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Abstract

Factor analysis (FA) has been used widely in various areas of sciences to explore or examine the latent
measurement structure from a set of observed indicator variables. Both the observed and the latent variables
are usually assumed to be continuous and, at least, symmetrically distributed. In the past 30 years or so,
several methods had been proposed to extend the FA method for discrete observed indicator variables and/or
latent variables, which include latent structure analysis, latent profile analysis, latent class analysis, latent trait
analysis, and factor analysis of categorical data. See, for example, Bartholomew (1987) and Basilevsky (1994,
Chaps. 8 and 9, pp. 501-621) for details and the references therein. We are interested in developing a general
framework for FA, called the “generalized factor analysis” (GFA), for continuous, discrete, or mixed observed
indicator variables, as long as they belong to the exponential family of distributions such as Normal, Binomial,
and Poisson distributions. Just like the gererafized linear models (GLMs), which include analysis of variances
{ANOVA), linear regression, logistic regression, and Poisson regression as the special cases, we hope that the
GFA method extends the standard FA method to build a measurement structure of continuous latent variable(s)
from observed continuous, binary, ordinal, count, or mixed indicator variables in a unified way. Yet, before doing
that, we investigate the equivalence between exploratory factor analysis (EFA) and confirmatory factor analysis .
(CFA). To estimate the factor loadings in a GFA model, we apply the iterative reweighited least squares (IRLS)
algorithm of GLMs to "linearize” the generalized factor model first, and then use the usual estimation methods
of factor analysis to obtain the estimates of the factor loadings. Specifically, we develop independently a unified
three-step estimation procedure for GFA, which is similar to the E-M algorithm discussed in Bartholomew
(1987, Sec. 6.1, pp. 107-115). On the other hand, we treat the estimation of factor loadings in GFA models
as an error-in-variable problem of GLMs, and then take econometricians’ instrumenial variable (1Y) approach
for simultaneous equations modef (SIEM) to estimating factor loadings. We shall discuss the results of our

simulation study and compare the performances of different estimators numerically.

Keywords:

EFA, CFA, Spectral decomposition, Identifiability, GLMs, IRLS algorithm, Categorical response, Discrete data,
Response of a mixed type, Structural equation model, LISREL model, Emor-in-variable, Instrumental variable,

Simultaneous equations model.
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1 Introduction

1.1 Development

The main purpose of factor analysis (FA) is to describe the covariance relationships among several observed
variables in terms of fewer latent variables with the interpretation that the latent variables (called the factors),
although unobserved, are manifested by these observed variables (called the observed indicator variables). Thus,
the factor model specified for an FA is usually considered as a measurement model, which describes how the

factors are “"measured” by these observed indicator variables.

There are two major kinds of FA:

1. Exploratory factor analysis (EFA}

2. Confirmatory factor analysis (CFA)

The modern beginning of EFA lies in the early 20th century through the attempts of Karl Pearson, Charles
Spearman, and some others to define and measure human’s intelligence. At times, however, FA of a set of
observed variables may have already been carried out in different samples, and thus the prior information about
the measurement structure is available for use in further samples. For example, the number of common factors
or the factor loading coefficients found to be insignificantly different from zero may be known to the researchers
in the field. This method is CFA and its development is historically independent from EFA. As suggested by
their names, EFA and CFA are usually used for different purposes — EFA for exploring, but CFA for verifying

— a latent measurement structure among the observed indicator variables.

1.2 Motivation

Example: A Measurement Model for Child’s Health Status,

Suppose that a pediatrician is interested in studying the effect of exercises on kid’s health. He asks the

following questions in order to measure a child’s health status:

1. Body strength? e.g., What is her/his body mass index (BMI)? (Ratic data)

2. Physical activities? e.g., How fast can sthe run? {Continuous data)
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3. Parents’ judgment: 1, 2, -+, 77 (Ordinal data)

4, Number of times getting cold in the past two months? (Counts data)

Motice that the answer to each of these questions is of a unique data type. Although a variety of factor analysis
technigues have been developed in the past, factor analysis of discrete data is still under development and most
of factor analysis methods are designed to analyze the data with af/ continuous, ordinal, or categorical indicator
variables. To handle the data of such a mixed type, factor analysis for non-homogeneous data is still a challenge

to statisticians.

1.3 Focus
In this research, we shall focus on the following two settings:

+ Discrete indicator variables: For example, binary, counts, or ordinal.

e Mixed indicator variables: For example, continuous, binary, and counts.

An outline of the related methods are listed below.

