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Although fuzzy regression is widely employed to solve many problems in practice, what seems to be
lacking is the problem of multicollinearity. In this paper, the fuzzy centers principal component
analysis is proposed to first derive the fuzzy principal component scores. Then the fuzzy principal
component regression (FPCR) is formed to overcome the problem of multicollinearity in the fuzzy
regression model. In addition, a numerical example is used to demonstrate the proposed method and
compare with other methods. On the basis of the results, we can conclude that the proposed method
can provide a correct fuzzy regression model and avoid the problem of multicollinearity.
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1. Introduction

Since the fuzzy linear regression was originally proposed by Tanaka et al. in 1982"2, it
has been applied to various problems to consider the situation of uncertainty and
vagueness in practice. However, the problem of multicollinearity seems to have been
ignored. The problem of multicollinearity will result in incorrect fuzzy regression
coefficients e.g. a positive effect becomes a negative effect. The purpose here is to
propose a new kind of fuzzy regression which can overcome the problem of
multicollinearity and is suitable for both fuzzy input and output variables.

Although the partial index of confidence was proposed to try to cope with the
problem of multicollinearity in fuzzy regression, it is clear that the index is more suitable
for measuring the impact of a new input variable rather than the impact of
multicollinearity. As we know, several methods have been proposed to deal with the
problem of multicollinearity in traditional statistics and one of them is principal
component regression. In this paper, fuzzy principal component regression (FPCR) is
derived to overcome the problem of multicollinearity. First, the fuzzy input variables are
transformed to the fuzzy principal component scores and then the shape-preserving
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operations are used to form FPCR. Since the fuzzy principal component scores are
uncorrelated with each other, the problem of multicollinearity can be avoided.

In addition, a numerical example is used to demonstrate the procedures and the
advantages of the proposed method. We first employ the fuzzy correlation analysis to
display the problem of multicollinearity in fuzzy regression and then two kinds of the
fuzzy principal component analysis (FPCA) are employed to derive the fuzzy principal
component scores. Finally, the fuzzy principal component scores are used to form FPCR
using the shape preserving operations. On the basis of the numerical results, we can
conclude that the proposed method can provide the rational fuzzy regression coefficients
and avoid the problem of multicollinearity.

The rest of this paper is organized as follows. The problems of multicollinearity in
fuzzy regression are presented in Section 2. Fuzzy principal component analysis is
proposed in Section 3 and fuzzy principal component regression is presented in Section 4.
A numerical example is implemented in Section 5 to demonstrate the effectiveness of the
proposed method. Section 6 contains discussions of the implementation, and the final
section presents conclusions.

2. Problem of Multicollinearity in Fuzzy Regression

The form of the fuzzy linear regression in Tanaka’s model can be expressed as
y=;10+21xl+---+;1”x”=/]x 1)
where x =[x,x,,---,x,] is a non-fuzzy input vector, and ;1,~ is a symmetrical fuzzy

number denoted as (a,,c,), . The form of the membership function of Eq. (1) can be
obtained for x #0 as

#, () =L(y-ax)/c'| x]) @
for x=0 and y=0, g (y)=1,andfor x=0 and y#0, u,(y)=0.The h-level
set of y denoted as [y], can be obtained as the following setting:

L((y-ax)/c'|x])=h. (€)

Then, [y], can be obtained as

[y), =l@x-c"| x| L' (h) ), (ax+c"| x|| L' (B) )] “
Using the conditions above, the fuzzy data (yj,xj,hj), j=1...,m can be formed a
fuzzy regression model by solving the following mathematical programming model:

mn J= ) hc'lx,| 5)

Jj=leo,m
st. y zax -c'|x, |]L"(hj) Iy
y, Sax +c'|x, IL'(h), j=1,....,m

c20.
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Although the fuzzy regression model can cope well with the fuzzy functional
relationships between the input and the output variables in many real-world problems, it
has been criticized for the problem of estimation’, robustness*®, fuzzy input variables®’,
and multicollinearity®. In order to overcome these shortcomings, various approaches have
been proposed to extend or modify the original method, such as fuzzy least square
regression’'", fuzzy regression for both fuzzy/crisp input and output variables'>'"®, robust
fuzzy regression'*", and quadratic fuzzy regression'®"’.

