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1 INTRODUCTION

In the past 50 years or so, econometricians have developed simultaneous eguations models (SiEM) for exploring
and/or examining the plausible structural relationships among several endogenous variables given a set of
exogenous variables. Independently, path analysis (PA) has been used extensively in various areas of social
sciences for exploring and/or examining the plausible causal relationships among several response variables
given a set of independent variables. These two kinds of statistical models are essentially the same except that

their estimation methods are different,

Specifically, there are two major classes of SIEM/PA models:

1. Recursive SiEM/PA Models:

(a) Fully recursive SIEM/PA models.

(b) Partially recursive SIEM/PA models.

2. Non-Recursive SIEM/PA Models.

Given a set of independent variables (or exogenous variables), a system without any reciprocal effects between
the response variables (or endogenous variables) of the structural equations is called the recursive model, which
is particularly useful in analyzing longitudinal data due to the temporal order of the responses (Finkel 1995),
Otherwise, it is called the non-recursive model. When all the error terms of the structural equations in a
recursive model are mutually uncorrelated, it is called the fiully recursive model, for which consistent estimates
of the structural coefficients can be obtained equation-by-equation separately. A recursive model with correlated
error terms between some of the structural equations is called the partially recursive model, for which the
equation-by-equation approach is usually not valid and the estimation of the stryctural coefficients should be
based on the whole system of equations. The terminology — recursive versus non-recursive — may not be so

intuitively understandable. Greene (2000, p. 659) provides the following explanation: "The joint determination



of the variables in this (recursive) model is recursive. The first is completely determined by the exogenous
factors. Then, given the first, the second is likewise determined, and so on.” In this study, we shall focus on the
recursive models and reserve the more complicated non-recursive models in a following research project. And,
note that we shall make no distinction between independent variables and exogenous variables and between

response variables and endogenous variables in this paper,

1.1 Motivation

Both SiEM and PA require that all the response variables be continucus random variables and their joint
distribution be multivariate normal (or, at least, symmetric). However, this distributional assumption may not
be appropriate especially in many biological, medical, social, and public health studies. As an example, the
following hypothetical causal model might be of interest to the investigator of a comnunity-based observational

study on the health of the elderly in Taiwan (Wu 1995):

X1 — Utilization of Health Care Facilities

A {Yes/No)
X3 L T
“
Xz — Health Status

where X1, X, and X3 are three sets of independent variables, *Utilization of Health Care Facilities” (Y;) is
a binary response variable, and “Health Status” (¥3) is a continuous response variable. We assume that the
observed y, and yo are the equilibrium values satisfving the above non-recursive model (see, e.g., Amemiya
(1985, pp. 228-229)). In order to make reasonable suggestions for the remedies of the health care policy, the
investigator is interested not only in the effects of the independent variables X; and X3 on the binary response

Y1, but also in the effects of the intermediate variable Y; with the independent variables Xz and X5 on the

continuous response Ya.



In fact, the importance of discrete response data is evident by the popularity of the logistic and Poisson
regressions in the biostatistical applications, Thus, as inspired by the generalization of the linear models to the
generalized linear models (GLMs) (Nelder and Wedderbum 1972), we are interested in generalizing the linear
SiEM and PA to deal with continuous, binary, counts, or mixed responses in partially recursive models and call
them the "generalized simultaneous equations models” (GSIiEM) or equivalently the “generalized path analysis”

(GPA).

1.2 Problem

Yet, as said by Davidson and MacKinnon {1993, p. 662),

"The problem with models that are nonlinear in the endogenous variables is that for such models
there is nothing equivalent to the unrestricted reduced form for a linear simultaneous equations
model. It is generally difficult or impossible to solve for the endogenous variabies as functions
of the exogenous variables and the error terms. Even when it is possible, Y, will almost always

depend nonlinearly on both the exogenous variables and the error terms.”
Hence, developing GSiEM/GPA models is a challenging task due to

1. the difficulty ih obtaining the reduced form of the model and

2. the potential nonlinearity in variables, parameters, and/or errors in some of the reduced-form equations.

. In this set of two papers, we will develop the estimation methods for the partiafly recursive GSiEM/GFPA
models and discuss the statistical properties of our estimators. Specifically, in this paper, we combine the indirect
least squares (ILS) and two-stage least squares (2SL.S) estimation methods of SiEM with the iterative reweighted
least squares (IRLS) algorithm of GLMs to estimate the structural coefficients of a partially recursive model

with the response variables of mixed types. In particular, with the aid of the IRLS algorithm, we derive the



reduced form of such a nonlinear recursive model, which is crucial for the ILS and 2SLS estimators. The
performances of various estimators are compared in the simulations. The applications including a real example

from a medical study are presented in another separate paper due 1o the restriction of the paper length.

2 REVIEW

The linear SiEM and PA models for continuous responses have been developed independently in the fields
of economy and social sciences. In fact, they have the same model specification, but differ in the estimation
raethods. The estimation of the structural coefficients in a SiEM is based on the first moments of the response
variables, whereas the estimation of the structural coefficients in a PA model is based on the second moments
of the response variables. See, for example, Greene (2000, Chap. 16, pp. 652-711) and Bollen (1989, Chap. 4,
pp. 80-150) for details. In the following two subsections, we shall give a brief review of nonlinear and discrete

SiEM/PA models respectively. Finally, we end this section with an introduction to GLMs.

2.1 Simultaneous Equations Models (SiEM)

2.1.1 Nonlinear SiEM

A nonlinear SiEM for the ith endogenous variable ¥; (i = 1,2,--- , M) is of the form
Yi= (Y, Xy, 8:) + e

where Y’ is a vector of endogenous variables, X is a vector of exogenous variables, 3; is a vector of unknown
parameters, and ¢, is & scalar i.i.d. random variable with mean 0 and variance o?. See, for example, Goldfeld and
Quandt (1968}, Zellner, Huang, and Chau (1965), Kelejian (1971), Greene (2000, Subsec. 16.5.2.f, pp. 689-690,
esp., Note #36), Davidson and MacKinnon (1993, pp. 661-667), Amemiya (1985, Chap. 8, pp. 245-266), and

Bowden and Turkington (1984, Chap. 5, pp. 156-201) for details.



2.1.2 Discrete SiEM

We define the discrete SIEM as the SiEM of which some of the responses are discrete such as “Yes/No™ and
“counts.” First, Schmidt and Strauss (1975) proposed a simultaneous {ogit model, which was labeled by Nerlove
and Press (1973) as a multivariate logit model. As specified by Maddala (1983, p. 108), one such model with

two binary response variables is

logit[Pr(Y1 =1) | Y2.X1] = XuB +7Ys

logit[Pr{Ys = 1) | Y1, Xy] Xaff; +7h

which requires that all endogenous variables be binary and the coefficients of ¥; and ¥; be the same.

Maddala (1983, pp. 117-125) discussed a series of six SIEM with mixed responses of continuous and
qualitative variables, but the restriction is that an underlying continuous variable from a normal distribution,
although unobserved, was assumed for each of the observed qualitative variables. For example, the observed

binary response Y3 is assumed to be generated from its underlying continuous variable ¥3', which has a normal

distribution.
o Model 1:
h = Xi8i+mlat+ea
Y7 = XaB+m¥ite
where
{ 1 ifYy >0,
o=
0 otherwise.
+ Model 2:

3
I

X181+ + e

Y? = Xaf+mhite



where

1 ifYF >0,
Y, =
0 otherwise.

1 if¥y >0,
Yy =
0 otherwise.

s Model 3:
YW = X +nhrta
Yy = Xaf,+mY te
where the definitions of Y7 and Y, are the same as those in Medel 2.
¢ Model 4:

N o= X8 +a

Yy XoBo+ ¥+ e

where the definition of Y5 is the same as that in Mode! 1. This model is a special case of Model 1 with

0.

87!
e Model 5:

n XiB+tm¥z+a

Yy = XaB;+e

where V{ea) = 1 and the definition of Y; is the same as that in Model 1. This model is a special case

of Model 1 with v = 0.
* Model 6:

Yy = Xafi+a

Y7 = X+ w4 ea



where V{e;) = V(ez) = 1 and the definitions of ¥7 and Y; are the same as those in Model 2. This model

is a special case of Models 2 and 3 with v, = 0.

Moreover, the SiEM with categorical observed variables were discussed in Manski and McFadden
(1981, pp. 345-472). In particular, Lee (1981) considered the SiEM with different endogenous variables, which
include observable continuous variables, truncated continuous variables, underlying continuous variables, and
censored dependent variables. For example, suppose that there are M endogenous variables in the model and

0<M; < My < Mz < M.

o Yy, .., Y are the observable continuous variables.

® Ya41, 0, Yo, are the runcated contimuous variables, which can be observed only when Y; > 0 for

M, <i< M,.
® Ya 41, , Yar, are the unobserved underiying continuous variables, but the corresponding binary indi-
cators Ipg,41,-+ , Jag, are observable, where

1 if¥: >0,
I =
0 otherwise.
for My < i < M.
® ¥pro41, -, Yar are the censored dependent variables.

Again, the estimation of the structural coefficients in the equations for the limited dependent variables such
s Yar,+1, -+ , ¥, mainly makes use of the probif link function, which relies on the underlying normality

assumption.

On the other hand, Greene (2000, pp. 135-137) considered a SiEM with the expected value of ¥ in the



second equation:

log(p1) = XuBy

logit[Pr(¥a =1)] = XaB,+7m

where Y ~ Poisson (j;). Specifying the expected value of a discrete Y] in the second equation for Y; avoids
the estimation problem, but it limits its applications in the situations where the observed value of Y1, instead of

its expected value, actually affects the probability of Yz being 1 as in many biomedical studies.

2.2 Path Analysis (PA)

2.2.1 Nonlinear PA Models

Kenny and Judd (1984) considered a structural equaticn model with interaction effects of two latent variables:
Y=a+mb +mie+ 161+

and

- - - - - - -
Xl 1 ).1 0 51
X3 T Az O &1 b2

= + +
Xy Ta 0 Az £ d3
X4 T4 0 )\4 454

where £; and £, are latent variables having a joint bivariate normal distribution with zero means, { ~ N{0, ),
and 4; ~ N(0,8;), for £ = 1,2,3,and 4. They proposed an estimation methed using the products of the
corresponding observed variables. The intercepts are added into the model since Joreskog and Yang (1996)
found that the intercepts must be nonzero. In fact, Joreskog and Yang (1996} had developed a general structural

equation model with polynomial relationships between latent variables. For example, they considered the



following second-order polynomial model
Y =a+ 7+ el + 111l + 12285 + 1ab1é2 + ¢

of which the Kenny-Judd model (with intercepts) is a special case. This type of nonlinear structural equation

models have a different structure from that of our GSIEM/GPA models.

2.2.2 Discrete PA Models

Apgain, we define the discrete PA model as the PA model of which some of the responses are discrete such as
"Yes/No” and "counts.” As shown in Muthén (1984), Arminger and Kusters (1985}, and their later works, a
typical approach to dealing with the discrete response variables in PA models is to use the probit link function
by assuming the existences of the underlying continucus variables. On the other hand, Hellevik (1988) and
Hagenaars (1993} developed the loglinear models with latent variables respectively with the restriction that all
the responses and covariates be categorical variables or discretized continuous variables. And, we note that
Bentler and Newcomb {1991) introduced linear structural equation models with ronrormal continuous response

variables for the study of human health-related issues.

2.3 Generalized Linear Models (GLMs)

Let © index observations, i = 1,2,--- ,n. For the ith observation, a GLM is
glu) =x; B

where 1 is the mean of the response variable Y; from the exponential family of distributions {of the same form
for all ), x; is a vector of covariates, 3 is a vector of regression coefficients, and g(-) is a monotonic and

differentiable function called the Jink fimction (to link g; with the linear combination of 3 and x;).

Linear regression (identity link), logistic regression (fogir link), probit regression (probit link), and



Poisson regression (fog link} are all special cases of GLMs. The maximum likelihood estimates (MLEs) of the
unknown regression coefficients 3 in 2 GLM can be obtained by applying the unified [RLS algorithm (see, e.g.,
Dobson (1990, Sec. 4.4, pp. 39-42) and McCullagh and Nelder (1989, Sec. 2.5, pp. 40-43)), of which an outline
is provided in Appendix. The statistical inference on the regression coefficients 3 is based on the asymptotic
distribution of the score function LF(3) (by a central limit theorem) and the first-order Taylor expansion of
U(3) for ﬁ (see, e.g., Dobson (1990, Chap. 5, pp. 49-67)). The reader may consult Dobson (1990), McCullagh

and Nelder (1989), and Fahrmeir and Tutz {1994) for more details,

3 MODEL SPECIFICATION, ASSUMPTIONS, AND INTERPRETA-

TION

The estimation of the structural coefficients in a fulfy recursive GSIEM/GPA model is trivial since they can be
estimated equation-by-equation separately. In fact, since all response variables are measured on the same group
of subjects, the error terms of the equations are likely comrelated as in the longitudinal data. Thus, to begin

with, we consider the following partially recursive two-equation GSiEM/GPA model:

gilpr) = B+ Bin, X1 + Bz, X2 G.D

p2 = oo+ Par, X1+ By Xa + vy 11 (3.2)

where X;, X3, and X3 are the independent variables, 4y and gy are the means of the response variables ¥}

and Y, respectively,

Y7 ~ The exponential family of distributions, e.g., Binomial {m, ),

Y, ~ Normal (¢g,03),

and gi{-} is the /ink function for p;. The subscript 4, which indexes the observations (i = 1,2,.-- ,n), is

dropped for simplicity. It is assumed that the error term €2 of Eq. (3.2) has mean 0 and it is independent of the

10



independent variables X, Xo, and X3 respectively, ie., 2 L Xj, 62 L Xp,and e L X3. A simplified path

diagram for Eqs. (3.1} and (3.2) is listed below.

X2 — Y,
A

X, 1
"

X3 — Y,

As in the usual SIEM/PA models, the effects of the covariates on the corresponding response variables

can be classified into three types in the GSIEMAGPA models:

1.

Direct Effect:
The structural coefficients in an equation represent the direct effects of the covariates in that equation on
the mean of the response variable of the equation. For example, B2;,, ﬂém, and ~yay, in Eq. (3.2) are the

direct effects of X7, X3, and ¥; on pg respectively.

Indirect Effect:

An indirect effect is the effect of the covariate in an equation on the mean of the response variable of a
different equation mediated by some other covariates in the causal pathway. For example, Xy has a direct
effect on g1(p1) in Eq. (3.1) and Y; has a direct effect on uo; and thus, X has an indirect effect on g2

through ¥;.