1.3.1 Discrete Indicator Variables

L. All Binary Indicator Variables:

{a) Standard Factor Analysis:
s Tetrachoric correlation
(b) Factor Analysis of Categorical Data (Bartholomew 1987):
» Probit link
e Logit link
{c) Other Factor Analyses:
e Latent structure analysis
» Latent profile analysis (LPA)
e Latent class analysis {(LCA)

s Latent trait analysis (LTA)
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2. Polytomous Indicator Variables:

(a) Non-Ordinal Scale
(b} All Ordinal Scale:

e Factor Analysis: Polychoric correlation

1.3.2 Mixed Indicator Variables

» Continuous vs Ordinal Scales:

— Factor Analysis: Polyserial correlation

We shall give some details in the review section.

2 Review #1: Factor Analysis (FA)

2.1 Continuous Data
2.1.1 Exploratory Factor Analysis (EFA)

A brief review is given below. See Hamilton (1992, Chap. 8, pp. 24%-288), Johnson and Wichern (1998, Chap.
9, pp. 514-586), and Basilevsky {1994, Chap. 6, pp. 351-422) for more details. The Table 8.16: Summary of
factor analysis options of Hamilton (1992, p. 282) provided an outline of the key elements of EFA.

1. Model {with m Orthogonal Common Factors):
(a) Specification:

Xi—m = A+l 4+ -+ lhimFnte
Xo—pr = R +inFh+ - +hmPnte

Xa—ps = kR +ilpFh+ +lamFnt e

Xp"#’p = tplFl+tp‘2F2+"‘+£mFm+Ep
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where m < p. Or, in matrix notation,
prl —Hpx1 = prmmel + Epx1-

(b) Assumptions:

E(F)=0, Var(F)=1I,
E(e) =0, Var{e) = ¥ (a diagonal matrix),
Cov(e, F}) = 0.

(¢) Covariance Structure:

Tx =Var(X) = Var(LF +¢) = LVar(F)L" + Var{e)
= LILT+ ¥ =LLY +¥.
of = Var(Xy) = (I, +8+-+0.)+ ¥
= hi+t¥e (k=1,2,---,p)
= Communality + Specific Variance.
Cov(X,F) = Cov(LF,Fy=LI=L.
Cov(Xe, F;) = .

2. Estimation:

Since the m latent variables F' have zero means and an identity variance-covariance matrix, the estimates
of the factor loadings L can be obtained by decomposing the variance-covariance matrix X x of the

centered X by the spectral decomposition theorem (for a square matrix) as shown below,
(a) Spectral Decomposition of A Square Matrix:
A=PAPT

where A is a diagonal matrix of the eigenvalues A;'s of the square matrix A and P is an orthogonal
matrix (i.e., PTP = PPT = I so that PT = P™%) of the eigenvectors corresponding to the
eigenvalues ;s (see Johnson and Wichern 1998, pp. 67-68 and Basilevsky 1983, pp. 201-203).

{b) Application to the Orthogonal Factor Model:
If ¥ = 0, then

Ex =LLT
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but
Tx = PAPT = (PAY%)(AY2PT)
so that
L = PAY?,

When the model has as many factors as the number of the indicator variables, (i.e., m = p), the
covariance matrix X x can be decomposed exactly as LLT, since ¥ is a zero matrix. In EFA, it
is requested that the set of eigenvectors in the crthogonal matrix P be orthonormal. Specifically,

there are two major methods for obtaining the estimates of the factor loadings.

A. Principal Factor Method:

Principal factors are the principal components of the modified correfation matrix I, in which the estimates

of the communality replace the diagonal elements.
{a) Let X be standardized, if the factor model p = LLT 4+ is correctly specified, then p;; = h? 44 =
1. Let hf = 1 — i, and thus the result matrix is p — ¥ = LET.

{b) Set the initial estimates ¥77. The most popular choice is ¥ = 1/r*, where r¥ is the ith diagonal
element of R, or ¥} = 1/s%, where 5% is the ith diagonal element of S~'). Then, replace the
ith diagonal element of the sample correlation matrix R by A% = 1 — 47, we obtain a "reduced”

sample correlation matrix
R 2L LT

where L = {I;} are the estimated loading. The principal factor method of factor analysis obtains

the estimates

» EX T LY T
L. = [M&]. 4383, -+, AL €]
{c) In turn,
m
*2 _ »2
A =312
=1

The communalities are then (re)estimated by
m
o =1-3o07
j=1

(d) The principal factor solution can be obtained iteratively with the communality estimates from (b).
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See Johnson and Wichern (1998, pp. 529-530).