In this paper, we focus on the problem of multicollinearity. The cause of
multicollinearity is the high correlation among input variables. As we know, the problem
of multicollinearity may result in the incorrect fuzzy regression coefficients and the
irrational interpretation. In order to deal with the problem of multicollinearity in fuzzy
linear regression, Wang and Tsaur'® proposed the partial index of confidence (IC) to
select the optimal input subset. Their method can be described as follows. Let Tanaka’s

fuzzy linear regression with two input variables can be described as y = :40 + ;lel + /~12x2 .

The coefficient of the partial /C between y and x, given x, (ICj;) can be expressed
as

_ SSE(x,) - SSE(x,,x,) _ SSE(x,|x,)
SSE(x,) SSE(x))

IC

112

(6)

Next, the forward selection algorithms are employed to select an entering input variable
according to the biggest partial /C.

From Egq. (6), it can be seen that the partial /C index is similar to the coefficient of
partial determination in traditional statistics. However, as we know, the coefficient of
partial determination is used to measure the impact of a new input variable rather than the
effect of multicollinearity. In statistics, a better index of measuring the problem of
multicollinearity is variance inflation factors (VIF). The VIF index measures the degree
of multicollinearity among input variables and the formulation can be expressed as

1

VIF, = —— )
1-R’

where R; denotes the coefficient of determination when x, is regressed on the other
input variables. If x, is exactly multicollinear with the other input variables, then

R’ =1 and VIF, = . On the other hand, if x, is completely uncorrelated with the

J J

other input variables, then Rj2 =0 and VIF, =1.

Many methods have been proposed to guarantee VIF, =1 in statistics to deal with

the problem of multicollinearity and one of these methods is principal component
analysis (PCA). Next, in order to consider the fuzzy number in PCA, the autoassociative
neural network and the fuzzy centers PCA methods are proposed in Section 3.
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3. Fuzzy Principal Component Analysis

In order to extend PCA to consider the situation of interval or fuzzy numbers, several
algorithms such as linear programming (LP) method", vertices PCA (V-PCA)*, midpoint
range PCA (MR-PCA)*, and symbolic data analysis (SDA) approach’” have been
proposed. Here, we propose two methods called autoassociative neural network® and
fuzzy centers PCA to derive the fuzzy principal component scores.

3.1. Autoassociative neural network method

The autoassociative neural network method was proposed by to obtain fuzzy principal
components based on the viewpoint of machine learning. Let a fuzzy input vector

x =[%,---,X,], the jth fuzzy principal component and the kth fuzzy output can be

defined as
~ Z -~ 1
i =Yek =(2,2,2) Vj,j=l..,q (®)
i=1
and
9
W= e, 7 =(w,w,w) Vkk=1..,p ©9)
j=1

where e, denotes the pxg matrix of input-to-hidden weights, e, is the gx p

matrix of hidden-to-output weights, (z;,z;,zj'.) is the left value, the center value, and

the right value in the jth fuzzy principal component, respectively, and (w:, w,,w,) is
the left value, the center value, and the right value in the kth fuzzy output, respectively.
Next, let 7 be the fuzzy hidden vector and w be the fuzzy output vector. The

autoassociative neural network can be considered to minimize the following error
function to obtain the fuzzy principal components:

e(X,w)=|| X-w|'= ij(fk -w,) (10)
where
2 (5 -w) = ZP:[(Xi —w) + (= w)" + (e - W)’ (1)

The framework of the autoassociative neural network can be depicted as shown in Fig. 1.
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Fig. 1. The structure of the autoassociative neural network.

In addition, we can depict Fig. 2 to describe the concept of fuzzy PCA using the
autoassociative neural network. Let a fuzzy input vector X = (J'cl,fcz)' with triangular
fuzzy number. The hidden unit projects X onto the line L spanned by e so that we can
and z .

.. . ! c
maximize the distance among z,, z,

=

g

v

Fig. 2. Geometric views in the autoassociative neural network.
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When the eigenvector is obtained by using the autoassociative neural network, the jth
fuzzy principal component can be expressed as

Z, =eX te,x ++e X . (12)

Next we provide another way to derive the fuzzy principal components using fuzzy
centers PCA.

3.2. Fuzzy centers PCA

Assume a fuzzy matrix X =[X',X°,X’], where the center matrix of X can be
expressed as

X=|: o (13)

and the left and the right spread matrices of X can be, respectively, expressed as

xlal x:p
X = : (14)
:l ° :p
and
b b
X, e X,
X'=|: . (15)
b b
x X

a c ! b r c . .
where X; =X, —X, and X, =X, =X, i=lL...,nj=L...,p.