Total Effect:
The totaf effect of a covariate on the mean of a response variable is the “sum” of its direct and indirect

effects.

Remarks. Although we consider a two-equation case, the statistical methods to be introduced in the sequel can

be applied to multi-equation GSiIEM/GPA Models — at least, recursively to each equation. At this time, we

require that the link function for uo be identity. The other link functions for o (e.g., fog) and different types

11



of ¥2's (e.g., binary responses) will be considered later. Moreover, notice that if the roles of ¥; and Y5 in this

two-equation partially recursive GSIEM/GPA model are switched over, then the new GSiEM/GPA model

i G + Bre, X1 + P10, X

g2lpe) = Boo+ Box, X1 + Bagy X3 + vop, 11

would be an easier case since the reduced form of the second equation is readily obtained by plugging the
first equation (with its error term ¢;) into the second equation at the place of Y;. Finally, as regard to the
correlation between the error terms of the two structural equations Eqs. (3.1) and (3.2), we shall discuss this

issue in Subsection 6.1, when we explain how to generate such data in simulations.

4 ESTIMATION

We find the estimation methods of PA based on the second moments of the observed variables more difficult
than those of SiEM based on the first moments of the observed variables to be adopted for the GSIEM/GPA
models. The heterogeneous variance of the response variable in a GLM due to the dependence of the variance

Function on the mean of the response variable makes the estimation based on the second moments of the observed

variables even harder.

However, we may make use of the following two important tools to develop suitable estimation methods

for the GSIEM/GPA models,

1. Tool A: The IRLS algorithm can be used to linearize GLM:s.

{(a) At each iteration indexed by (m), the IRLS algorithm takes a special transformation on the original
response variable Y; to obtain a pseudo-response variable Z;, no matter what type of ¥; is, to modify

the property of the original response variable such that the criginal GLM

glps) =x1 B

12



becomes a linear regression model
B (2] = xTa™

until the convergence of A (see Appendix).
{b) Most importantly, the derived linear regression model for the pseudo-response variable Z; at the fasr

iteration of the IRLS algorithm provides an “equivalent” linear regression model for the original
GLM in the sense that they have the same values of the regression coefficients.

(c) And, instead of writing specific computing programs for a variety of GLMs according to their
likelihood functions to obtain MLEs, one can just apply one single znified IRLS algorithm for all
GLMs. See, for example, the PROC GENMOD in the SA4S for Windows and the glm function in the

S-PLUS for Windows.

2. Tool B: The estimation methods previously developed for linear SIEM/PA models may be applied to the

derived linear regression madgl for the pseudo-response variable Z; at each iteration, including the last

one, of the IRLS algorithm.

(a) Treat the pseudo-response variable Z; constructed at the last iteration of the IRLS algorithm for a
GLM as if it is a “continuous™ response variable of a linear regression model.
(b) Then, apply the usual estimation methods for a linear SIEM/PA model to obtain estimates of the

structural coefficients.

Specifically, we have the following thought in mind.

1. In solving a linear SIEM/PA model, the first step is usually to obtain its reduced form by substituting
the endogenous vari.ab]es on the right-hand side of each equation with the functions of the exogenous
variables in their own equations and regrouping the corresponding coefficients. Since in the reduced form
of a SiEM/PA model, all the terms on the right-hand side of each equation are exogenous variables, which

have no correlations with the error term of the equation by assumption, so that the regrouped coefficients

13



can be estimated by the least squares method. Then, the second step is to recover the estimates of the
original coefficients from the estimates of the regrouped coefficients in the reduced form. We can follow

the same steps to solve the GSiEM/GPA models.

2. However, in order to substitute the various kinds of endogenous variables, e.g., a "Yes/No” response, on
the right-hand side of each equation with their own set of exogenous variables, we use the IRLS algorithm

as a tool to transform each subject’s original response variable Y; into a pseudo-response variable Z; by

the following formula:
Zi=xIB+g @) Yi— ) =0 +€

s0 that we have

= h g e (8) e

for substitution (see Appendix). By doing so, plugging the estimated mean of Y1, f; (or, equivalently,
denoted as ﬁ), into the equations where Y stays on the right-hand side as a covariate for the other

endogenous variables, e.g., Y2, will probably result in consistent estimates of the structural coefficients

for Y; in those equations.

4.1 The Indirect Least Squares (ILS) Estimator

Now, we introduce the indirect least squares (ILS) method for estimating the structural coefficients in the

GLM-LM GSIiEM/GPA model (3.1) and (3.2).

» Step 1:
Fit the GLM for the response ¥; on the independent variables X; and X3 using the IRLS algorithm to
obtain the estimates 1, 5131, and Elm: of the corresponding coefficients in the first equation, Eq. (3.1).
e Step 2:

14



In fact, in Step 1, the estimates Em, 31;1, and 3112 are cbtained by fitting a multiple linear regression
of the pseudo-response variable Z; (defined below) on the original independent variables X, and X, on

the convergence:

Zy B + EMIXl + Eugxz + ¢ () (Y1 — f1)

]

Il

Bro + Biz, X1 + Big Xa + Ez,l'

Thus, we can rewrite the original response variable ¥; as a function of the pseudo-response variable Z;

in the following way:

& = (Em + §1x1X1 + Ela:gXQ) + g1 () (Y1 — fir)
= g () + ¢ (i) (Y1 — /),

Zy—-qi{@) = g ()M —ia),
- Zy — g (1)
Y - = I ~— |

LTH 7 (@)
~ , Z1— g1 (fh)
h = +—
! i g1 (f1)

where
=Y = gt (ﬁm + ﬁ]mljﬁ + El:r:z-XE) .
In this step, we just compute fi; from the first equation, Eq. (3.1}

e Step 3:
Notice that by plugging

=Y+ -—-—-—-—Zl _, gi (A1)
9t (1)

15



from Step 2 into the second equation, Eq. (3.2), we have

Y2 = oo+ 8o, Xn+ Bezs X3 + 12, Y1 + 2

~  Z— oL
74 & g1(j1)

= + &
(i) ] 2

= a0 + Boz, X1 + Bz X3 + Yoy, [

o~ 2 —m(p
= Bao+ Box, X1 + B2y Xa + vy Y14 {'Y?m (_lif—(qr:l%i)) +€2]
1

il

Bao + Box, X1 + Paz, X3 4 Yoy, Y1 + €5 (4.1)
where €3 is the error term of the second equation, Eq. (3.2), and as the "proxy” of Y7,
Pi= g7 (Bio+ Bes X1 + Brey Xa)
is a function of the independent variables (X, X3) only. Then, we may choose one of the following three
methods to obtain the LS estimate for the unknown parameters in the second equation, Eq. (3.2):
1. For simplicity, we can just use the ordinary least squares (OLS) method to obtain

- -1
Bayrs = (AFTAT) " AITY,

where the design matrix is A} = [1,x1,x3,1?1].
2. Moreover, in contrast to the OLS estimator, we may consider the WLS estimator due to the het-
eroscedasticity of €} ;. From Eq. (4.1), we know that

* Zy - ﬁ
E2;1 = Moy ( 1%(?-;1(} 1)) + ez

= 7oy, (Y1 — Il1)} + €3,
and thus
Var(e3 ) = 'ygm Var(Y1 - i1} + Var(ez) + 2Cou (yay, (Y1 — fir), €2).

Clearly, Var(¥, — £i) is not constant over all observations when Y; belongs to the binomial or

Poisson distributions. Therefore, in regressing Y, on A} = [1,xl,x3,?1], we may use the

16



iterated feasible weighted least squares (IFWLS) method, instead of the OLS method, to obtain the
estimate Ez! LS
3. Alternatively, to gain even more efficiency, we may also regress [Z;, Y2]" on A; and AJ jointly

as in a regression system (RS) or seemingly unrelared regressions (SUR) model, i.e.,

Z, A, O €11

Y. 0 A €5,
using the iterated feasible generalized least squares (IFGLS) method for this “stacked” model
to estimate 3, where A, = [1,X1,Xa}, A = 1,x1,x3,?1], and BT = ( ”{,ﬁg) -

(ﬂlﬂ: ﬁl:el 1 ,61:!:: ¥ 13201 ﬁ‘!:ﬂ 1 18253 y T2 )

In Section 5, we shall prove the crucial condition that as the *proxy” of ¥ in the equation for ¥3, f’l is indeed

uncorrelated with the “combined” etror term € ;.

4.2 The Two-Stage Least Squares (2SLS) Estimator

Next, we introduce the two-stage least squares (2SLS) method for estimating the structural coefficients in the

GLM-LM GSiEM/GPA model (3.1} and (3.2).

e Step 1:
Fit the GLM for the response ¥; on ai! the independent variables including X;, X,, and X3 using the
IRLS algorithm to obtain the estimates 35, B2, Bie,r and Bla, .

¢ Step 2:

In fact, in Step 1, the estimates 33, 8%, Bi.,, and 5, are obtained by fitting a multiple linear

regression of the pseudo-response variable ZF (defined below) on the original independent variables X,
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X, and X3 on the convergence:
Z7 = Bio+ B, X1+ Ble Xo + Brey Xa + g1 (BD) (V1 — )
= B+ Bl X1+ B Xe + Bl Xs + €l
Thus, we can rewrite the original response variable Y; as a function of the pseudo-response variable Z7
in the following way:
2 = (Bio+BieXa + BioyXa+ B Xa) + 01 (B]) (Y - i)
= g (@) +91 (B]) (Y1 - 7)),
Zi—g (A7) = et(B)(M-59),

~ Zy — q1{f])
Yy, -t = 2L S
1T 7, ()

Zt — g1 (1)
g1 (i

i = i+
where
iy = P7 = g (Bio + Bie, X + Blay Xa + Bl Xa) -
[n this step, we just compute 7} by overfitting ¥;. These two steps are similar to Steps 1 and 2 of the
ILS estimator.

» Step 3:

Notice that by plugging

Zi — a1 ()

v, =¥+ 4
! g1 (8

from Step 2 into the second equation, Eq. (3.2), we have

1’2 = ﬁzo +l8221X1 +.52923X3 '+"]"2y1Y1 +€2

= 5 X X e Z1 — ; (@)
= 0 + Goz, X1+ Fozg Xz + You Y7 + Vo | — 2 ) T €2
a1 (E7)
= Boo+ e X1 + Bony X3 + Yoy, Y7 + €31 (4.2
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where 9 is the error term of the second equation, Eq. (3.2), and as the “proxy” of Y7,
P = g (Bio + Bl X1 + Broa Xo 4 Bla Xs

is a function of the independent variables (X, X2, X3) only. Then, for simplicity, we can just use the

OLS methed to obtain the 25LS estimate for the unknown parameters in the second equation, Eq. {3.2):
= » FY -1 EY
Bagsis = (A3TA) T ATY,

where the design matrix is A3 = [1,X1,X3,‘?{]. Similarly, to gain some efficiency, we may also use

the IFWLS method considered in the previous subsection to obtain the estimate Bz.zs LS

Apain, in Section 5, we shall prove the crucial condition that as the proxy” of Y7 in the equation for Y3, 171"

is indeed uncorrelated with the "combined” error term €3";.

5 JUSTIFICATION

In this section, we will show that as a "proxy” of Y7, ?1 is uncorrelated with the "combined” error term €51

to justify our ILS estimator. Then, by the same token, we can justify the 2S5LS estimator.

5.1 Proof

Specifically, we prove that Cov (fﬁ,ez.l) = [ asymptotically in two steps.
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Since

* Z - i
€21 = T (—lgi%ﬁﬂl)-i»fg from (4.1)

=Yg (_ELI_) + €2
"\ gl ()

g1 (#) (1 —ﬁl}]
= S T e
Y20 [ o; (B1) ?

= Yo, (Y1 — 1) + €2,

we have

Cov (f’l, 5511) = 79y, Cov (171,1’1 - 17'1) + Cov (f’l,ez) .

Part 1: Proof of Cov (?1, 52) = ().

Notice that ¥; (or, equivalently, fi1) is a function of (X3, X5). By the model assumption, X; L e and
X, 1 €9, where the symbol " L™ denotes "being independent of.” Since any functions of independent variables
are stitl independent to each other (see, e.g., Casella and Berger (1990, Theorem 4.3.2, p. 150)), it is clear that

171 L e, which implies Cov (ﬁ,ez) =313
Part 2: Proof of C'ov (171, Y - 171) = 0 asymptotically.

According to the properties of MLEs, f’l (or, equivalently, fi,) is asymptotically unbiased for g;. Thus,

when sample size n is large,

E(vi-%) =E[M-m) - (Bi-m)| 20
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Therefore, as n — oc,

Cov (f?l,y1 - ?1) - E

by the double expectation theorem, which ends the proof.

To summarize, we wish to verify the crucial condition required in Subsection 4.1 that as a "proxy” of
Y1, 171 is uncorrelated with the "combined” error term 3 ;, where f'l is a function of (X, X2) and €, is
a function of €} ; and ez respectively. By the model assumption, X; and X3 are independent of 2. Hence,
we only need to verify that ¥; is uncorrelated with the error term €11 = Z1 — g1 (B1) = g1 (i1} (1 ~ &) by

checking if Cov (17'1, ¥ - ?1_) == (), which is true if the sample size is large.

5.2 Numerical Results

Next, we show that Cor (ﬁ,Yl — f’l) = 0 numerically in the following simulations, where 171 is defined in

Subsection 4.1 for the ILS estimator.
1. Binomial Distribution:
The data are generated from the following logistic regression model

logit{s1) = 3X1 + X»
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where the distributions of the covariates X, and X, are independent Normal (0, 1) respectively. Given the

sample size n = 500, averaging over 1000 repetitions yields Cor (?’1,1’1 — 171) = 2.074 x 1075,
2. Poisson Distribution:
The data are generated from the following Poisson regression model
log{p) = 1X1 + X2

where the distributions of the covariates X; and X, are independent Normal (0, 1) respectively. Given the

sample size n = 500, averaging over 1000 repetitions yields Cor (?1, - ?1) = -5.020 x 1077,

6 SIMULATIONS

In the following two simulation studies, the estimation of the structural coefficients in a partially recur-
sive Binomial-Normal GSiEM/GPA model (with logit-identity links) and a partially recursive Poisson-Normal
GSIiEM/GPA model (with log-identity links) are examined with the comparisons among various estimators

including two instrumental variable (IV) estimators, of which the technical details will be discussed in the

ACCOMPENY PApeT.

