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Abstract

The statistical models for a system of linear regression-like structural equations with
observed variables, which include simultaneous equations model (SIEM) and path analysis
(PA) model, have been used extensively for exploring or examining the plausible causal re-
lationship among several continuous response variables by economists and social scientists.
These two classes of statistical models are essentially the same except that their estimation
methods differ. A system without any reciprocal effects between the response variables of
the structural equations is called a recursive model, which is particularly useful in analyzing
longitudinal data due to the temporal order of the response variables. When all the error
terms of the structural equations in a recursive SIEM or PA model are mutually independent,
it is called the fully recursive model, for which consistent estimates of the structural coef-
ficients can be obtained equation-by-equation separately. A recursive model with correlated
error terms between some of the structural equations is called the partially recursive model,
for which the equation-by-equation approach is usually not valid and the estimation of the
structural coefficients should be based on the whole system of equations. In this study, we
generalize the standard SiEM and PA method to the situations in which the outcomes of a
partially recursive system are a mixture of discrete and continuous variables. Specifically, we
combine the indirect least squares (ILS), two-stage least squares (2SLS), and instrumental
variable (IV) estimation methods of SiEM with the iterative reweighted least squares (IRLS)
algorithm of generalized linear models (GLMs) to estimate the structural coefficients of a
partially recursive model with the response variables of a mixed type. Statistical properties
of our estimators, especially the IV estimator, are examined. Our simulation studies show

promising results.

Keywords:
Causal analysis, Path analysis, Simultaneous equations model, Structural equation model, Re-

cursive model, Generalized linear models, Discrete responses, Mixed responses, Instrumental

variable.



1 Introduction

In the past 50 years or so, the path analysis (PA) method has been used extensively in various
areas of social sciences for exploring and/or examining the plausible causal relationship among
several response variables. Independently, econometricians have developed the simultaneous
equations model (SiEM) for exploring and/or examining the plausible structural relationship
among several endogenous variables. These two kinds of statistical models are essentially the

same except that their estimation methods are different.

Both PA and SiEM require that all the response or endogenous variables be continuous
random variables and their joint distribution be multivariate normality (or at least they are
symmetrically distributed). In this project, we generalize the standard PA and SiEM to deal
with binary, continuous, and/or counts response or endogenous variables as in generalized
linear models (GLMs) and call the new models the “generalized path analysis” (GPA) models

or equivalently the “generalized simultaneous equations models” (GSiEM).

2 Model

The fully recursive GPA (GSiEM) models are trivial since they can be solved equation-by-

equation. To start with, we consider the following simplest partially recursive GPA (GSiEM)



model:

g(p1) = B+ B X1 + Brz, Xo (1

2 = P+ Bog,; X1+ Paz; X3 + Yoy, V1 )

where (X1, X2, X3) are the covariates (or exogenous variables), u; and p, are the means of

the responses (or endogenous variables) Y; and Y, respectively,

Yy ~ Exponential family of distributions, e.g. Binomial (m, y; ),

Y2 ~ Normal (us,03),

and g, is the link function for u;. For simplicity, we assume that the /ink function for the
mean of Y3 is the identity function, but the other link functions, e.g. log, or the other GLMs

will be considered later.

3 Estimation Methods

3.1 Indirect Least Squares (ILS) Estimator

e Step 1:

Fit the GLM for the response Y] on the covariates X; and X, using the IRLS algorithm
to obtain the estimates Ew, Bm, and Bm of the corresponding coefficients in the first

equation.



e Step 2:

In Step 1, the pseudo-response variable Z; (defined below) on the original covariates

X, and X, on the convergence:

Zi = (Buo+Bua X + i Xa) + 91 () (Vi — 1)

= g1 () + gy () Y1 = 1) (9 () (Y1 — 1) = €] 1)

~  Zy—g1 (1)
Yi = i+ —7=—
' T g(m)
where
b= Y, = g (510 + Ela:le + Blz2X2) -
e Step 3:

Notice that by plugging
~~ Z — m
Y, =V + 1 ’gi(ﬂl)
g1 (1)

from Step 2 into the second equation, we have

Y, = Boo+ Boe, X1 + Bazs X3 + Yoy, Y1 + €2
~ 7 — (il
= Bao + oz, X1 + ﬁ2m3X3 + 723/1Y1 + [723/1 ( L 7 .?\_1__(/11)) + 62]
g1 (121)
= Bro+ Bom X1 + Bouy Xz + Yo, Y1 + €51 (4.1)

1. For simplicity, we can just use the OLS method to obtain

~ -1
Baoirs = (X; X3 ) X3TY,

3



where the design matrix is X5 = [1, X, X3, ?1] . Note that WLS estimator will

be considered in a later subsection.

2. Alternatively, to gain efficiency, we can also regress [Z;, YT on X; and X
jointly as in a regression system (RS) or seemingly unrelated regression (SUR)
model, i.e.

Z, X, O €11

Y, 0 X7J €
using the iterated feasible generalized least squares (IFGLS) method to obtain
the estimate B of B, where X; = [1,X;,Xo], X} = [1,x1,x3,?1]. , and

BT = [ ?aﬂzT] = [ﬁlO,ﬂlmla/Blmz’/@20,ﬁ2x1,162237 ’723;1]-

3.2 Two-Stage Least Squares (2SLS) Estimator

e Step 1:

Fit the GLM for the response Y; on all the covariates including X;, X5, and X3 using

the IRLS algorithm to obtain the estimates B{O, Biz,» Biz,» and B, .

e Step 2:

In Step 1, the pseudo-response variable Z; (defined below) on the covariates X7, Xo,



and X3 on the convergence:

z; = (Bio+Bio X + BieaXo + By Xs ) + 01 (8) (Vs — )

= g1(@) +g (m) V1 —m1) (o1 (1) (Yo — 1) = €1 )

~ 21— g (i)
}/1 — ’LL* _.|. _1__—._
Pog(m)
where
i =P = g7 (Bio + Biey X + Biey Xo + Bey Xa)
e Step 3:

Notice that by plugging

Zi — ¢ (ﬁf)

Y=Y+
Pt g ()

from Step 2 into the second equation, we have
Yo = oo+ Poz, X1 + Bors X3 + 72 Y1 + €2
23 — g1(13)

= Poo + Poz, X1 + P2z X3 + 721/1?1* + [’Yzyl <T(ﬁ*—> + 62]
11

= oo+ Boz, X1 + Poz, X3 + '721/1?1* + €59
Finally, find the OLS estimator
2 * 1«
,32,25Ls = (Xszz) XzTY2

where X3 = [1,x1,x3,?;].



3.3 Instrumental Variable (IV) Estimator

e Steps 1 and 2:

These two steps are the same as Steps 1 and 2 of the 2SLS estimator.

e Step 3:

From the second equation, we have
Yo = Boo + Boz, X1 4 Bozs X3 + Yo, Y1 + €2
or in matrix notation
Y, =Xy8; + €.
The instrumental variable (IV) estimator is
Borv = (X3TX2) ' XTY, (4.2)

where X, = [1,X, X3,Y;] and X} = [1, X, X3,?{], X3 are satisfied the following

requirements of an IV for estimating 3,:

1
plim—X;Tez = 0,
n
1
plimEX;sz = Xx:x, (afinite nonsingular matrix),

.1 . . .
plim=X3TX} = Zx;x; (apositive definite matrix).
n



Taking X3 as the IV, we can see intuitively that from equation (4.2)

Buv = (X3TX,) X1y,
= (X3TX2) ' X5T(X0B, + €2)
= (X3TX2) ' X3TX08, + (X3TXe) ' XS e)

= B+ (X3TX3) X5 e,

is a reasonable estimator of 3, as long as (X3TX,) X3 e, is somehow close to zero.

We have done the simulations and the results are very promising. Two formal papers are in

preparation for publication.