Using the conventional PCA method, we can obtain the center and the spread
eigenvalues and eigenvectors. Then the ith fuzzy eigenvalue and eigenvector can be
obtained as

A=[A -4 A4 + 4] (16)
and

é=[e-e.,e,e+e] (17)
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Then, the jth fuzzy principal component can be obtained as

Z, =ex, +e,x, +-+e X (18)

where

~ o~ . U ! _r r_1I r_r c_c 11 I _r r 1 r_r
€%, =[minfe x e x e x ex},xy ;max{e x,e x ,e.x e .x }]. (19)

In other to show that the fuzzy centers PCA method can ensure the fuzzy principal
components are uncorrelated with each other, we define the fuzzy VIF index to measure
whether or not a new fuzzy input variable is related to the others. The fuzzy VIF
formulation can be expressed as

—~ i

VIF; = —— (20)
where 1 denotes the fuzzy number (1,1,1), and R; denotes the fuzzy coefficient of
determination when a fuzzy variable X, is regressed on the other fuzzy input variables.

Similar to traditional statistics, if ¥, is exactly multicollinear with the other fuzzy input

variables, then R; = d)(i) and I;i;‘ ; = ®(®) where ®(a) denotes the concept that
the left and the right values are close to the center value a . On the other hand, if X, is

completely uncorrelated with the other fuzzy input variables, then 13; =®(0) and

VIF ; = (1) . Now, we can show that these fuzzy principal components are uncorrelated

so that we can ensure VIF; = ®(1).

Proof:
Since  Cov(Z], %)) = Cov(é X, & X)

=3¢ =&(1¢)

=1¢¢ =d(0)
. Cov(z,%))
and R = LAY
\[ Var(z)) \ﬁ/ar(i'.)
~ 1 1
then VIF; = -——=-—"—==@(1)
B 1-00)

On the basis of the proof above, it can be seen that the proposed method can provide the
fuzzy eigenvectors to ensure these fuzzy principal components are uncorrelated with each
other. This characteristic can avoid the problem of multicollinearity. Next, FPCR is
proposed to overcome the problem of multicollinearity in fuzzy regression.
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4. Fuzzy Principal Component Regression

In Tanaka’s fuzzy linear regression, the input variables are limited to crisp values, which
are not suitable in this paper. In order to extend Tanaka’s method to consider fuzzy input
variables, several methods have been proposed'>". In this paper, we adopt the approach
of Hong et al.***® which uses shape-preserving operations to cope with fuzzy input
variables in FPCR. Note that other methods are also available to execute FPCR.

Based on Zadeh’s extension principle” with a triangular norm 7, the fuzzy number
arithmetic operations can be described as follows:

(M @ N)(z) = sup T(M(x), N(¥)) (Fuzzy number addition)

x+y=z

(M ® N)(z) = sup T(M(x), N(»)) (Fuzzy number multiplication)

xy=z

Then, the FPCR can be derived as the following equation:
7=(4,040®;0 04 ®7)=4®Z, (21)

where J =(y,,e), is fuzzy output variables with center y, and radius e,
z,=(z,7,),, Jj=L...,p isfuzzy input variables with center z, and radius y, and
;Ij =(a,c,),, j=0,...,p is fuzzy regression parameters with center a, and radius
c.
J
Let the input-output relationships be (Z,y,), i=1,...,n and a threshold 4; the
following equation holds

/t;(h) c y;' (h) i=1,...,n. (22)

From the relationship above, it can be seen that the index of fuzziness of the possibilistic
linear model can be expressed as

J=Ymax(a,|7,lz¢c). (23)
i=1 1<jsp

On the basis of concepts above, FPCR can be obtained by solving the following
mathematical programming problem:

min J =3 max(a, 17,2 ¢c,) (24)
i=1

st < L'k max(a, 17,12, 1¢)-1 L' (B¢,
1sjsp

P
Vi~ Z a;z;
jot

¢ >0,

for all i=1,...,n; j=1,...,p.
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In the next section, a numerical example is used to demonstrate the procedures of the
proposed method. In addition, ridge fuzzy regression*"* are also employed to compare
with the proposed method.

5. Numerical Example

The fuzzy data set contains the relationships among the advertised price of a newspaper
(%,), the coupon (%, ) and the product sales quantity per month (3 ) in 12 branches as

shown in Table 1. Note that the symbol d denotes the spread in each fuzzy variable so
that we can consider the fuzzy data as the memberships with L-L function.