6.1 A Strategy for Data Generation

Following Hsiao (1986, Sec. 5.4, pp. 112-125), we can think that the data of the partialiy recursive two-equation

GSIiEM/GPA model (3.1) and (3.2) are generated from the following two equations:

gl(“l) = ﬁ10+ﬁ121X1 +B129-X2 +h

p2 = B+ B2 X1+ Bozy X + 0y, Y1 + ah
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where the latent variable h is generated independently from a common distribution such as
h ~ Normal (0,1)

for each subject i so that it is independent of all the independent varizbles X}, X3, and X;. After the data are
generated, the latent variable A is unknown to the data analyst. The chosen value of the /atent coefficient « on
the latent variable h in the second equation controls the degree of correlatedness between the random errors of
Eqs. (3.1} and (3.2). Yet, the other terms in the above two equations remain the same as in the specification
of the original partially recursive GSiIEM/GPA model (3.1} and (3.2). By adding an exira "unobserved” latent
variable k to the equations of a partially recursive GSiEM/GPA model, we find a feasible way to generating the

data for simulations.

6.2 A Partially Recursive Binomial-Normal GSiEM/GPA Model

For simplicity, we specify the following partially recursive two-equation Binomial-Normal GSiIEM/GPA model

logit{p1) B0 + 811Xy

B0 + B22X2 + 71 Y1

2
where the two response variables are
Y1 ~ Binomial (1, u1),
Y ~ MNormal (us,1).
And, the data are actually generated from the following two equations
logit{(pty) = 3Xp+h, (6.1)

MHa = 2X, — 2Y1 + ah (62)

where the independent variables X; and X5, the "unobserved” latent variable &, and the error term eg of the

second equation for ¥; are generated independently from Normal (0, 1). The true values of the coefficients are
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all explicitly listed in the above two equations. Then, the equation-by-equation OLS, ILS, 2SL5, IV-1, and IV-2
estimators for estimating the coefficients in the second equation are computed in the following simulations for
comparison. See Table 1 for the list of their formulas. Note that the IV-1 estimator uses the predicted value of
Y; based on X only as the instrument for Y7, but the IV-2 estimator uses the predicted value of ¥; based on

X, and X5 together as the instrument for ¥3.

6.2.1 Comparison 1: Performances of the Equation-by-Equation OLS and ILS Estimators

The value of the latent coefficient a is set to 2.0 and 5.0 respectively for varying the degree of the association
between the random components of the two equations in the partially recursive GSiEM/GPA model. The sample
sizes n are 100, 500, and 1000 in three separate simulations. And, 1000 repetitions are performed in each
setting. For each data set, the coefficient 3y, in Eq. (6.1} is estimated directly by the IRLS algorithm of GLMs.
Since the latent variable & is assumed to be unknown to us, it can not be included in the fitted models. Thus,
even though A is independent of X;, the “correct™ value of the coefficient ;; in the first equation does not
equal 3.0 due to the underfitting of the logistic regression model, which is the so-called omitted-variable bias in
GLM:s as discussed by Breslow and Day (1980), Lee {1982), Gail, Wieand, and Piantadosi (1984), and Neuhaus

and Jewell (1993).

The comparison between the equation-by-equation OLS estimate and our ILS estimate of the structural
coefficient o) on the covariate Y7 in Eq. (6.2), which has the true value -2.0, is our main interest. The means
and standard deviations (SDs) of these two estimates from the 1000 repetitions are listed in Table 2. As we
expected, the equation-by-equation OLS estimate of ~v2; is seriously biased even though the sample size n is
large. And, the asymptotic bias gets bigger as the association between the random components of these two
equations gets higher (¢.g., a = 5.0). In contrast, our ILS estimates of 72y are all close to the true parameter
value -2.0 without being interfered by the association between the random components of these two equations.

According to the histograms and quantile-normal plots (not shown here), the sampling distribution of our ILS
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estimate of o1 in Eq. {6.2) from the 1000 repetitions is approximately normal.

6.2.2 Comparison 2; Performances of the Equation-by-Equation OLS, ILS, 28LS, IV-1, and 1V-2 Esti-

mators

The value of o is set to 2.0 and the sample size n is 500 in this simulation. Again, 1000 repetitions are
performed in this setting. For each data set, the coefficients Gy and §;; in Eq. (6.1) are estimated directly by
the IRLS algorithm of GLMs. Omitting the latent variable h leads to the unbiased MLE of 5,4 and the biased
MLE of fy1, even though h is independent of X (see, esp., Gail, Wicand, and Piantadosi (1984}). Adding the
additional covariate X; into the first equation causes very little change on the MLEs of 3,5 and 3;; due to the

independence between ¥ and Xo.

The comparisons among the equation-by-equation OLS, ILS, 2SLS, IV-1, and IV-2 estimates of the
structural coefficient +z; on the covariate ¥7 in Eq. (6.2), which has the true value -2.0, is our main interest.
The means and standard deviations (SDs) of these estimates from the 1000 repetitions are listed in Table 3.
In addition, the mean of the standard error (SE) of %5, from the 1000 repetitions, which is estimated naively
by the usual OLS formula (ignoring the fact that the proxy ?’1 is actually estimated from the data) for the
ILS and 2SLS estimators and using the correct formula derived in the accompany paper for the IV-1 and V-2
estimators, is compared with the standard deviation (SD) of the sampling distribution of ¥2;. Again, we can
see that the equation-by-equation OLS estimate of «g, is seriously biased. However, the ILS, 2SLS, V-1, and
[V-2 estimates of ~y;; are very close to each other and they all are asymprotically unbigsed, It has been known
in econometrics that when the equation of ¥7 is a linear regression model, the ILS, 25LS, and V-2 estimates
are exactly the same. The difference between the mean of the estimated standard error (SE) of 7%, from the
1000 repetitions and the corresponding standard deviation (SD) of the sampling distribution of ¥;; is relatively
small in all these five estimates. Finally, according to the histograms and quantile-normal plots (see Figure 1),

the sampling distributions of the five different estimates of v2; from the 1000 repetitions are all approximately
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normal, but the center of the sampling distribution for the equation-by-equation OLS estimate of -y, is clearly

away from the true value -2.0. The similar results have also been seen when X is a binary covariate.

6.3 A Partially Recursive Poisson-Normal GSIEM/GPA Model

For simplicity, we specify the following partially recursive two-equation Poisson-Normal GSiEM/AGPA model

log{p1) = fo+ BuXy

e = Poo+ F2Xo+ Y
where the two response variables are

Y:.l ~ Poisson (#’1)?

Yy ~ Normal (ts,1).

And, the data are actually generated from the following two equations

log(i) = 1Xy+h, (6.3)

gz = 10Xz +05Y; + ok 6.4)

where the independent variables X; and X, the "unobserved” latent variable h, and the error term ey of the
second equation for Y3 are generated independently from Normal (0, 1). The true values of the coefficients are
all explicitly listed in the above two equations. Then, the equation-by-equation OLS, ILS, 25LS, [V-1, and IV-2
estimators for estimating the coefficients in the second equation are computed in the following simulations for
comparison. See Table 1 for the list of their formulas. Again, note that the IV-1 estimator uses the predicted
value of ¥; based on X, only as the instrument for ¥, but the IV-2 estimator uses the predicted value of ¥;

based on X; and X5 together as the instrument for Y;.
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6.3.1 Comparison 1: Performances of the Equation-by-Equation OLS and ILS Estimators

The value of the latent coefficient o is set to 0.5 and 2.0 respectively for varying the degree of the association
between the random components of the two equations in the partially recursive GSIEM/GPA model. The sample
sizes i are 100, 500, and 1000 in three separate simulations. And, 1000 repetitions are performed in each
setting. For each data set, the coefficient J1; in Eq. (6.3) is estimated directly by the [RLS algorithm of GLMs.
Since the latent variable £ is assumed to be unknown to us, it can not be included in the fitted models. However,
although A is omitted from the fitted first equation, the "correct” value of the coefficient J;; still equals 1.0
without the omitted-variable bias due to the log link function of the Poisson regression model as discussed by

Gail, Wieand, and Piantadosi (1984) and Neuhaus and Jewell (1993).

The comparison between the equation-by-equation OLS estimate and our ILS estimate of the structural
coefficient vo; on the covariate Y7 in Eq. (6.4), which has the true value 0.5, is our main interest. The means
and standard deviations (SDs) of these two estimates from the 1000 repetitions are listed in Table 4. Apgain,
as we expected, the equation-by-equation OLS estimate of ~yg; is seriously biased even though the sample size
n is large. And, the asymptotic bias gets bigger as the association between the random components of these
two equations gets higher {(e.g., @ = 2.0). In contrast, our ILS estimates of ~; are all relatively close to the
true parameter value 0.5 without being interfered by the association between the random components of these
two equations. Yet, according to the histograms and quantile-normal plots (not shown here), the sampling
distribution of our ILS estimate of y9; in Eq. {6.4) from the 1000 repetitions is a little skewed to the right,
which deserves a further investigation. Finally, we note that unlike the results listed in Table 2, the standard
deviations (SDs) of these two estimates from the 1000 repetitions do not necessarily decrease as the sample
size n increases. This odd phenomenon is also seen in the comprehensive simulation study presented in the

accompany paper (see Table 4 there).
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6.3.2 Comparison 2: Performances of the Equation-by-Equation OLS, ILS, 28LS, IV-1, and IV-2 Esti-

mators

The value of « is set to 2.0 and the sample size n is 500 in this simulation. Again, 1000 repetitions are
performed in this setting. For each data set, the coefficients 310 and ()4 in Eq. (6.3) are estimated directly by
the IRLS algorithm of GLMs. Omitting the latent variable h leads to the biased MLE of ()¢ and the unbiased
MLE of 3, since ¥; has a Poisson distribution and the link function is fog (see, esp., Gail, Wieand, and
Piantadosi (1984)). Adding the additional covariate X, into the first equation causes very little change on the

MLEs of £y and 511 due to the independence between ¥; and Xo.

The comparisons among the equation-by-equation OLS, ILS, 25LS, IV-1, and IV-2 estimates of the
structural coefficient ~2; on the covariate ¥ in Eq. (6.4), which has the true value 0.5, is our main interest.
The means and standard deviations {SDs) of these estimates from the 1000 repetitions are listed in Table 5.
In addition, the mean of the standard error {SE) of ¥;; from the 1000 repetitions, which is estimated naively
by the usual OLS formula {ignoring the fact that the proxy Y. is actually estimated from the data) for the
ILS and 2SLS estimators and using the comect formula derived in the accompany paper for the IV-1 and IV-2
estimators, is compared with the standard deviation (SD) of the sampling distribution of 72;. Again, we can
see that the equation-by-equation QLS estimate of o, is seriously biased. However, the ILS, 28LS, V-1,
and IV-2 estimates of gy are relatively close to each other and they all, especially the latter two, seem to be
asymptotically unbiased. As mentioned before, it has been known in econometrics that when the equation of Y
is a linear regression model, the ILS, 2SLS, and IV-2 estimates are exactfy the same. On the other hand, notice
that the ILS and 2SLS estimates are much less efficient than the IV-1 and IV-2 estimates in the estimation of
v21 by examining the standard deviations (SDs) of their sampling distributions. And, the difference between
the mean of the estimated standard error (SE) of 7y, from the 1000 repetitions and the corresponding standard
deviation (SD) of the sampling distribution of 7,5 is small only in the [V-1 and IV-2 estimates, which indicates

that the formula for the estimates of their standard errors is correct. Finally, according to the histograms and
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quantile-normal plots (see Figure 2), the sampling distribution of the equation-by-equation OLS estimate of -yzy
from the 1000 repetitions is approximately normal, but its center is clearly away from the true value 0.5, In
contrast, the sampling distributions of the [LS and 25LS estimates of yo; are a little skewed to the right, but the
sampling distributions of the IV-1 and IV-2 estimates of o, are a little skewed to the left, which also deserve

a further investigation.

7 DISCUSSION

7.1 Summary

In this study, we try to combine the estimation methods of SiEM and the IRLS algorithm of GLMs to develop
suitable estimation methods for estimating the structural coefficients in a partially recursive GSiEM/GPA model
especially with responses of a mixed type. Specifically, we have developed the ILS and 2SLS estimators in
this paper for a partially recursive two-equation GSiEM/GPA model, in which the first equation, Eq. (3.1}, is a
GLM and the second equation, Eq. (3.2}, is a linear regression model. However, it is a straightforward task to
apply the [LS and 2SLS estimators to (1) a partially recursive two-equation GSiEM/GPA model in which both
equations are GLMs by replacing ¥; as a covariate in the second equation with its proxy and (2) a partially
recursive multi-equation GSiEM/GPA model by solving its equations either recursively or jointly. Morecver,
with the aid of the IRLS algerithm of GLMs, we have cbtained from the development of the ILS method a
direct way to deriving the reduced form of a GSiEM/GPA model as a by-product, although it is usually difficult
to obtain the reduced form of a nonlinear SIEM/PA model (Davidson and MacKinnon 1993, p. 662). Finally,
we remark that up to now, we have not seen the need of adding any new or extra constraints to the current

available rules for the model identification. See, for example, Greene (2000, Sec. 16.3, pp. 663-676} for details.
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7.2 Future Work

Honetheless, the ILS and 2SLS estimators for the partial recursive GSiIEM/GPA models suffer two drawbacks.
First, it is difficult to estimate their asymptotic variances. Second, the above simulation studies give us two
different results: (1) When the distribution of the first response Y, is binomial, the performances of the three
estimators are almost the same. (2} Yet, when the distribution of the first response Y7 is Poisson, these two
estimators are asymptotically less efficient than the IV estimator. We shall develop the IV estimator for the

partially recursive GSiEM/GGPA models in the accompany paper.

8 APPENDIX: THE ITERATIVELY REWEIGHTED LEAST SQUARES

(IRLS) ALGORITHM FOR GLMS

Let ¢ index observations, { = 1,2,--- ,n and j index parameters, 7 = 1,2,--- ,p. As defined in the review

section, a GLM for the ith observation is
glw) =x; B

where y; iz the mean of the response variable Y; from the expornential family of distributions (of the same
form for all ), x; is a vector of covariates, A is a vector of regression coefficients, and g(-} is a monotonic
and differentiable function called the link function {(to link yu; with the linear combination of 3 and x;). The
MLEs for the unknown regression coefficients 3 in the above GLM can be obtained by applying the following
unified algorithm (see, e.g., Dobson (1990, Sec. 4.4, pp. 39-42) and McCullagh and Nelder {1989, Sec. 2.5, pp.

40-43)).

