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Abstract:

Recurrent event data are commonly encountered in
longitudinal studies when failure events can occur
repeatedly over time for each study subject. The
aim of this article is to examine the covariate ef-
fects on the time interval between two successive
events. Consider semiparametric linear regression
models on the time interval between two successive
events provided that the logarithm of the time in-
terval of interest is linearly related to its covariates
without specifying the joint distribution of the ob-
servations within a subject. From the ordinal na-
ture of recurrent events, estimating procedures for
the covariate effects based on a population-averaged
model approach can be developed. Examples are
conducted to illustrate the estimating methods stud-
ied in this article.

1. Introduction

Recurrent event data are common in biomedical
research. For example, carcinogenesis experiments
may result in the appearance of multiple tumors in
each animal from the day of injection. In a longi-
tudinal study, epilepsy patients were followed since
their onset of seizure and they may suffer the recur-
rences of the illness during the study period. Many
other examples include asthma attacks, bladder can-
cer and infections in AIDS patients. In the exam-
ples, the scientific interests may center on the effects
of covariates on the risk of occurrence of the events.
In the literature, various statistical regression meth-
ods have been developed for recurrent event data.
Conditional regression analysis using semiparamet-
ric hazards models for times to events and times
between successive events is developed by Prentice,
Williams, and Peterson (1981). Wei, Lin and Weiss-
feld (1989) and Pepe and Cai (1993) developed mar-
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ginal and semi-conditional hazards regression mod-
els for the times to events. Intensity models and
recurrent rate models are considered by Anderson
and Gill (1982), Lawless (1987), Lawless and Nadeau
(1995).

Alternatively to the above proportional risk mod-
els, semiparametric linear regression models are con-
sidered in this paper. Lin and Wei (1992) consid-
ered the linear regression models on the logarithms
of the times to multiple events. However, the times
of interest in the paper are the times between two
successive events. Specifically, the logarithm of the
times between two successive events is linearly re-
lated to its covariates and the corresponding covari-
ate effects in the model are assumed to be the same
for each episode of events. The aim of this paper is
to consider the estimation approaches for the mar-
ginal covariate effects without specifying the joint
distribution of the multiple times of interest. First,
assume that for each subject the random errors in
the model are exchangeable and have the same un-
specified marginal distribution function. Then, a
weighted log-rank type estimating function based
on the observed errors is considered and this esti-
mation method is an extension of the one-sample
estimation approach proposed by Wang and Chang
(1999). However, the distributions of the random
errors may not be the same for different episodes of
events. Under this situation, we consider a strat-
ified log-rank estimating function for the marginal
covariate effects, where the stratification variable is
the episodes of the events. The stratified estimat-
ing approach is the same as the log-rank estimating
function for the times to multiple events proposed by
Lin and Wei (1992). The model assumptions and es-
timation procedures for the covariate effects will be
presented in section 2. In this section, the asymp-
totic properties for the corresponding estimators of
the marginal covariate effects are also discussed. In
section 3, a simulation study and analysis of a real
data are conducted to illustrate the performance of
the estimators considered in the previous section:




2. Model and Estimation

There are n independent subjects in the study,
set T;o = 0, which is the time of the initial event
for subject i in a longitudinal study or the start-
ing time in an animal experiment or a clinical trial,
i = 1,2,...,n. Let the random variables T;; rep-
resent, the times between the (j — 1)st and jth re-
currences for j = 1,2,... and C; the time to inde-
pendent censoring, i.e. the end of the recurrence

process. Let k; be the number of recurrences for
subject ¢ under observation, that is,
ki+1
ZT,, <Ciand Y T;>Ci
i=1 =1

The bounded covariate vector for subject ¢ is de-
noted by Z; for i = 1,2,...,n. The censoring time
C; is assumed to be conditionally independent on
(Ti1,Ti2,---) given Z;. Under censoring, the ob-
served data consists of {zi,zij,0ij,7 =1,2,... ki +
1} fori = 1,2,...,n, where z;; = min(0, t,,,q -
2,_ tie) and 6, = I( Zl_lt,z < ¢i), where I(-) is
the indicator function. Note that if T;; is censored
then T;, for £ > j + 1 will also be censored because
the events of interest are ordered, that is, if 4;; = 0
then 6;, =0for £ > j + 1.

Consider the times between two successive events,
the T;;’s, follow a linear regression model so that

lOg’TiJ' =ﬂ'Z,-+e,-j,j=1,2,...;i=1,2,...,n

where 3 is a p x 1 vector of covariate effects. As-
sume that for each i, the random errors €;;,¢€;2, ...
are exchangeable and have a common marginal dis-
tribution function F, which is an unknown function.
Then, the vectors €; = (€;1,€i2,...),1=1,2,...,n,
are independently identically distributed. Note that
the survival function of €;;, 1 — F(-), can be esti-
mated by the weighted Kaplan-Meier estimator pro-
posed by Wang and Chang (1999). To obtain an es-
timating function for 8 based on the observed errors
, eij = logx;; — B’'z; and 6;; for j =1,2,... ki +1
and ¢ = 1,2,...,n, consider the weighted log-rank
statistic :

51(B, ei5)
Uln.(.B) \/— ; ;60 ( So(5, e,-i)) ’ (1)

~

wherek,-‘:lifk,-=Oandk-‘=k,~ifki21'

So(3, ei5) Z Z I(egm > €ij)/n and
=1 l m=1
1 ¢
S1(B, ei5) Z = > zel(etm > €i5)/n.
=1 "t m=1

The estimate of 3, denoted by Bi, can be derived
by solving Uj,(B) = 0. The asymptotic normality
of U1.(B) and () can be established as discussed in
the appendix of Wang and Chang (1999).