Table 1. Fuzzy raw data of the numerical example.

Branch Sales(y) d Newspaper(x;) d Coupons(x,) d
1 104 3 47 3 22 3
2 70 3 46 3 20 3
3 90 3 37 2 13 2
4 56 3 24 1 2 1
5 84 3 43 3 17 2
6 120 3 54 4 29 3
7 62 3 35 2 7 1
8 76 3 39 2 14 2
9 66 3 31 2 6 1

10 96 3 49 3 26 3
11 70 3 45 3 19 2
12 114 3 51 4 24 3

In order to understand the relationships among the advertised price, the coupon and the

product sales quantity, fuzzy regression is used. Let L’ (k) =0.8. From Eq. (24), we can
obtain the fuzzy regression equation as

5 = (55.1181,0) +(0,0.5450)%, +(1.6269,1.0148)%, .

Next, we can calculate the fuzzy correlation coefficient to show the irrationality in the
fuzzy regression model above. Note that the formulation of the fuzzy correlation
coefficient can refer to the Appendix.

) Cov(%,, 7

R = VED)  _10.4973,09581)
" \/var(il)\/var(jz)

i Cov(%,, 7
= VD) _10.5589,09677]
* \/var(iz)\/var(f/)

~ Cov(x,,x,)

= = [0.7426,1.0000]
o \/var(fc,)\[var(iz)

It can be seen that since the fuzzy correlation coefficients between y and X is

positive, it is irrational that the fuzzy regression coefficient of X, has the zero center
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value and the negative left value. That is, the high correlation coefficients between X,

and X, ([0.7426,1.0000]) results in the problem of multicollinearity.

In order to overcome the problem of multicollinearity, the autoassociative neural
network method is first used to derive the fuzzy principal component scores as shown in
Table 2.

Table 2. Fuzzy principal component scores derived by the autoassociative neural network.

Sales(y) d Prinl(z;) d Prin2(z,) d
104 3 47.347 3.049 21.238 3.0337
70 3 46.312 3.049 19.261 3.0337
90 3 37.197 2.0327 12.418 2.0225
56 3 24.015 1.0163 1.6495 1.0112
84 3 43.262 3.032 16.316 2.037
120 3 54.464 4.0483 28.109 3.0482
62 3 35.093 2.0157 6.4719 1.0257
76 3 39.213 2.0327 13.386 2.0225
66 3 31.079 2.0157 5.5331 1.0257
96 3 49.415 3.049 25.193 3.0337
70 3 45.296 3.032 18.279 2.037
114 3 51.378 4.0483 23.173 3.0482

From the fuzzy principal component scores above, we can derive the fuzzy regression
equation as follows:

¥ =(55.6768,0) +(0,0.5413)Z, +(1.6597,1.0482)z, .

Compared with the original fuzzy regression equation, the fuzzy regression equation
above still has the irrational situation. The reason is that no matter how the original fuzzy
variables are transformed into the fuzzy principal components, the effects of the
advertised price of a newspaper or the coupons to the product sales quantity are never
negative.

Next we propose fuzzy centers PCA method to derive the fuzzy principal component
scores and the results of the fuzzy principal component scores can be presented as shown
in Table 3.

Table 3. Fuzzy principal component score using the fuzzy centers PCA.

Sales(y) d Prinl(z;) d Prin2(z,) d
104 3 7.538 0.811 0.285 0.384
70 3 5.433 0.811 —0.469 0.384
90 3 -5.909 0.131 0.694 0.331
56 3 -22.907 0.131 1.730 0.278
84 3 1.191 0.131 -0.563 0.278
120 3 17.435 1.544 0.505 0.278
62 3 -11.502 0.131 -2.260 0.278
76 3 -3.773 0.131 0.034 0.331
66 3 -15.084 0.131 -0.217 0.278
96 3 11.748 0.811 1.794 0.384
70 3 4.019 0.131 -0.500 0.278
114 3 11.811 1.544 —-1.034 0.278
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By solving the mathematical programming, the fuzzy regression equation can be obtained
as

¥ =(79.8011,24.8932) + (1.9236,1.4278)z, +(5.8366,0)z,
From the equation above, it can be seen that the fuzzy regression coefficients of Z and

Z, are both positive. That is, the advertised price of the newspaper and the coupon

always provide the positive effects to the product sales quantity. The fuzzy regression
model is rational and conforms to our intuition.