Recall that for a random variable ¥ having a probability density function (or probability mass function)

fly; #) with a single parameter &, the log-likelihood function is defined as

W& y) = log fy: 0).
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Then, the score function for the parameter & is

al
= —.
ui) o6
It can be shown that the mean of U is
EU)=0

and the variance of U, called the information, is
Var(U) = E(U?) = — E(U")
where

UEE‘:

(see, e.g., Dobson (1990, Appendix A, pp. 142-144)). The same results can be generalized to a set of independent
random variables Y31, Ya, - -- , Y, from the distributions of the same form with parameters 8,02, , 8, where

p<n,

Now, given a random sample of size n, let the joint log-likelihood function for the independent response
variables Yi,¥a, -+, Y;, from the (one-parameter) linear exponential family of distributions of the same form
with a single parameter #; (which may have a different value for each observation) be written, in the canonical

form, as
1(B1, 0, 0yt > Un) = 3 L= ) uib(@) + > elg) + > dlw)-
i=1 =1 i=1 =1

Based on the above results for E(I7) and Var([/), it can be shown that

and

_ BB/ (6:) — < (6:) (6:)

Var(h) @
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where the superscript ”#” denotes the derivative with respect to 8 (see, e.g., Dobson (1990, pp. 28-30)). If
b(8;) = 8;, then the formulas for E(Y;) and Var(Y;) reduce to —c’(8;) and —c”(#;) respectively. And, we

define the finear predictor n; as the linear combination of x; and 3, i.e.,

glp) =m = x B.

Then, by the chain rule, it can be shown that the jth score equation for the regression coefficient B is

Just

Ot _ =Bk (0T fOm\ O _ N~ (me—m) o -l
= BE = ;835 (59!) (3—;1;) aﬁj = E VGT(Y,) [g (“:)] Ty = 0
and the elements of the information matrix I are

_ 8! 8! Tk -1 2
where

Py — Bg(p) _?_n_i
g (l“l) - 8;}, — a“‘

(see, e.g., Dabson (1990, Appendix B, pp. 145-146)). Thus, putting things together yields the total score

equation
_ol T -1
U= 52 =DTV@E) Y - u(B) =
3
and the information matrix

I=Vaer(U)=D"V(8)'D

where V() is the variance-covariance matrix of ¥1,Ys,--- , Y, and D, called the derivative matrix, is
0
_ O -1
D=55" (g (12:)] X.
1]
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Notice that both the means u{3) and the variance-covariance matrix V(3) of ¥1, Y3, - , Y, in general depend
on SB.
If the Newton-Raphson method is used to obtain the MLEs a of 3, then at the mth iteration,

-1

g™ = g [ L yim-1, (8.1)

=" aﬁjaﬁk] FomD
Alternatively, the Fisher’s scoring method, which replaces the matrix of the second derivatives (called the
Hessian matrix} in the above equation (Eq. (8.1)) by its expected value, can be used to obtain the MLEs fi of

3. Then, at the mth iteration,
P ~f{m— -1
ﬁ(m} = '6{ 1) + [I(m—].]] U(m—l} (8-2)
due to the information equality
X
88; 88 ] 80;08n
(see, €.g., McCullagh and Nelder (1989, p. 42)). Premultiplying both sides of Eq. (8.2) by I'™~1} yields

(m—1)

I(m-l);é(m) = I(m‘“l)a + grim-1 (8.3)

which can be converted into a normal equation of weighted least squares (WLS).

First, we can rewrite the information matrix I as a weighted sums-of-squares-and-products matrix of

the covariates
I=x"wx
where the weights W is an n % n diagonal matrix with elements
e 1 rro =112
Wi = ; Tart® {lgwn™}.
Then, the left-hand side of Eq. (8.3) can be rewritten as

rm-0g™ _ xTyyrtm-1 x5
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Next, we define a psendo-response variable Z; by making the following transformation on the original

response variable ¥; (for each i}

2= Z ﬂ?ijﬁﬁmpl) + g'(ps) (Y — 43)
¥

where p; and ¢'(u;) are evaluated at ﬁ{m_l). As noted by McCullagh and Nelder (1989, p. 40}, Z; is just a

linearized form of the link function applied to Y; to the first order
Yi) 22 g} + & () (Y — ) -

Then, the right-hand side of Eq. (8.3), which is a p x 1 vector with elements

33 Fartry L1 YA 2(3; (g ]

can be rewritten as

(m—1)

I(m_l)ﬂ U(m-—l) — XTW(m_l}Z(m'—l).

Finally, assuming that 3 and g are known and X is fixed, it is straightforward to show
E(Z)=
Var(Z)=W™!
by direct calculations. Hence, the iterative equation (Eq. (8.3)) for the method of scoring can be rewritten as a
normal equation
XTwm-Dx3™ o xTyim—1 gm-1) (8.4)

for obtaining the WLS estimates of the regression coefficients /3 in the derived linear regression for the pseudo-
response variable Z(™1) with weights w1 Yet since Z(™ 1 and W™=V depend on ﬂ[m_l} Eq.
{8.4) must also be solved iteratively until 3 ™ converges. Thus, this is called the iterative reweighted least

squares (IRLS) algorithm for obtaining the MLEs of the regression coefficients 8 in a GLM.
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Table 1: The OLS, ILS, 25LS, IV-1, and IV-2 Estimators Used in the Simulation Study.

Estimator Proxy of Y;: ?1 or ?I? Formula for 32

1| OLS | Y;: Use itself. (AT A2) ' AT Y,
2| ILS | ¥.: Usethe X's in Eqs. (6.1) or (6.3) only. | (AFTAT) ™ AFTY,
3| 25LS | ¥y: Use all Xs, (AsTA3) ' ASTY,
4| 1v-1 | ¥y Use the X’s in Eqs. (6.1) or (6.3) only. | (AFTA;) ™ AFTY,
5| Iv-2 | Y5 Useall X’s. (A3T A;) T ASTY,

Notation

(1) Az = [1,%X5,Y4].

@ A = [1,%,,%,].

G) A3 = [1,X,, V7).
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Table 2: Means (Row 1) and SDs (Row 2) of the OLS and ILS Estimates from 1000 Repetitions

for the Partially Recursive Binomial-Normal GSiEM/GPA Model.

MLE OLS ILS Asymptotic | Asymptotic
n ﬁn ﬁgz “¥aq ﬂn Ya1 Bias of Bias of
B0 ) QO 20 {20y (200 OLS LS
o= 2.0
100
2,670 || 2000 -2.440 | 2.000 -1.990 -0.440 0.010
0.576 || 0.221 0302 | 0.249  0.387 0.302 0.387
500
2.590 || 2.000 -2.440 | 2.000 -2.000 -(.440 0.000
0.237 || 0.098 0,134 | D.112 0.178 0.124 N.178
1000
2.590 || 2.000 -2.440 | 2.000 -2.000 -(1.440 0.000
0.165 || 0.669 0.101 | 0.079 0.127 0.101 0.127
a =350
100
2720 || 2,020 -3.130 | 2.020 -2.050 -1.130 -0.050
0.555 || 0505 0.738 | 0.538 0.885 0.738 0.385
500
2.610 | 2.000 -3110 | 2.000 -2.010 -1.110 -0.010¢
0232 || 0228 0313 | 0242  0.391 0.313 0.391
1000
2.590 || 2.000 -3.11¢ | 1.990 -2.010 -1.110 -0.010
0.169 | 0,157 0.231 | 0.169 0279 0.231 0.279
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Table 3: Means (Row 1} and SDs (Row 2) of the OLS, ILS, 2SLS, IV-1, and IV-2 Estimates
from 1000 Repetitions for the Partially Recursive Binomial-Normal GSiIEM/GPA Model
at a = 2.0 with n = 500,

I MLE@® MLE (2) OLS
Bio A Hio Bu Bz Bao a1 Bza Fa
@ (3.0) {0) (3.0) (0) (0) (200 (20 SE
Mean (| -0.0067 2.6092 | -0.0067 26172 -0.0015 || -0.4451 -1.1130 2.0017 0.1966
5D 01304 02453 | 01312 02471 0.1286 01373 0.1946 0.0979 0.0063
ILS 28LS
B0 B3] Bz 21 Bao Ta1 B2z a1
()] {-2.0) 2.0) SE ()] {-2.0) 2.0y SE
Mean [f -0.0057 -1.9935 20017 0.2768 | -0.0066 -1.9917 20013 0.2766
SD 0.1705 02809 0.0957 0.0135 | 0.1705 02808 0.1004 0.0 135
Iv-1 Iv-2
Ba0 Y21 B2 Va1 B2o 721 B2z ¥21
{0) -2.00 (2.0) SE {0 {-2.0) 2.0) SE
Mean || -0.0037 -1.9976 20013 02886 | -0.0045 -1.9959 20013 0.2884
Sb 0.1707 0.2819 0.1004 0.0160 | 0.1706 02815 0.1004 0.0160

1. SD: The standard deviation of the estimates from the 1000 repetitions.

2. SE: The standard error of 72, estimated naively by the usual OLS formula (ignoring the fact that the
proxy ¥; is actually estimated from the data) for the ILS and 2SLS estimators and using the correct

formula derived in the accompany paper for the IV-1 and IV-2 estimators at each repetition.
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Table 4: Means (Row 1) and SDs (Row 2) of the OLS and ILS Estimates from 1000 Repetitions

for the Partially Recursive Poisson-Normal GSiEM/GPA Model,

MLE OLS ILS Asymptotic | Asymptotic
n B Bag o1 Bag a1 Bias of Bias of
{(1.0y || (10.0) (0.5) | (10.0) (0.5) OLS ILS
a =03
100
0976 || 9996 0.549 | 9997 (.482 0.048 -0.018
0217 || 0.114 0032 | 0311 0.089 0.030 0.089
500
0990 [} 9.998 0.537 | 9.995 0.490 0.037 -0.010
0.118 §§ 0.045 0.000 | 0.145 0.063 0.014 0.062
1000
0.997 || 10.00 0534 { 10.00 0.495 0.034 -0.005
0.089 || 0.032 0000 | 0.105 0.063 o.011 0.061
a=20
100
0976 | 9997 0.695 | 10.00 0.46]1 0.195 -0.039
0219 §| 0205 0080 | 0436 0.134 0.091 0.136
500
0992 || 10.00 0.646 | 10.01 0.488 0.146 0.012
0.114 || 0.095 0.045 ] 0.187 0.077 0.049 0.076
1000
0.993 || 10.00 ©0.637 | 10.00 0.490 0.137 -0,010
0.084 | 0.063 0045 ] 0.134 0.063 0.040 0.064
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Table 5: Means (Row 1) and SDs (Row 2) of the OLS, ILS, 2SLS, IV-1, and IV-2 Estimates
from 1000 Repetitions for the Partially Recursive Poisson-Normal GSiEM/GPA Model
at a = 2.0 with n = 500.

MLE (1) MLE (2) OLS
Ao B B0 Bu Bz Bz 21 B2z ¥21
{0) (1.0} {0) (1.0) ((1)] {® (0.5) (10.0) SE

Mean | ¢.4975 09931 | 0.4932 09937 -0.0006 j] -0.3882 0.645% 10.0003 0.0153

sSD 0.0946 0.1142 | 0.0956 0.1148 0.0917 | 0.1517 0.0491 0.0929 0.0038

ILS 28LS

B20 T21 Pan 21 Bao Y21 a2 F21
{Q) 0.5 (10.0) SE {0) (0.5) (10.0) SE

Mean || 0.0270 0.4867 10.0000 0.0563 | 0.0126 04917 9.9971 0.0560

SD || 0.2406 0.0787 0.1913 0.0110 | 0.2440 00794 0.1090 0.0111

IvV-1 Iv-2

Bz0 Y21 Bz “f21 Ba0 T3 Ba2 i
{ (0.5) {10.0) SE {0) (0.5 (10.0) SE

Mean | 0.0088 0.4947 99998 0.0323 | 0.0053 0.4961 9.9998 €.0320

SD || 0.1320 0.0325 0,1008 00104 | 0.1313 0.0322 0.1006 0.0104

1. SD: The standard deviation of the estimates from the 1000 repetitions.

2. SE: The standard error of 33, estimated naively by the usual OLS formula (ignoring the fact that the
proxy ¥; is actually estimated from the data) for the ILS and 2SLS estimators and using the correct
formula derived in the accompany paper for the IV-1 and IV-2 estimators at each repetition.
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Figure 1: Histograms and Quantile-Normal Plots for 7,, in a Partially Recursive
Binomial-Normal GSiEM/GPA Model from 1000 Repetitions

| From the top to the bottom: OLS, ILS, 28LS, IV-1, and IV-2. |
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Figure 2: Histograms and Quantile-Normal Plots for 7, in a Partially Recursive
Poisson-Normal GSiEM/GPA Model from 1000 Repetitions

[ From the top to the bottom: OLS, ILS, 2SLS, IV-1, and IV-2.]
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ABSTRACT

The statistical models for a system of linear regression-like structural equations with observed variables,
which include simultaneous equations models (SIEM) and path analysis (FA), have been used extensively for
exploring and/or examining the plausible causal relationships among several continuous response variables (or
endogenous variables) by economists and social scientists. These two kinds of statistical models are essentially
the same except that their estimation methods differ. Given a set of independent variables (or exogenous
variables), a system without any reciprocal effects between the response variables of the structural equations
is called the recursive model, which is particularly useful in analyzing longitudinal data due to the temporal
order of the responses. In this study, as inspired by the generalized lincar models (GLMs), we generalize the
linear SiEM and PA to deal with the situations in which the responses of a partially recursive system are a
mixture of discrete and continuous variables. In a previous work, we have developed the indirect least squares
(ILS) and two-stage least squares (2SLS) estimators for the recursive generalized simultaneous equations models
(GSiEM) and generalized path analysis (GPA) models. In this paper, we combine the instrumental variable (IV)
estimation method of SiEM with the iferative reweighted least squares (IRLS) algorithm of GLMs to estimate
the structural coefficients of a partially recursive model with the response variables of mixed types. The IV
estimation method has been developed in econometrics specifically for fixing the problem that one or more
covariates are correlated with the error term of the equation. And, we prove in the paper that our IV estimator
is consistent and asymptotically normally distributed. Unlike the linear cases, the ILS and 2SLS estimators are
no longer equivatent to the corresponding IV estimators. The simulations, in which the performances of various

estimators are further compared, show more promising resulis.

KEY WORDS:

Causal analysis; Structural equations model; Recursive model; Generalized linear models; Discrete response;

Mixed responses; Indirect least squares; Two-stage least squares.
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1 INTRODUCTION

The statistical models for a system of linear regression-like structural equations with observed variables, which
include simultaneous equations models (SiEM) and path analysis (PA), have been used extensively for exploring
and/or examining the plausible causal relationships among several continuous response variables {or endogenous
variables) by economists and social scientists. These two kinds of statistical models are essentially the same
except that their estimation methods differ. Given a set of independent variables (or exogenous variables), a
system without any reciprocal effects between the response variables of the structural equations is called the
recursive model, which is particularly useful in analyzing longitudinal data due to the temporal order of the
responses. When all the etror terms of the structural equations in a recursive SiEM/PA model are mutually
uncorrelated, it is called the fufly recursive model, for which consistent estimates of the structural coefficients
can be obtained equation-by-equation separately. A recursive model with correlated error terms between some
of the structural equations is called the partially recursive model, for which the equation-by-equation approach
is usually not valid and the estimation of the structural coefficients should be based on the whole system of
equations. Note that we shall make no distinction between independent variables and exogenous variables and

between response variables and endogenous variables in this paper.