B. Maximum Likelihoed Method:

If the common factors F and the specific factors £ can be assumed to be normally distributed, then the
maximum likelihood estimates of the factor loadings and the specific variances may be cbtained. When
F; and ¢, are joint normal, the observations X; — u = LF; +¢; are normal. Then the likelihood function
is

@er)-F|Tx|F e~ (A (B (G =KX - R) T+ (X —p)(X—p) T)]

(27) T8 | B |~ B o= (D[R (Sas 04 -RIG-R) T 40 (&R T)] o

(2m) 5| Ex| e~ (R F-wTB R

which depends on L and ¥ through Ex = LET +®. It is desirable to make L well defined by imposing

the computationally convenient xniqueness condition that
LT® 'L = A be a diagonal matrix.

The maximum likelihood estimates I and & must be obtained by numerical maximization of L{g, Nx ).

See Johnson and Wichemn (1998, pp. 529-530).

3. Factor Rotation:

If L is the p x m matrix of the estimated factor loadings obtained by one of the available methods (e.g.
principal component, maximum likelihood, and so forth}, then I'=ITisa p* m matrix of the "rotated”
factor loadings, where T is a chosen orthogonal matrix (i.e. TT" = TTT = I). After the rotation, the
estimated covariance {or correlation) matrix remains unchanged, since A4 +¥ = E(TTT}ET +¥ =
B2 + &. See Lawley and Maxwell (1971, pp. 79-83), Hamilton (1992, pp. 259-263), Johnson and
Wichem (1998, pp. 540-550), and/or Basilevsky (1994, pp. 56-62 and pp. 258-273) for more details.

The purpese of factor rotation is to seek more interpretable factors. That is, we hope to obtain a
new factor model that fit the data equally well but has a simpler factor structure than the initial factors. A
"simple factor structure™ means that each variable loads strongly (either positively or negatively) on only
cne factor, but near zero on the other factors. For example, for standardized variables X7, Xq, X3, and
X4, Hamilton {1992, p. 259) suggested that a simple factor struchire might be of the following pattern.
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Loadings after Rotation
Variable || Factor 1 Factor 2
Xy near 1 near 0
Xo near +1 near 0
X3 near 0 near =1
Ay near 0 near +1

A. The Orthogonal Rotations:

An orthogonal rotation assumes that the common factors are independent. As an example, If we assume
the coordinate axes are rotated clockwise or counterclockwise through the angle phi, the new loadings

after rotation

can be obtained by choosing the *rotation™ matrix

T o [cosgb sing

for clockwise rotation
—sing cosd

or
T - cosg  —sing
sing cos¢

See Basilevsky (1994, pp. 56-60) for more details. The most commonly used orthogonal rotation methods

] for counterclockwise rotation.

are the Varimax method and the Quartimax method,
For example, the Farimax rotation seeks an orthogonal transformation matrix T' such that

L' -IT
maximizes

Gij - dJ'}2
1

NgE

P

[
Il

11
where ly; is the loading of the kth variable on the jth factor and 4; is the mean squared loading of the
m variables on the jth factor

= E?:l IEJ

d; p—

See Hamilton (1992, pp. 261-262) for details.
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B. The Oblique Rotations:

An oblique rotation is a transformation of the correlated factors. For example, the oblique matrix G

1i' = LGETE)CTRGTG)GTL

= B®BT
where
BT = (T t6TET
& = GYG is the comelation matrix of the oblique factors.

See Basilevsky (1994, pp. 270-278) for more details. The most commonly used oblique rotation methods

are the Promax method and the Obiimin method.

- D - 0 =r
For example, the Promax rotation begins with the varimax-rotated loadings L . We seek a

transformation matrix ' with columns that minimize
o~ T —~F
tr [(M—L G) (M—L G)J

where tr{ ) denotes the trace operator. Elements of M are the factor loadings (elements of E*) raised
to an arbitrary power greater then 1 but usually less then 4. The higher the power, the stronger the
comrelations allowed between factors. The Promax-rotated loadings L™ result from the postmultiplication

of the varimax loadings r by the transformation matrix & (after scaling G for unit-variance factors):

See Hamilton (1992, p. 262) for details.

2.1.2 Confirmatory Factor Analysis (CFA)

A brief review is given below. See Johnson and Wichern (1998, Sec. 9.7, pp. 565-571} and Bollen (1585, Chap.
7. pp- 226-318) for more details.

1. Mode) Specification and Assumptions:
1 = AnFi+AipF+ o FAmFrth
e = AnF1+AnFr+ -+ AemFn + 02
3 = AFi+ AP+ + APt 63

Tp = /\plFl + Angz + -+ )'p-mFm + 6],
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or, in matrix notation

r=AF+4d
where
E(F} = 0, VﬂT(F) =& = [é,‘j]

1 fori=gj
$ij = el
¢i; fori#j

B =0

Var(d) = ©5

Cov(d, F) = 0.