Next, we propose the ridge fuzzy regression mode to compare with the proposed
method. In order to determine the appropriate A value in ridge fuzzy regression, the
following formulation is employed:

127,28

A=p& [ AP (25)

where p denotes the number of the input variables, &’ is the least-squares estimates of

variance, and A denotes the regression coefficient vector. Note that we use the center
value to derive the appropriate A value in this paper. Using Eq. (25), we can determine
the appropriate A =2.8. Then, the ridge fuzzy regression can be derived as

¥ =1(37.0592,0.3659) + (0.6567, 0)X, +(1.2026,0)%, .

From the results of the equation above, we can conclude that the ridge fuzzy regression
model can also provide the rational and correct results. However, it should be highlight
that the fuzzy regression coefficients vary with the different A4 value. Only the
appropriate A value can determine the correct ridge fuzzy regression model.

6. Discussions

Since the fuzzy correlation coefficients between X, y and X,, y are positive, it is
rational to assume that the fuzzy regression coefficient of X and Xx, are all positive.

However, the fuzzy regression model shows that the fuzzy coefficients of X has the
negative left value. It can be seen that the irrational results are caused by the high
correlation coefficients between X and X,.

In this paper, we proposed the autoassociative neural network and the fuzzy centers
PCA methods to derive the fuzzy principal component score for dealing with the
contravention above. The fuzzy principal components are considered as the new fuzzy

input variables in fuzzy regression to ensure the uncorrelated relationship between 2z

and Z,. However, from the result of the autoassociative neural network method, the

contravention still happened. The problem of the autoassociative neural network is that it
cannot provide the uncorrelated fuzzy principal components. We can calculate the fuzzy
correlation coefficient of the two fuzzy principal components which are derived using the
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autoassociative neural network as follows:

ﬁl .. =[0.7378,1.000]. (autoassociative neural network)

Unlike the autoassociative neural network, the fuzzy centers PCA method can actually
overcome the problem of multicollinearity in fuzzy regression. We can calculate the
fuzzy correlation coefficients of the two fuzzy principal components which are derived
using fuzzy centers PCA to show the uncorrelated situation as follows:

R, =[-0.2475,0.2499]. (fuzzy centers PCA)

In addition, from the results of FPCA, it can be seen that the fuzzy coefficients of Z

and Z, are all positive. It shows that both % and X, can provide the positive effects

to the product sales quantity. Therefore, the results of FPCA are rational and intuitive.
From the results of ridge fuzzy regression, we can conclude that the ridge fuzzy
regression model can also overcome the problem of multicollinearity and can be another
alternative. However, it should be highlight that the ridge fuzzy regression may spend
more time to determine the appropriate A value.

7. Conclusions

Although fuzzy regression has been widely employed to cope with many practical
problems, the basic problem of multicollinearity has received little attention. In this paper,
two kinds of the fuzzy PCA techniques including the autoassociative neural network and
the fuzzy centers PCA methods are used to transform the original fuzzy variables into the
fuzzy principal components. Then these fuzzy principal components are considered as the
new fuzzy input variables to ensure the uncorrelated relationship among input variables.
On the basis of the numerical results, we can conclude that fuzzy centers PCA can
provide the more accurate fuzzy principal component scores than the autoassociative
neural network method and can overcome the problem of multicollinearity using FPCA.
In addition, the ridge fuzzy regression can be another alternative to deal with the problem
of multicollinearity.

Appendix

In this paper, the formulation of fuzzy correlation analysis can be described as follows.
Let the fuzzy correlation coefficient can be expressed using a interval number
Rx_y = [R;y, R;y] . The left and the right correlation coefficient can be described as

R, =min{R |x €X,y €y} (A1)

X

and

R =max{R |x €%,y €7}. (A2)

X,y
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By solving the following mathematical programming, the fuzzy correlation coefficient
between x and y can be obtained.

3 (6 -F)0,-7)
min/max R = = (A3)

> 6= Y0~

k~
IA

r

X S X

i i i?

y <y <y

IN

s.t.

IA
IA

r
i?
n,

n
-3
1

i
i=1

J7=Zy,/n
i=1

|

EI)

where x: and x denote the left and the right values of the ith sample in variable x,

and yi' and y, are the left and the right values of the ith sample in variable y.
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