In this study, as inspired by generalized finear models (GLMs), we generalize the linear SiEM and
PA to deal with the situations in which the responses of a partially recursive system are a mixture of discrete
and continuous variables, but we focus on the recursive models and reserve the more complicated non-recursive
models in a following research project. Since discrete responses such as "Yes/No” and “counts” are very popular
in biological, medical, social, and public health studies, the development of generalized simultaneous equations
models (GSIEM) and generalized path analysis (GPA) is important. As presented in the previous paper, we
have combined the indirect least squares (ILS) and two-stage least squares (2SLS) estimation methods of SiEM
with the iterative reweighted least squares (IRLS) algorithm of GLMs to estimate the structural coefficients

of a partially recursive model with the response variables of mixed types. In particular, with the aid of the



[RLS algorithm, we successfully derive the reduced form of such a nonlinear recursive model, which is not only

crucial for the ILS and 2SS estimators but also important in its own right.

However, in this paper, we shall develop the instrumental varigble (IV) estimator for the structural
coefficients of a partially recursive model with the response variables of mixed types (see Sections 3 and 4)
and show that the [V estimator is preferred due to the following four reasons. First, as reported in the previous
paper, the ILS and 2SLS estimators for the partially recursive GSiEM/GPA models suffer two drawbacks: (1)
It is difficult to estimate the asymptotic variances of the ILS and 2SLS estimators for a partially recursive
GSIEM/GPA model. (2} When the distribution of the first response Y; in a partially recursive GSiIEM/GPA
model is Poisson, the performances of the ILS and 25LS estimators are asymptotically worse than that of the
IV estimator. Next, as would be shown in the simulation of this paper (Section 6), when the distribution of the
first response Y; is Poisson, the ILS and 2515 estimates of the structural coefficient +;; on ¥ in the equation
for the second response Y of a partially recursive GSIEM/GPA model are consistent only in certain limited
sitnations, which depend on the values of several parameters. Moreover, although the ILS and 2SLS estimators
for a linear SiEM are special cases of the IV estimator, the ILS and 2SLS estimators for a GSiEM/GPA maodel
are not necessarily equivalent to any IV estimators (see Section 7). On the other hand, the IV estimation method
for a linear and nonlinear SiEM, which actually minimizes an appropriate quadratic form, is more general and
easier to be extended for more complex GSIEM/GPA models (see Section 2). Also, we shall prove in Section 5
that our IV estimator is consistent and asymptotically normally distributed. The simulations presented in Section

6, in which the performances of various estimators are further compared, show more promising results.

2 REVIEW

A brief review of nonlinear and discrete SiEM and PA models as well as GLMs has been given in the previous
paper. In this section, we shall focus on the IV estimators. For easy computation, let the “convergence in

probability” (i.e., -2+) be denoted by "plim” hereinatter.



2.1 The Instrumental Variable (IV) Estimators for a Linear Equation

A linear equation is specified as
Y=X3+¢

where Y is an n x 1 vector of response variables, X is an n x p matrix of covariates, 3 is a p x 1 vector of

parameters, and € is an n % 1 vector of errors. Suppose that
. 1.7
plim ;K €| #0

so that the ordinary least squares (OLS) or generalized least squares (GLS} estimators of 3 are not consistent.

However, if we can find a set of ¢ {g > p) variables to form a matrix Z such that

plim (1ZTE) =0
n

then we may use Z as an instrument for X and minimize the following quadratic form with respect to 3

S:(81W) = (Z%)" W (z7¢)

= (Y -X3TZWzT(Y - X3)
to obtain a consistent 1V estimator
Bry = (X"P,X) " XTP,Y
where W is a weight matrix and P,, = ZWZT,

The single-equation IV estimators for a linear equation with (1) homogenous and independent ¢; and
(2) heteroscedastic or dependent &; (without transformations) are listed in Table 1. And, the single-equation IV
estimators for a linear equation with heteroscedastic or dependent ¢, (with transformations} are listed in Table
2. From these two tables, we can see that the IV estimation method provides a very rich class of estimators for
linear equations. Most of the derivations are straightforward, which are available upon request from the authors,

and the technical details can also be found in the references given in the tables,



2.2 The Instrumental Variable (IV) Estimators for a Nonlinear Equation

Next, a nonlinear equation can be specified as
Y = f(X, ﬁ) + €.

One way to generalize the IV estimators from [inear equations to nonlinear ones is to replace (Y — X3) by
(Y — £(X; 8)} in the minimization of the corresponding quadratic form. Thus, given an instrument Z for X, a

consistent I'V estimator ﬁw is the value of 3 that minimizes the following quadratic form

Sx(B| W) = [zT(Y - £(X; ﬂ)}]Tw {zT(Y — £(X; ﬂ))]

(Y - £(X; 8)) TZWEZT (Y - £(X; 8))

which may have to be solved iteratively. See Bowden and Turkington (1984, Chap. 5, pp. 156-201), Amemiya

(1985, Chap. 8, pp. 245-266), and Davidson and MacKinnon (1993, pp. 661-667} for details.

3 MODEL SPECIFICATION, ASSUMPTIONS, AND INTERPRETA-

TION

As mentioned in the previous paper, the estimation of the structural coefficients in a fifly recursive GSiEM/GPA
maode! is trivial since they can be estimated equation-by-equation separately. In fact, since all response variables
are measured on the same group of subjects, the error terms of the equations are likely correlated as in the
longitudinal data. Thus, to begin with, we consider the following partially recursive two-equation GSiEM/GPA

model:

a(i) = P+ e, X1+ frz, X2 (.0

Boo + Boz, Ky + Poze Xa + 12 1 3.2)

H
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where X, Xo, and X3 are the independent variables, u; and uo are the means of the response variables ¥

and ¥5 respectively,

¥, ~ The exponential family of distributions, e.g., Binomial {m, u1),

}’2 ~ le(m=ag)a

and g;(-} is the fink function for u;. The subscript ¢, which indexes the observations (i = 1,2,.-.,n), is
dropped for simplicity. It is assumed that the error term ez of Eq. (3.2) has mean 0 and it is independent of
the independent variables X3, X2, and X3 respectively, i.e., e2 L X1, €2 L X5, and e3 L X3. As in the usual
SiEM/PA moadels, the effects of the covariates on the corresponding response variables can be classified into

three types — the direct, indirect, and ¢otaf effects — in the GSiIEM/GPA models, which have been defined in

the previous paper.

Remarks. Although we consider a two-equation case, the statistical methods to be introduced in the sequel can
be applied to multi-equation GSIEM/GPA Models — at least, recursively to each equation. At this time, we
require that the link function for uy be identity. The other link functions for uo (e.g., fog) and different types
of ¥>’s {e.g., binary responses) will be considered later. Moreover, notice that if the roles of ¥; and ¥; in this

two-equation partially recursive GSiEM/GPA model are switched over, then the new GSiEM/GPA model

Bro + Bray X1 + Prz, X2

H1

92{#2) = ﬂ?ﬂ + }6’2:‘:1Xl + ﬂ!stS + ’)‘2y1Y1

would be an easier case since the reduced form of the second equation is readily obtained by plugging the
first equation (with its error term e;) into the second equation at the place of ¥;. Finally, as regard to the
correlation between the error terms of the two structural equations Eqgs. (3.1) and (3.2), we shall discuss this

issue in Subsection 6.1, when we explain how to generate such data in simulations.



4 ESTIMATION: THE INSTRUMENTAL VARIABLE (IV) ESTIMA-

TOR

[n the previous paper, we have discussed: (1) two important tools for the estimation of structural coefficients in a
GSIiEM/GPA model, (2) the developments of the ILS and 2SLS estimators for a partially recursive GSIEM/GPA
model, and (3) the derivation of the reduced form of a recursive GSIEM/GPA model with the aid of the IRLS
algorithm of GLMs. Now, we introduce the IV method for estimating the structural coefficients in the partially

recursive GLM-LM GSiEM/GPA model (3.1} and (3.2).

4.1 Steps

+ Step 1:
Fit the GLM for the response Y7 on afl the independent variables including X, X2, and X3 using the
IRLS algorithm to obtain the estimates E{o, E{xl, ﬁ;‘mz, and E};s .

s Step 2:
In fact, in Step 1, the estimates 3fy, Bi,,» Fis,» and Bi,, are obtained by fitting a multiple linear
regression of the pseudo-response variable Zy (defined below) on the original independent variables X,
Xo, and X3 on the convergence:

Zi = Blo+ Ble, X1+ By Xa + Blay X + g1 (BY) (Y1 - B7)

= E;O + E;ZIXI + EI::;X2 + ET::SX3 + ET,2'

Thus, we can rewrite the original response variable Y7 as a function of the pseudo-response variable Z7,



ie.,
2 = (Bio+Blu X+ Biey Xo + By Xs) + 0 (B (¥ — i)
= @) +a @)Y -ay),
Z-an(l) = si@M-a),

~ Zf — g1 (A}
N T

Zi — o ()

i = g+ =
! g1 (67}

where

A=Y =g (Bio+ B X + BLo, Xo + Bl X))
In this step, we just compute fij by overfitting V.

s Step 3:
From Eq. (3.2), we have
Y2 = oo + Baz, X1 + Bozy Xa + 72y, Y1 + €2
or in matrix notation
Y2 = A28, t+ €.
Then, the IV estimate for the unknown parameters in the second equation, Eq. (3.2), is
Bn,rv = (A;TAz)—l AsTY, @.1)

where Az = [1,X;,Xs, Yi|, A3 = [1,x1, X3, ¥, and Aj satisfies the following requirements for

being an IV:
lim (ZA3Te; | = 0
p no2 =2 = 4
1
plim (;A;TAg) = Quza, (a finite nonsingular matrix),
1
plim (;A;TA;) = Quza; (a positive definite matrix).



The justification for 32, rv being a valid estimator will be given in the following subsection.

4.2 Justification

By taking A3 as the IV for estimating 32, we can see intuitively that from Eq. .1,

az,w (A5TA,) - ATY,
= (A5TA2) T AST(ALB, + &)

(AsTAz) " AsTALB, + (AsTA,) " AZTe))

Bqy + (AETﬁz)_l ATy

is a reasonable estimator of 3, as long as (A;TAg)_1 AsTe, is close to zero.

To show in our case that the IV Aj is indeed uncorrelated with the error term €2, We argue that f’{‘
{or, equivalently, £7) is a function of (X, X, X3), which are independent of ¢, by the mode] assumption, so

that A3 = [Xl,xs,f";} is independent of e;.
Specifically, the key requirement for ¥; being an IV is
lim { 197, ) =0
plim 'E 1€ ) =
but we shall prove that Cov (ﬁ, 52) = 0, which implies plim (717 > f’}le,-z) = 0 since E(e:n) = 0.
Proof: Cow (?’1,62) =10,

Note that the symbol "1 stands for "being independent of.” By the model assumption, Xy L ez and
X3 1 &. And, ¥, (or, equivalently, i} is a function of (X, X32). Since any functions of independent variables
are still independent to each other (see, e.g., Casella and Berger 1990, Theorem 4.3.2, p. 150), we have }7'1 1 eq,
which implies Cow (?1, 62) = 0. Thus, the key requirement for ?’1 being an IV is fulfilled. By the same token,

the key requirement for ﬁ* being an IV is also fulfiiled.



5 STATISTICAL INFERENCE

The statistical properties of our IV estimator for the structural coefficients in a partially recursive GLM-LM
GSiEM/GPA mode! will be investigated analytically as well as numerically. The IV estimator introduced
in Subsection 4.1, _321 o= (A;TAQ)-I AITY,, is consistent, asymptotically unbiased, and asymptotically

normatly distributed. The proofs are given in the following subsections.

5.1 Consistency

First, we prove that Bz,:v is a consistent estimator, i.e., plim 3, yv = 3.
Proof:

We have

1
plim (%A;Tn) [plim (;A;TAQ)] B, + plim (%A;Teg)

= Quaza,02
since plim (1A3%e;) = 0. And,
P - [ 1 «T _11 «T
pl.l.'l'ﬂ ﬁ2,IV = pllm EAE Ag H.A.g Yg

71 -1
= plim (;A;Tm) ;AET(A2132+£2)

: [ 1 T - 1 *T 1 *T - 1 T
= phm ;Az A.2 ;Az A.g ﬁz"’ ;Az A.Q ;‘IAZ €3

= fA,.

Hence, 8, ;- is a consistent estimator.



5.2 Asymptotic Unbiasedness

There are several definitions for asymptotic unbiasedness of an estimator. Firstly, Amemiya (1985, pp. 93-95)

and Davidson and MacKinnon (1993, pp. 124-125) defined the asymprotic unbiasedness for ﬁ as

AE(B) - [ Bar(B)-»,
ORY IO
where AE stands for the “asymptotic expectation™ (or the "asymptotic mean™) and F(E} is the cumulative

distribution function {cdf) of the limiting distribution for E Then, under this definition, a consistent estimator

is asymptotically unbiased, but not vice versa (Amemiya 1985, p. 95).

Secondly, Bickel and Doksum (1977, pp. 133-135) gave the following definition of asymptotic unbi-

asedness for 3 is

E(B)-8
1/ Var (E)
In this definition, asymptotic unbiasedness is a stronger property — a consistent estimator may be asymptotically

biased. They (1977, p. 150) provided an example in their exercise problem #8.
Similarly, Serfling (1980, p. 48) provided the following definition of asymprotic unbiasedness for Ais

lim E(E) - 8.

o0

Yet, as argued by Davidson and MacKinnon (1953, pp. 124-125), the definition of asymptotic unbiasedness
from Amemiya {1985) and Davidson and MacKinnon (1993) is preferred; and thus, we adopt their definition.
Since our IV estimator 32, 1v is consistent from Subsection 5.1, it is also asymptotically unbiased. Specifically,
as shown in our simulations to be discussed in Section 6, the IV estimator EQ,W is indeed asymptotically

unbiased.

10



Finally, to see if our IV estimator is unbiased, we partition 32. fy into two parts
Barv = (A3TA2)T'ASTY,

(A3TAL) AT (An8; + €2)

{

Ba + (AsTAz) 'AfTen.

