω58: 0(B62↓32,1.6 
<10 D30), and ω59: 62(C40↓30,1.5) ] D30). From t-string, we can derive the relation for each 
pair of objects in the time dimension, and obtain the following six substrings, ω60: 0(A60 = 
B60), ω61: 0(A60 ] C50), ω62: 0(A60 ] D1), ω63: 0(B60 ] C50), ω64: 0(B60 ] D1), and ω65: 10(C50 ] 
D1). 
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According to the overtaking event between objects A and B in the query video, we 
can derive the “<” (disjoin) relation in the x dimension, the “/” (partly-overlap) relation 
in the y dimension, the “=” (equal) relation in the time dimension, and object A with a 
higher velocity than object B in the y dimension. In the video shown in Fig. 9, we can 
find that the relations between objects A and B are ω48: 0(A42↑0,1.4 <33 B40↑0,1.2) in the x 
dimension, ω54: 0(B62↓32,1.6 /20 A60↓45,1.8) in the y dimension, and ω60: 0(A60 = B60) in the 
time dimension, and object A with a higher velocity than object B in the y dimension. 
Thus, we can retrieve the database video similar to the query video and the database 
video is showed in Fig. 10. 

 
A 

B 

 

 

A B

C

 

 

A B 

C 

 
Frame 1                    Frame 20                    Frame 30 

 

A B 

C 

 

 

A
B

C

 

 

B 
A

C 

D 

 
Frame 40                    Frame 50                    Frame 60 

Fig. 10. The matched video. 

5. CONCLUSIONS 

The video content management has attracted increasing attention in recent years. 
We have proposed a new spatio-temporal knowledge structure, called 3D C-string, to 
represent the spatio-temporal relations between the objects in a video and to keep track 
of the motions and size changes of the objects. In this paper, we propose a video algebra 
to infer the spatio-temporal relations between the objects in a video represented by the 
3D C-string. The algebra contains four kinds of rules, namely, transitive, distributive, 
manipulation, and integration rules. By using those rules, all the binary relations between 
the objects in a video can be derived from a given 3D C-string. These rules provide us 
the theoretic basis for spatio-temporal reasoning and video query inference. How to ex-
pand the reasoning result to generate the high-level semantics and to support high-level 
semantic video queries is worth further study.  
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