Suppose that the vectors ¢; = (€1, €i2,...,), i =
1,2,...,n, are be independently identically distrib-
uted, but the random errors €;1, €;2, . . . do not have a
common marginal distribution function. Then, the
above estimating functions, Uy, (), are not applica-
ble to this model assumption. Under this alterna-
tive model assumption, consider the transformations
of the observed data, ej; = min{log(}";_, Tie) —

ij ¢
B'zi,logC; — B'z;} and &) = I(log(3Y 7, T

i) -
B'z;,log C; — B'z;) and then the corresponding es-

timating function of 8 is
Zt— Z‘I(et] =
" I * - (2)
Zl:l (e£J = 1_1)

Uzn(B) = 655
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Let B2 be the estimate of B derived by Uzn(B) =
0. Note that the estimating function (2) is same
as the proposed estimating function of Lin & Wei
(1992) considering the linear model on the logarithm
of the times to the multiple events. Lin and Wei
(1992) have shown that Us,(3) weakly converges to
a multivariate normal distribution and /n(3 — 8)
is asymptotically normally distributed (Ying, 1993).

In addition, the asymptotic covariance matrices
for B, and 3, are difficult to estimate directly. The
corresponding confidence-intervals can be obtained
by test-based statistics considered by Wei & Gail
(1983) and Wei, Ying & Lin (1990)) and the re-
sampling method developed by Parzen, Wei & Ying
(1994).

3. Simulation

A simulation study is conducted to illustrate the
estimating methods considered in section 2. In the
simulation, consider n subjects randomly assigned
into two groups. Let a,,az,...,a, be the frailty val-
ues from the Gamma distribution with a unit mean
and variance o, denoted by Gamma(1/a, a). Given
a;, the random errors (€;1,€52,...), for i = 1 to n,
are generated from the Weibull distribution with the
survival function exp{—a;t?}. Suppose that the true
covariate effect 3 = 2 and the fixed censoring times
are equal to 3 in both groups. Then, subjects in the
group with longer expected time between two suc-
cessive events are heavily censored. For comparison,
we consider two naive logrank-type estimating func-
tions of 3: one is based on the (e;;,6:;)’s only and
another one is to use all the e;;’s and d;;'s with the
same weights as the usual independence case.




Table 1 gave the simulation results based on 1000
replicates of samples generated from the above sim-
ulation procedures. The displays in table 1 includes
the mean estimates of 3 and the corresponding stan-
dard deviations for these estimating methods. Both
estimators, 8 and (5 are more precious than the
naive estimator based on the (e;;,d;;)’s only. The
magnitude of the bias of the naive estimators by
combining all the (e;;,d;;)’s equally increases when
the correlation among recurrence times is stronger.
Note that in the simulation study the average num-
ber of events for the group with longer expected
times is less than 0.2 and the results show that 3, is
more efficient than (.

4. Data Anaylsis for Tumor Data

The example is an animal experimental data set
given in Tablel 1 of Gail, Snatner and Brown (1980).
In the experiment, 76 rats were injected with a car-
cinogen for mammary cancer at day zero, and then
all animals were given retinyl acetate to prevent can-
cer for sixty days. After sixty days, the 48 animals
which remained tumor-free were randomly assigned
to continued retinoid prophylaxis (treatment group)
or control (control group). Rats were palpated for
tumors twice weekly and observation ended 182 days
after the initial carcinogen injection. 20 of 23 rats
in the treatment group and all 25 rats in the con-
trol group have at least one tumor occurring in the
experiment.

The purpose of conducting the animal experiment
is to study the common treatment effect of the log-
linear model on the times between two successive
tumors. Table 2 displays the four estimates of the
treatment effect as considered in the above simu-
lation study. In table 2, the test-based confidence
intervals for the treatment effect are obtained by
using the asymptotic properties of the correspond-
ing estimating statistics developed by Wei & Gail
(1983) and Wei, Ying & Lin (1990). Based on the
results in table 2, one may conclude that on aver-
age the time between two successive tumors for the
treatment group is statistically significantly (0.3 to
0.8 times) longer than that for the control group.
However, the naive estimate using all the (e;j,d:;)’s
may overemphasize the treatment effect on prolong-
ing the length between two successive tumors. Note
that for th tumor data the assumption of the identi-
cally distributed random errors for each rat may be
suspected since the 95 % confidence interval based
on the estimating function (1) is much wider than
those from the other unbiased estimating methods.
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Table 1: Simulation

Frailty distributions

Methods Gamma(1/2,2) Gamma(l/4,4)
estimate (s.d.)  estimate (s.d.)
Naive (1st time) 2.013 (0.247)  2.020 (0.285)
Method (1) 2.011 (0.202)  2.013 (0.237)
Method (2) 2.015 (0.238) 2.021 (0.257)
Naive (all times) 2.230 (0.362)  2.482 (0.535)

Table 2: Analysis of Tumor Data

Methods estimate 95% confidence interval
Naive (1st time) 0.262 (0.050, 0.511)
Method (1) 0.579 (0.214, 1.176)
Method (2) 0.373 (0.306, 0.486)
Naive (all times) 0.847 (0.510, 1.292)
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