By the model specification, X; L €3, Xz 1 €2, X3 1L €, and E(ea} = 0. Since }7’1" is a function of X, X,
and X3, we have
E[AjTe:] = 0.
Then, it seems that
E[(A3TA;) 'ATe] =0

but, in fact, f’f‘ is random and Cov(Y1,e2) # 0 may disprove it. The issue about whether a consistent 1V

estimator is also unbiased has been discussed by White (1984, pp. 9-10) and Davidson and MacKinnon (1993,

p. 217) respectively.

5.3 Asymptotic Normality

Also, we show that 32, v 18 asymptotically normally distributed, i.e.,
= d
vn (ﬁz‘w - .32) — N (0, Eﬁz.:v) :
Proof:
First, we have
_ . -1,
\/7_1 (ﬁz,w - ﬁz) = Vrr; [(AQTA2} AzTY2 - )62]
* -1 "
= +n [(AZTA2) AT (Y2 - Azﬁz)]
1 *T - 1 «T
= ﬁ —Az Az —.A.2 €a ],
n n

11



Next, we shall apply the multivariate version of the Lindeberg-Feller central limit theorem (CLT) for
independent, but not identically distributed, random vectors (see, e.g., Serfling (1980, Subsec. 1.9.2, Theorem
B, pp. 30-31) and Rao (1973, Example 4.7, p. 147)) to obtain the asymptotic normality of vr(1AsTe). In
our case, that theorem states the following. Let {A%eiz} be independent random vectors with means {0},
covariance matrices {2}, and the distribution functions {F;}. Suppose that as n — oo,

T4+ 4+ 2,
n

—r E#0
and the Lindeberg condition

1 7
e

=1

/ l|ALe|? dF; — 0 foreverye >0
HAzeialt > eV

is satisfied. Then,

v (24%e) - v (Lmlit) 5 N, 03)

n
where N, is a p-variate Normal distribution, p is the column dimension of the design matrix A3, & = 03Q 343,

and Qaga; = plim {2A35TASL). The proof is left in Appendix 1.

Finally, we obtain
= d - _

vn (ﬁz,w - !32) — Np (01 quA;AzQAEAE QA;Aa)

-1 -1
where Q1. and Q. are [plim (%AETAQ)] and [plim (1ATA3) ] respectively. Note that
Qa;4, = plim (2A3TA,) is a finite nonsingular mairix as required in Step 3 of Subsection 4.1. As given

_ -1

in Appendix 2, it is straightforward to show that plim [[%A;TAZ) 1] = [p]_im (%A;TAg)] by applying

the Application D of the Corollary in Section 1.7 of Serfling (1980, p. 26), which ends the proof.

5.4 The Estimated Asymptotic Variance

The asymptotic variance of the [V estimator 32, 1 can be consistently estimated by

1

Var (Borv) = 83:v (A3TA2) ™ (AFTAS) (ATAS)

12



where

(Yz - Azaz,w i Y, - A2ﬁz‘rv)

n—-p

~2 _
Fa v =

with p = the column dimension of the design matrix A2. By comparing the mean of the estimated standard error
(SE) of ﬁz, rv from 1000 repetitions with the corresponding standard deviation (SD) of the sampling distribution
of ﬁz v the correctness of the above formula for estimating the asymptotic variance of ﬁ.z' rv has already been
examined in our simulations presented in the previous paper. In contrast, since the ILS and 2SLS estimators
B2,ILS and EJQ,ESL s introduced in the previous paper take a “two-step” estimation procedure, the formulas
for estimating their asymptotic variances are much more complicated, although a formula for estimating the
asymptotic variance of the second-step parameter estimate has been worked out by Murphy and Topel (1985)

as discussed in Greene (2000, pp. 133-137 and pp. 433-438).

5.5 The Determinants of ﬂ;ﬁgl,;v)

In this subsection, we shall find out the major determinants of the estimated asymptotic variance for the estimate
of the structural coefficient y2; rv on the covariate Y3 in the second equation. Without loss of generality, let

all variables be centered for simplicity. Recall that the estimated asymptotic variance of 32‘ v 18
TPl - ~2 »T —l s eT gn T pwy =1
Var (ﬁz,rv) =831v (A2 Az)  (A7TA]) (AZA3)

where, after centering, Ay = [XZ,YI]: Az = [Xz,?f]a and

(Yg - A.gﬁg,fv ! (Yz - Azﬁz,w)
n—p

ag,rv =
with p = the column dimension of the design matrix Ag. By rewriting
~ * .
Y, =¥+ [g—,————] =YI+ €,

€1,2
AN

13



we can partition A3T A3 into two parts:

ATA; = AT(As+ [0, -ep)])

= ATA;+ [0, -A3Te; ).

Then, since
. 1 *T _x

plim ;Az €y, 1 =0,

we have
: 1 «T o n . 1 T
plim | —A3"AS | =plim | —AS Ao

i n

and thus

F 1!T _llnTolTxv_l . lTw_l
pllm HAZ Aﬁ ;;Ag A‘E EAﬂ AZ =p11m ;AE‘ A.2 B

Next, we make the following decomposition

( -1
X3

(ATA;)™

1

= =]
\[ YT
- -1

XA X X ¥y

3o XeYa X Ya Y

1 YYaly -LXeo¥:

4] -LXaYn X Xh

where

| A|= ZX:"E ZYuAﬁ - inzl’u inz?s’i-

Thus, the estimated asymptotic variance of Ha1,7v equals

> X3 )

Var (Fa,1v) = 82 1v = =
XA Yal - Y XeYaX XnY)

14



which reduces to

ag,rv
13 635 (Yl, ?1")

if, in addition, X> L ¥7. Hence, as one would expect, Cov (Yl,?l") is actually one of the most important

determinants for the estimated asymptotic variance of 721 sv. The better f”{ fits ¥;, the smaller Var {Fa1,1v}

would be, which will be demonstrated in the simulations of Section 6.

5.6 The Optimal IV Estimator

As discussed by White (1984, Sec. 4.3, pp. 78-106, esp., pp. 99-100), there are three ways to improving
the efficiency of an IV estimator, which are: (1) use weighted IV's and all extra available IV’s, (2) take a
transformation for a nonspherical model, and (3) use linear or nonlinear constraints. This provides a guide for

the following discussions (see, also, Tables 1 and 2).

5.6.1 The Chaice of the Weight Matrix

Recall that the key requirement for ¥ being an [V for Y7 is

D1 Y (Yig — Aﬂﬁz)] —o.

lim
P n

Under such condition, we wish to choose a 32 to make —,1; :;1 h,-'i (Y;;g — A;zﬁg) as small as possible. As

in an OLS estimation, we minimize the following quadratic form

[A3T (Yo — As82)] " [AST (Y2 — AzBy)]

1

5:1(8;)

(Y2 — A28;)" AJAT (Y2 — Asfy)

with respect to 3,. Differentiating S,(3,) by 3, and setting it to zero

—-—355;323 = —2A7AGASTY: + 287 ASASTA8, =0
2

15



yields
ATATATAB, = ATASALTY,
so that
Borv = (ATA3AITA:) T ATASATTY,

(A3TA;) " (ATA) T ATAASTY,

(A3TA)1ASTY,

where A3TA; and ATAS are square and nonsingular. In general, the instrument A3 can have a larger rank

than As. If Rank(A%) > Rank(Aj), then

~ -1
By = (ATAJASTA)  ATAASTY,.

Moreover, since Var [A3T (Y — A2f,)] is not homogenous, we can use the optimal weight matrix

{Var [A5T (Y2 — Agﬁz)]}_l to improve the efficiency as in a GLS estimation. Thus, we minimize the
following quadratic form
L T * - -1 13
S2(By | W2y = [AST(Ya—A28;)] (AsTAZ) ™ [AST (Y2 — Aufy)]

(Yz — AsBy)T A3 (A3TAS) T AT (Y2 — Aofy)

with respect to 3,. Differentiating S2(3, | W2) by 3, and setting it to zero
Bl L) _ _aTa; (ATAD) ™ ALTYa + 24T A (A57A3) T AT AL, =0
yields
ATA3 (ATA7) " A3TAL8, = ATA; (A3TAS) T ALTY,
50 that
Bav = (ATA3(ATTAD) T ATTAS) T ATA; (A7A) T ATTY,
= (ATP4-A;) ATP,.Y,

16



where P4 = A} (A;TA;}‘“‘A;T. See Bowden and Turkington (1984, pp. 13-14) and White (1984, Sec.

4.3, pp. 18-106) for more details.

However, if Rank(A}) = Rank{Aa), then
- " * e g -1 * * et
Borv = (ATAZ(ASTAS) T ATTA:) ATAG(ATAD) T ATTY:
* =1 * w1 * * wy—1 -
=S (AZTAQ) AzTAz (A—{Az) A;I‘AZ (AzTA2) AzTYz
= (ATA) T ASTY,
which reduces to ﬁz, 1v. Thus, when Rank(A3) = Ronk(Az), the optimal weighted [V estimator and the

unweighted IV estimator are exactly the same.

§.6.2 The Choice of Overfitting and/or Larger Rank

Although the asymptotic variance of the IV estimator will usually get smaller by adding extra TV's, the gain
in efficiency may be very little after including an additional IV. As pointed out by White (1984, p. 82), if the
extra IV is uncorrelated with the residual [I — A (A;TAE)"I A;T} A, in our notation, then it would not be

useful.

563 The Choice of the Best TV Estimator for a Nonlinear Equation

Amemiya (1985, p. 248) has provided the best nonlinear two-stage least squares (BNL2S) estimator for a
nonlinear SiEM, which is actually an IV estimator (Davidson and MacKinnon 1993, p. 663). The optimal

choice of an IV for a nonlinear equation
Y=FX;8)+e

is

G =E(Gy) =E [%

17



evaluated at the true value of 3. Then, the best [V estimator for this nonlinear equation can be obtained by

minimizing the corresponding quadratic form as mentioned in the review section.

In our case, since f of the second equation is just the identity function, we have

5,

88,

Thus, the optimal choice of an IV for our second equation is
G = E(Gq) = E(As)

of which the best proxy is Aj3. And, the best IV estimator for 3, can be obtained by minimizing the following
quadratic form
. - -1 L
Sa(By | Wa) = (Y2 f(A26))7 Aj (ATTA)™ A3 (Ya — f(Axf))

= (Y2 — Aafy)T A3 (A3TA) T AT (Y2 — AaBy)
which reduces to S2(3, | W2).

To summarize, we remark that for the second equation in our partially recursive two-equation GSiIEM/GPA
model (3.1) and (3.2), the IV A} is the best choice for Ao, in which the IV 17’1" is the best choice for ¥;, and

our 32. v is the optimal IV estimator in this sefting.

6 SIMULATIONS

In the following two simulation studies, the estimation of the structural coefficients in a partially recur-
sive Binomial-Normal GSiEM/GPA model (with logit-identity links) and a partially recursive Poisson-Normal
GSIEM/GPA model (with log-identity links) are examined with the comparisons among various estimators

including the ILS and 25LS estimators developed in the previcus paper.

18



6.1 A Strategy for Data Generation

Following Hsiao (1986, Sec. 5.4, pp. 112-125), we can think that the data of the partially recursive two-equation

GSiEM/GPA mode! (3.1} and (3.2) are generated from the following two equations:

]

ai{p1) B0 + Bra, X1 + Prz, X + b

Ba0 + B2z, Xi + B2z Xa + 12, Y1 + aft

1

M2
where the latent variable h is generated independently from a common distribution such as
h ~ Normal {0, 1)

for each subject i 5o that it is independent of all the independent variables X, X2, and X;. After the data are
generated, the latent variable & is unknown to the data analyst. The chosen value of the laternr coefficient o on
the latent variable A in the second equation controls the degree of correlatedness between the random errors of
Eqgs. (3.1} and (3.2). Yet, the other terms in the above two equations remain the same as in the specification
of the original partially recursive GSIEM/GPA model (3.1) and (3.2}, By adding an extra "unobserved” latent
variable h to the equations of a partially recursive GSiEM/GPA model, we find a feasible way to generating the

data for simulations.

6.2 A Partially Recursive Binomial-Normal GSiEM/GPA Model

For simplicity, we specify the following partially recursive two-equation Binomial-Normal GSiEM/GPA model

logit(p1) = fio+ Fn X

Bao + a2 Xa + v 11

Ha
where the two response variables are

},1 ~ Binomial (11 #’1):

Y ~ Normal (pg. 1)

19



And, the data are actually generated from the following two equations

PuXi +A,

1

logit(ts1)

2 = 2Xp—2¥1 4+ ah

where the independent variables X; and X, the “unobserved” latent variable h, and the ervor term ez of the
second equation for Y3 are generated independently from Normal (0, 1). The true values of the coefficients are
all explicitly listed in the above two equations except 31;. The value of the latent coefficient « is set to 2.0
for fixing the degree of the association between the random components of the two equations in the partially
recursive GSIEM/GPA model. The sample sizes n are 50, 100, 250, 500, and 1000 in five separate simulations.

And, 1000 repetitions are performed in each setting.

Specifically, we choose seven different values of 54, which are 0.2, 0.4, 0.6, 0.3, 1.0, 1.5, and 2.0
respectively, to see their impacts on our ILS, 2SLS, IV-1, and I'V-2 estimates of -y2; by looking at the mean and
standard deviation of the sampling distribution of F4; from the 1000 repetitions. The major part of the simulation
results are listed in Table 3. For an easy grasp of the vast outputs from the simulations, we subjectively consider

the estimates which satisfy the following two criteria as being good:

« Criterion A (biasedness): A = | Mean of F2;’s from the 1000 repetitions — 1 | < 0.1.

e Criterion B (efficiency): Standard deviation of 7y, s from the 1000 repetitions < 1.0.

In other words, an estimate is not good if its bias is too big or its variance is too large. Then, a summary of our
findings is given below: All the ILS, 28LS, IV-1, and [V-2 estimates are good when (1) F11 = 0.4 and sample
size n = 1000, (2) B1; = 0.6 and sample size n = 500 or 1000, (3} S11 = 0.8 or 1.0 and sample size n = 250,
500, or 1000, and (4) 814 = 1.5 or 2.0 and sample size n = 100, 250, 500, or 1000. Therefore, we can see that
not only the ILS, 2SLS, IV-1, and IV-2 estimators are all asymptotically unbiased and equally efficient, but,
more importantly, their performances heavily depend on the value of 1, in the first equation since it determines

the correlation between Y; and its proxy ¥, to be used in the second equation.
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6.3 A Partially Recursive Poisson-Normal GSiEM/GPA Model

For simplicity, we specify the following partially recursive two-equation Poisson-Normal GSiEM/GPA model

log{p1) = Fot+ Xy

g2 = fPao+ 00Xy + vl
where the two response variables are

}’1 ~ Poisson (ul}s

Y; ~ Normal (ug,1).
And, the data are actually generated from the following two equations

log(p) = BuXi+h,

pa = 2Xo—-2¥7 +ah

where the independent variables X; and X, the »unobserved” latent variable b, and the error term eg of the
second equation for Y5 are generated independently from Normal (0, 1). The true values of the coefficients are
all explicitly listed in the above two equations except 311. The value of the latent coefficient o is set to 2.0
for fixing the degree of the association between the random components of the two equations in the partially
recursive GSIEM/GPA model. The sample sizes n are 50, 100, 250, 500, and 1000 in five separate simulations.

And, 1000 repetitions are performed in each setting,

Specifically, we choose seven different values of B11, which are 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, and 2.0
respectively, to see their impacts on our ILS, 2SLS, IV-1, and IV-2 estimates of 4 by looking at the mean
and standard deviation of the sampling distribution of 72, from the 1000 repetitions. The major part of the
simulation results are listed in Table 4. Again, for an easy grasp of the vast outputs from the simulations,
we subjectively consider the estimates which satisfy the above-mentioned two criteria as being good. In other

words, an estimate is not good if its bias is too big or its variance is too large. Then, a summary of our findings
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is given below: All the ILS, 2SLS, IV-1, and [V-2 estimates are good when (1} §;; = 0.2 and sample size n =
1000, (2) B11 = 0.4 and sample size n = 250, 500, or 1000, (3) 31; = 0.6 and sample size n = 100, 250,
500, or 1000, and (4) S11 = 0.8, 1.0, 1.5, or 2.0 and sample size n = 50, 100, 250, 500, or 1000. Therefore,
we can see that the performances of the [LS, 28LS, IV-1, and IV-2 estimators again heavily depend on the
value of B, in the first equation since it determines the correlation between Y7 and its proxy ¥, to be used
in the second equation. However, only the IV-1 and IV-2 estimators are asymptotically unbiased, whereas the
ILS and 2SLS estimators are not in this situation. In fact, the biases of the ILS and 2SLS estimators, which
may still be within the range of + 0.1 (see Criteria A), depend on the value of 5,7 — they have shown a "U”
shape with the bottom at the value of 8, around 0.8, which has puzzled us and deserves a further investigation.
Moreover, the IV-1 and V-2 estimators are surprisingly much more efficient than the ILS and 2SLS estimators
across almost all good settings by comparing the standard deviations of their sampling distributions. Finally, we
note that unlike the results listed in Table 3, the standard deviations of the ILS and 2SLS estimates from the
1000 repetitions do not necessarily decrease not only as the sample size n increases but also as the value of 3,
increases. The first odd phenomenon has already been seen in the simulation study presented in the previous
paper (see Table 4 there). In contrast, the standard deviations of the [V-1 and IV-2 estimates from the 1000
repetitions show very reasonable results, which decrease as the sample size n increases and as the value of 513

increases.

7 COMPARISON: THE RELATIONSHIP BETWEEN THE 2SLS AND

IV ESTIMATORS

It has been known in econometrics that the 2SLS estimator is a special case of the IV estimator in a linear
SiEM/PA model, Yet, as seen in the above simulations, they can be quite different in our partially recursive
two-equation GSIEM/GPA model. We shall explore the relationship between our 2S8LS and IV estimators in

this section. See Table 1 of the previous paper for their formulas.
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7.1 Proof

To prove analytically that Bz,zsx,s # 321 v We just need to show that

ASTAS #ASTA,.

First, we compute

xT
AJTA; = | xT [xl X ?;]
YT
[ XTx, XTX, | XTV:
= | XIX, XIX; | xT¥;
¥iTX, VX, | YT

Similarly, we have

A;TAQ = Xg [Xl X3

Then, we must check if B1p = Bf, or, equivalently,
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2
-
1
=
Nah
Il
[ ]

and if Bza = B3, or, equivalently,
¥ (Y1 - ?;) =0.

Nonetheless, it is not clear how this can be done analyticaily without any further information, We simply note

that the score equation for a GLM is of the form

DTV YY - u(8)) =0
so that in our case,

DIv;! (Y1 - ?;) >0

when al converges. Then, we resort to the simulations with an attempt to falsify these equalities (by finding

counterexamples) in the next subsection.

7.2 Numerical Result

To check on the above three equalities, we specify the following two GLMs for simulations.

+ Binomial Distribution:

logit(ss1) = 3X; + A.

+ Poisson Distribution:

log(p1) = 1X; + A

24



The covariate X; and the latent variable  are generated independently from Normal (0,1). The sample size is

500. And, 1000 repetitions are performed.

Then, we consider the following three situations.

1. When the distribution of ¥; is Normal and the link function is identity, it is clear that

D'Vl=Al=[1 X"
so that

And, we have

YTy, - ¥;TY;

)
— %
fa
o
et
-
I
)
g
e
]

= VTYI -7V

= 0
due to the idempotency of the projection matrix. Therefore, the 2SLS and IV estimators are identical in
this situation, which has been known for years.

2. When the distribution of Y; is Biromial and the link function is logit, it can be shown that

DTV =AT=[1 X,]”
so that
1T (Y1 - i‘r;) = 1.585 x 10~3 2 @

XF (¥: - ¥1) = 4465 x 10-5 20
on the convergence of the IRLS algorithm in our simulation. And, we find that
T (Vi ?;) =3.206 % 10~* =
from our simulation. Therefore, the values of the 2SLS and IV estimators are very close to each other in
this situation.
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3. When the distribution of Y7 is Poissor and the link function is fog, it can also be shown that

D'VI1-AT=[1 X"
so that
1T (Y1 - ¥1) = -2633x 1077 20

X7 (Ya- ?;) —3810x 1040
on the convergence of the IRLS algorithm in our simulation. However, we find that
¥:7T (Y1 - "I';) = 279.196 2 0

from our simulation. Therefore, the values of the 2SLS and IV estimators are different in this situation.

This discrepancy ends the proof of this section.

8 DISCUSSION

8.1 Summary

In this study, we try to combine the estimation methods of SiEM and the IRLS algorithm of GLMs to develop
suitable estimation methods for estimating the structural coefficients in a partially recursive GSiEM/GPA model
especially with responses of a mixed type. Specifically, we have developed (1) the ILS and 2SLS estimators
in the previous paper and (2) the IV estimator in this paper for a partially recursive two-equation GSiEM/GPA
medel, in which the first equation, Eq. (3.1), is a GLM and the second equation, Eq. (3.2), is a linear regression
model. And, as mentioned in the beginning of this paper, the IV estimator is preferred in terms of asymptotic
performance and generality. However, unlike the LS and 25LS estimators, it is not a straightforward task
to apply the [V estimator to a partially recursive two-equation GSiEM/GFA model in which both equations
are GLMs. When the second equation in a partially recursive GSIEM/GPA model is a GLM, some additional

difficulties arise for the IV method because (1} the link function of a GLM makes it nonlinear and (2) the
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variance function of the response variable in a GLM usually depends on its mean. Thus, the IV estimator for a
GLM derived by minimizing a quadratic form like the one defined in the review section for a nonlinear equation
would be inconsistent. By applying the theory of the estimating function, we have developed a general IV for
GLMs and will present the result in a forthcoming paper due to its general applicability in the error-in-variable
problem and the simultaneous equations of GLMs. Then, with the general IV for GLMs, the multi-equation
partially recursive GSiEM/GPA models are straightforward extensions of the two-equation cases, which can be
solved either recursively or jointly. Again, up to now, we have not seen the need of adding any new or extra
constraints to the current available rules for the model identification. See, for example, Greene (2000, Sec. 16.3,

pp. 663-676) for details. Finally, we note that a real data set from a clinical study has been analyzed using our

methods and reported in a separate paper.

8.2 Future Work

The ILS, 2SLS, and IV estimators that we have developed are all the single-equation methods. It will be a
further challenge to work on the fellowing problems:; (1) How can the single-equation IV estimator be applied
to a non-recursive GSIEM/GPA model? (2) And, can the system methods be developed for estimating the

structural coefficients in a partially recursive or non-recursive GSiEM/GPA model to gain efficiency?

9 APPENDICES

9.1 Appendix 1: v/t (1A37e) = v/ (Zmi) £, N, (0,03 Quy4;)-

We shall prove that

1, . TiiAbea) d 2
vn ;Az €2)=vn| =25 ) 55 N, (0,03Qu;0;)

n
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where N,, is a p-variate Normal distribution, p is the column dimension of the design matrix Ao, and Qaz43 =

plim (1A3TAS).

Proof:

-~

We know that X;1 L €49, X2 1 €9, }’:I = f(X,':[,X;g), and €;5 mi N (D, 02), where i.1.d. stands for

“independent and identically distributed” And, we assume

E(X%) <oo and E(XF) <

forv=1,2, --. Now, we write
m €52 (1}
13 *
‘\‘,E (Zi-.—-—l Aiz'ﬁi?) — \/E E "=I Xizez = \/7_1 (2}
n n
T, Ve
I i l“ il 12 ] (3} ]
Term (1):
n 13
Y Elen - Ble2)l* = S E(eh)  (because Efe) = 0)
i=1 i=1
n aa
= 230‘* (because o BN (0,02))
i=1
= 3not
and
n
B = Z Var{ea)
=1
L3
= Yo
=1
= Mz
so that
lim Yor i Elez — Elen)|* -1 3no? _g
n-soc Biln n—+oo nict ’
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Then, by Serfling (1980, Subsec. 1.9.2, Theorem A and Corollary, pp. 29-30), we obtain

vn (_Z;ilf_%) 2 N(0,0%).

4

In fact, we can directly apply the Lindeberg-Lévy CLT for iid. random variables (see, e.g., Serfling (1980,

Subsec. 1.9.1, Theorem A, p. 28)) to get this result, but the above proof is illustrative for the proofs of Terms

(2) and (3).
Term (2):
= 4
z E |X,'2£,'2 — E(Xizeig}l = E E 2€,2 (because E(X,'gf,'g} = U)
fz=]
= EE (X%) E (ef)  (because Xiz L eia)
fa=]
= 30*Y E(X})
and
B, = Y Var(Xues)
=]
= ZE X‘I2Elz
=1
= Y E(X3L)E(ch)
i=1
= o EE (ngz)
i=1
so that
E;_1E|X12512 E(-"Tﬂfiz)l4 — lim 30t z?=1E(X?2) —
n—mo Bi. n—00 64[}:;;1 E( Xizz)]z

since the numerator and the denominator are O(n) and O(n?) respectively. Then, by the same token, we obtain

Jn (2:;1 Xizéz'z) 2N (01 lim [21;1 i' (Xizz)] az) _

n
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Term (3):

i E I?ﬁﬁiz -E (‘-'A’;'{ Gz'z) to En: E (i}ili‘iEfQ) (because E (?ﬁfiz) = 0)
i=1

i=l
- i E(Vi*)B(eh)  (because Xi L ez, Xiz L €iz, and ¥ = f(x,-l,xﬂ))
i=1
"
. 4 x4
~ 3¢ ;E(Yl)
and
B}, = gw (Fiea)
- Y 5(%a)
= iE(ﬁﬁ)E(ea)
=1
- 3B (%)
so that
- z:LIEIfé:e;:E(ﬁ;ea) L st B (%)
o 5 s (7))

since the numerator and the denominator are O(n) and O(n?) respectively. Then, by the same token, we obtain

Ja (}:;;1 f;‘;eu) e (0, - [ELIE (?.-;z)] 02) |

n—oa n

Moreover, for any real A;, g, and As which are not all equal to zere,

5" B| (b + XaXia 4 207 e = B [ (A1 + Xa o + 2oTa ) ]|

i=1

- ;E :(A1+A2Xm+x3ﬁ;)4efz] (because £ [ +XaXo + 2572 €] =0)
s
=1

304 i E [(Al + XX+ Aaﬁ'{r}

f=1

v 4 .
()u + Ao Xz + )‘31’5) ] E () (because Xip Lo, Xio Lein, and Y] = f(XiI:XiZ))
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and

B, = i Var [(Al + Az Xia + Asi;:;) Eiz]
=1
= Zn: E [().1 + Ae X + }\ati:ﬁ)2 f?z}
i=1
n

= Z E [()q + A2 Xiz + 3\3?5)2] E ()

=1
n

= ¢o? ZE [(-3\1 + A Xio + Asfﬂ)z]

=1
50 that

T E | (/\1 + A X2 + laﬁ'{) €2 — E [(11 + Az X2 + )\3?’5) Eﬂ] l‘l

1 1
n—+0oo B4n

Y
'Y, E [(Jh + A2 X2 + Asyﬁ) ]

lim ,
n—0o0 N 2
ot {z?=1 £ [(4\1 + Ag Xz + AaY‘{) ] }

since the numerator and the denominator are O(n) and ((n?) respectively. Thus, by the same token, we obtain

o~ 2
n _ e .. SiaE [ A+ A2 Xip + AaY)] ]
Jn (Zi:l ()u + Ao Xip + A.'JYH) 6:2) 4, N 0, lim 1 ( ) o2

T nooc 7

Hence, by the Cramer-Wold device (see, e.g., Serfling (1980, Subsec. 1.5.2, Theorem, p. 18)),
':1_ Ar €

where Q;.4; = plim (1 A3TA3).

-1

9.2 Appendix 2: plim [(%A;TAg)_l] = [plim (%A;TAz)]

We shall show that

i [GA;TM)_I] - [plim (%A;TAQ)]—l
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where Az = [1 X2 Vi andA;=[1 X, ¥

Proof:
First, we have
IT
1 1
—A*TAz - = T
n 2 n X2 1 Xz Yl
YT
1 P, 7 e Ya
n n
= Xz E:X,-zz S Xia¥a
143 n b1
¥ IxaV) Zva¥y
T n n
Then, we set
Xi Y;
S 1 o e
1 »T 2
3 - — ok X X: XizYi =
plim (nAz A, ) =plim En_m }:T'z E% = | co1 en2 coa
TV DXxeP;, Dvaf
n nz ,,1 €31 €32 €33
so that
CoaC33 — €32023 C13C32 — C12€33  C12023 — C13Ca2
[ im (1asma,)] = 1
pam { —fAg Ag = C31C23 — C21C: €33 — €13C €31013 — C
n CA;A, 31023 — €21C33 33 13€31 21C13 23
C€21C33 — C31C22 C31C12 — €32 Caz — C21C12
where

1
Caza, = |plim (HA;TM) # 0.

On the other hand, (%AETAQ)-I equals

TXREYa¥]  EXoV T XeYu IDXeVIF¥e EXeXYu¥i] ZXoTXeVo ZXhTva
b3 I 1 n n T n n n ™ n Tt

1 TPl D XaYa _ DXe LVa¥3 vl Dyva ¥ X Vo o XelVa
Cf‘A n n n n n n n n n n
2442 i ~ . -
XX Xa¥5 ZXH¥3 L X ¥a L Xa¥i Zxh _ EXaXXa
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where

Fa¥ 1 "
Caza, = ‘;%Tﬂz

IR EPM AN E APIEC XV T Ya 4+ 2=Xa X Xo¥a SV
1]

n mn n n n T n
SYaXXaTrls TXetaXXeti SYu¥i/EXe\’
n 23 n n n n n ’

Then, by the Application D of the Corolflary in Section 1.7 of Serfling (1980, p. 26) regarding sums

and products of random variables converging in probability, we have

. N B
plim Ci;ﬂz = plim IEA.QTA.Q

= Caz 4,

and
CazC3z — Cazfea  C13C3z — C12033  C12023 — C13C22
im |{1asTA -
p (; 2 2) - C A3 Az €31C23 — £21C33 €33 — €13C31 €21C13 — €23
C21C32 — C31C22 €31C12 — C32 Cz2 — C21C12
Hence,

1 ~1 1 -1
plim [(;A;TAQ) ] = [plim (EAETA2)] .
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Table I: The Single-Equation Instrumental Variable (IV) Estimators for a Linear Equation with
{1) Homogenous and Independent €; and (2) Heteroscedastic or Dependent ¢; {without

Transformations).
Var(e;) Unweighted IV-OLS Analogs Weighted IV-OLS Analogs
(1} Rank(Z) > Rank(X)
1| By = (XTP:X) ' XTP,Y, Brv = (XTP,X) ' XTP, Y,
where P, = ZZT. where P, = Z (ZTZ) ™" Z7.
Bowden and Turkington (1984, p. 13). Bowden and Turkington (1984, p. 14) and
White (1984, p. 9).
£ | By = (XTPiX) ' XTR,Y, Brv = (XTP3X) " XTP5Y,
where P; = ZZT. where P; = Z (ZTEZ) ™ ZT.
Bowden and Turkington (1984, p. 13). Bowden and Turkington (1984, p. 15) and
Davidson and MacKinnon (1993, p. 663).
[2] Rank(Z)} = Rank(X)
1| By =(Z2TX) ' 2TY. By = (2™X) 7 2TY.
Bowden and Turkington (1984, p. 13). Bowden and Turkington (1984, p. 14).
2 | Bp = (2TX) 72Ty, Bry = (ZTX) ' ZTY,
Bowden and Turkington (1984, p. 13). Bowden and Turkington {1984, p. 15).
MzZ=X
1| B = (XTX)7' XTY. By = (XTX) ' XTY.
and Bowden and Turkington (1984, p. 70} and | Bowden and Turkington (1984, p. 70) and
b3 White (1984, p. 9). White (1984, p. 9).

1. The linear equation is specified as Y = X3 + €.

2. Z is the instrumental variable for X.
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Table 2: The Single-Equation Instrumental Variable (IV) Estimators for a Linear Equation with

Heteroscedastic or Dependent ¢; {with Transformations).

Var(e;) Unweighted IV-GLS Analogs Weighted 1V-GLS Analogs
{1) Rank(Z) > Rank(X)
E | Bpn = (XTPX) ' XTR,Y, | B, = (XTPeX) ' XTPsY,
where P, = Z712ZTE ), where Pg = £7'Z (ZTE'Z) ™ 275"
Brys = (XTPsX) ' XTPsY, | By = (XTP:X) 7 XTPyY,
where P5 = CTZZTC, where P, = CTZ (272Z) ' Z"C.
(For example, C = -V 2) Bowden and Turkington {1984, p. 70) and
White (1984, p. 98).
[2] Rank(Z) = Rank(X)
£ | By = ETE'X) ZTEY. | By, = (2727IX) T 2TE Y.
Brve = (ZTCX) T ZTCY. Brva = (27CX) " ZTCY.
Bowden and Turkington (1984, p. 71).
Blz=X
2 | By = (XTBX) T XTE'Y. | By = (XTEOIX) T XTENY.
Brve = (XTCX) ' XTCY. Bive = (XTCX) ' XTCY.
Bowden and Turkington (1984, p. 71).

1. The linear equation is specified as ¥ = X3 + €.

2. Z is the instrumental variable for X.

3. In this table, "IV1” is Z* = CZ and "IV2” is Z.
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Table 3: The Means and Standard Deviations of the Four Estimates of the Coefficient v, (= -2.0)
from 1000 Repetitions for the Binomiai-Normal GSIEM/GPA Model at o = 2.0.

Mean Standard Deviation
n B ILS 28LS Iv-1 1v-2 ILS 2518 Iv-1 V-2

50 | 02} 0.6220 | -0.3604 | 2.1040 | -2.3562 || 122.0623 | 44.6926 | 59.8189 | 59.7691
04 (| 27037 | 1.2227 | 2.53%4 | 4.8437 612024 | 73.8298 | 171.6641 | 173.0208
0.6 || -0.5021 | -3.1253 | -4.9218 | -2.5843 72.078C | 39.4788 | 102.8768 | 16.9492
0.8 || -2.3544 | 22051 | -1.7302 | -2.2360 39763 1 5.3581 16.8234 6.1378
1.0 |F -2.3858 | -2.2326 | -2.2561 | -2.2875 4.7537 | 3.5737 3.5158 3.8%61
LS || -2.1370 | -2.1456 | -2.1666 | -2.1567 1.7247 | 1.9873 2.0318 2.0468
20 | -2.0000 | -1.9845 | -2.0133 | -1.995] 1.1893 | 1.1883 1.1962 1.1926

100 | 02 { -0.7737 | -1.7080 | -7.473] | 4.1729 || 65.4209 | 40.8639 | 156.1715 | 131.8802
04 || -2.0060 | -12719 | -1.1144 | -1.7986 19.3989 | 20.3911 | 41.7691 | 15.1956
0.6 || -2.2241 | -2.4977 | -2.4614 | -2.3410 5.7528 | 5.1915 57290 | 154473
0.8 || -2.6559 | -2.2763 | -2.2720 | -2.2263 16.0896 | 4.5728 4.5519 3.8566
1.0 | -2.2723 | -2.1388 | -2.1428 | -2.1130 6.9785 | 29252 28641 2.1827
L5 || -2.0348 | -2.0297 | -2.0451 | -2.0379 09784 | 0.9814 0.9891 0.9883
20 || -1.9958 | -1.9920 | -2.0040 | -1.9997 0.8185 ] 0.8163 0.8260 0.8233

250 } 0.2 || -0.1197 | -0.4207 | -1.5144 | -4.5752 84.3684 | 479877 | 404075 | 52.6492
04 | -2.3474 | -2.5767 | -2.5737 | -2.7678 14.1987 ; 12,7347 | 129134 9.7287
0.6 | -2.1255 | -2.1195 | -2.1217 | -2.1201 1.4654 | 1.4454 1.4463 1.4451
0.8 | -1.9951 | -1.9942 | -1.9959 | -1.9965 0.9815 | 09792 0.9810 0.9807
1.0 ([ -1.9973 | -1.9964 | -2.0012 | -1.9989 0.8027 | 0.8047 0.8062 (.8065
1.5 || -1.9991 | -1.9985 | -2.0041 | -2.0029 0.5824 | 0.5823 0.5859 0.5849
20 (| -2.0175 | -2.0155 | -2.0227 | -2.0201 05135 | 05132 0.5149 0.5144

500 | 02 | -1.8226 | -2.1636 | -2.1788 | -1.9409 || 23.0826 | 14.3063 | 14.1890 | 16.9720
04 | -2.1447 | -2.1438 | -2.1447 | -2.1440 14818 | 1.4798 1.4797 1.4793
0.6 || -2.0799 | -2.0804 | -2.0813 | -2.0810 0.8782 | 0.8800 0.8809 0.3807
0.8 || -2.0346 | -2.0341 | -2.0366 | -2.0359 0.6833 1 0.6830 0.6838 0.6835
1.0 || -2.0340 | -2.0327 | -2.0348 | -2.0335 0.5684 | 0.5670 0.5674 0.5665
1.5 | -2.0153 | -2.0150 | -2.0193 | -2.0185 0.4193 | 04192 0.4199 0.4197
20 || -2.0169 | -2.0154 | -2.0215 | -2.0202 0.3467 | 0.3464 0.3478 03477

1000 | 0.2 } -1.5910 § -2.5351 | -2,5399 | -2.7862 || 248714 | 6.9869 7.0859 | 13.6898
04 | -2.0821 | -2.0830 | -2.0831 | -2.0830 09418 | 0.9441 0.9439 0.9439
0.6 ([ -1.9947 | -1.9940 | -1.9941 | -1.9%40 0.6259 | 0.6249 0.6251 0.6253
0.8 || -1.9963 | -1.9960 | -1.9969 | -1.9966 04771 | 04772 0.4770 04770
Lo § -2.0010 | -2.0007 | -2.0023 | -2.0019 0.3953 | 0.3954 0.3954 0.3953
L3 || -2.0063 | -2.0057 | -2.0086 | -2.0082 0.2814 | 0.2812 0.2817 02816
2.0 || -2.0041 | -2.0036 | -2.0080 { -2.0074 0.2401 | 0.2400 0.2404 0.2401
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Table 4: The Means and Standard Deviatiens of the Four Estimates of the Coefficient vz, (= -2.0)
from 1000 Repetitions for the Poisson-Normal GSiEM/GPA Model at o = 2.0,

Mean Standard Deviation

n B ILS 2S8LS | Iv-1 Iv-2 ILS 28LS ] Iv-1 Iv-2
50 | 02 [ -1.6211 | -1.7040 | -4.7418 | -2.0372 || 49.9497 | 7.3601 | 78.4194 | 7.3625
04 (| -2.6557 | -2.1114 | -2.8568 | -1.9522 77178 | 24277 | 16.7946 | 9.0721
0.6 || -1.9258 | -1.9596 | -1.9936 | -1,9235 49979 | 3.8789 | 3.9265 | 7.5392
0.8 || 2.0126 | -2.0270 | -2.1007 | -2.0584 04143 | 04014 | 09186 | 0.3559
1.0 || -1.9641 | -1.9941 | -2.0541 | -2.0415 0.3142 | 03224 | 0.2027 | 0.1969
1.5 || -1.9472 | -1.9837 | -2.0230 | -2.0159 02604 | 02594 | 0.0388 | 0.0844
2.0 || -1.9192 | -1.9666 | -2.0119 | -2.0084 02541 | 02359 § 003838 | 0.0351

100 | 0.2 || -1.8489 | -1.8147 | -1.9319 | -1.8583 5.1869 | 3.4710 | 4.6789 | 8.5031
04 || -2.1004 | -2.1055 { -2.1093 | -2.1060 1.4952 | 0.6457 | 0.8686 | 0.7029
0.6 || -2.0235 | -2.0421 | -2.0667 | -2.0579 || 03218 | 0.3403 | 0.2794 | (.2815
0.8 || -1.9840 | -2.0049 | -2.0377 | -2.0303 02717 | 02754 | 0.1632 | 0.1589
1.0 || -1.9790 | -2.0062 | -2.0281 § -2.0214 | 02597 | 0.2681 | 0.1191 | 0.1145
LS || -1.9429 | -1.9801 { -2.0112 | -2.0086 i 02777 | 02732 | 0.0453 | 0.0440
2.0 {| -1.9051 | -1.9530 | -2.0040 | -2.0026 || 0.2722 | 0.2600 | 0.0168 | 0.0161

250 | 0.2 || -2.9145 | -2.1028 | -2.3145 | -2.0623 || 26.1916 | 2.6276 | 5.7663 | 2.6912
04 (| -2.0344 | -2.0470 | -2.0432 | -2.0365 0.2895 | 03029 | G.2573 | 0.2539
0.6 || -2.0069 | -2.0175 | -2.0224 | -2.0187 02228 | 02314 | (.1332 | 0.1326
0.8 || -1.9833 | -2.0016 | -2.0097 | -2.0066 0.2250 | 0.2366 | (.08035 | 0.0791
1.0 || -1.9516 | -1.9780 | -2.0099 | -2.0072 || 0.2564 | 0.2676 | 0.0516 | 0.0508
1.5 |{ -1.9109 | -1.9462 | -2.0050 | -2.0037 02782 { 0.2736 | 0.0194 | 0.0190
2.0 [| -1.8908 | -1.9318 | -2.0020 | -2.0015 0.3005 | 0.2853 | 0.0071 | 0.0068

500 | 0.2 || -2.1511 | -2.1489 | -2.1596 | -2.3568 1.2985 | 1.2771 1.3289 | 7.0380
0.4 || -2.0150 | -2.0207 | -2.0226 | -2.0205 0.1853 | 0.1928 | 0.1499 | 0.1492
0.6 || -1.9996 | -2.0053 | -2.0133 | -2.0117 0.1674 | 0.1739 | 0.0868 | 0.0865
0.8 || -1.9917 | -2.0050 | -2.0089 | -2.0070 || 0.1938 | 0.2017 | 0.0538 | 0.0533
LG || -1.9612 | -1.9763 | -2.0057 | -2.0042 0.2402 | 0.2432 | 0.0346 | 0.0343
1.5 || -1.9427 | -1.9627 | -2.0020 | -2.0014 0.2970 | 0.2914 | 0.0111 | 0.0110
2.0 || -1.8933 | -1.9321 | -2.0011 | -2.0008 0.3044 | 0.2923 | 00040 | 0.0039

1000 | 0.2 || -2.0599 | -2.0629 | -2.0586 | -2.0567 0.3208 } 0.3216 | 0.3155 | 0.3171
04 || -2.0079 | -2.0109 | -2.0088 | -2.0075 0.1336 | 0.1374 | 0.0990 | 0.0989
0.6 [ -1.9992 | -2.0041 | -2.0015 | -2.0004 0.1454 | 0.1495 | 0.0566 | 0.0562
0.8 || -1.9954 | -2.0044 | -2.0039 | -2.0031 G¢.1798 | 0.1911 | 0.0359 | 00359
1O || -1.9771 | -1.9880 | -2.0021 | -2.0014 02174 | .2214 | 00222 | 0.0220
1.5 || -1.9478 | -1.9688 | -2.0013 | -2.0010 03149 | 0.3171 | 0.0070 | 0.0068
2.0 | -1.9060 | -1.9399 | -2.0004 | -2.0003 03188 | 03179 ] 0.0020 | 0.0019
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