We can open the parameter ¢;; to be estimated, but we must specify one of the factor loadings to be equal

to one, e.g. A1; = 1 for each factor instead due to the unknown scale of the factor.

2. Identification:

The “known™ parameters are the parameters that are kmown to be identified. These parameters are
the' population characteristics of the distribution of the observed variables such as their variances and
covariances for which consistent sample estimators are readily available and for which the identification
is typically not an issue. The "unknown” parameters are the parameters whose identification status are
not known. Identification is demonstrated by showing that the unknown parameters are functions only
of the identified parameters and that these functions lead to unique solutions. If this can be done, the

unknown parameters are identified; otherwise, one or several parameters are unidentified,

The known-to-be-identified parameters are the elements of the population variance-covariance
matrix of the observed variables X x. The unknown parameters are in 8, where 8 contains the ¢ free and
(nonredundant) constrained parameters of A, G and ®. If an unknown parameter in & can be written as
a function of one or more elements of X x, then that parameters is identified. If all unknown parameters
in @ are identified, then the model is identified. The most important necessary condition for identification
is that Wumber of parameters in @ < %p(p + 1), where p is the number of variables. See Bollen {1589,
pp. 88-104) for more detaits.

3. Estimation:

(a) According to the comrectly specified factor model, we hypothesize that the population variance-
covariance matrix Xy of the observed variables is equal to the model implied variance-covariance

matrix Xx (8}, ie.,

Dx = Ex(6).
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{b) Given a sample of size n, the population variance-covariance matrix 2 x of the observed variables
can be consistently and unbiasedly estimated by the sampie variance-covariance matrix S of the

observed variables, i.e.
. Ex =8,.

(c) Then, we choose the values of & such that X x (&) is as close to S, as possible. That is, find a a

such that
Ex(a} ~=85,.
- In practice, the estimate @ can be obtained by minimizing one of the following fitting tunctions,
F(S,Ex(e)):

Fus = ir[(8-Ex(0)?],
Fors = %t’r[(S — Ex(e)w)?,
Fuy = log|Ex(8) +tr(S B%'(8)) - log|S| ~p

where W is a weight matrix for the residual matrix and p is the dimension of X. In fact, they are

special cases of the following more general fitting function

Fars = [8— o(@)TW* s - ¢(8)]

where
8 = %p(p+1)x1vector
{obtained by placing the nonduplicated elements of S in a vector),
. o8 = % p(p + 1) % 1 vector
{obtained by placing the nonduplicated elements of X in a vector),
- # = tx 1 vector of the free parameters,

W = % plp+1} % % p(p + 1) positive definite weighted matrix.
See Bollen {1989, pp. 425-432) for more details.
{d} The minimization
min F [S,, 5 (8)]
é

can be done by solving a set of the second-moment estimating functions:

86 =0
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for . The global minimum reaches Q0 when in fact
8, —Ex(@ =0

elementwise.

2.2 Discrete Data

A classification of various factor analysis methods is listed in Table 1. See Basilevsky (1994, p. 608} and
Bartholomew (1987, Table 1.1, p. 4) for details.

1. Latent Structure Analysis

2. Latent Profile Analysis (LPA)

3. Latent Class Analysis (LCA)

4. Latent Trait Analysis (LTA)

5. Factor Analysis of Categorical Data:

(a) Probit link {Muthén 1978)

(b) Logit link (Bartholomew 1980)

If underlying normal distributions can be assumed for all the categorical observed indicators, then we

can use

1. All Binary Case: Factor analysis with probit link.
2. All Ordinal Case: Factor analysis with polychoric correlation.

3. Mixed Case; Factor analysis with pofyserial correlation.

Specifically, Bartholomew (1987) discusses the following two different approaches to factor analysis of

categorical data:

1. Response Function (RF) Approach:
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This approach is achieved by choosing a suitable response function
q
G m(w)} = eno + Y 0wz H Mgi) (i=1-,p)
J=1
where m;(y) = Pr{z; = 1|y} is the response function and y; (7 = 1,2, ,¢) are independently and
uniformly distributed on (0, 1). The function G~! and H~1 were arbitrary but such that their inverses G

and A were distribution functions of random variables symmetrically distributed about zero.

2. Underlying Variable {UV} Approach:
This approach is achieved by supposing that underlying the ith dichctomy there is a continuous variable,
F; say. The observed binary variable x; is then an indicator of whether F; is above or below some critical
level 7;. Thus, we may define
z; = LifFE<n
= 0, otherwise
where
F=p+AZ +e.
And, Bartholomew (1987, pp. 107-115) discusses an E-M algorithm for estimating the parameters as
listed follows:

Step 1: Assume arbitrary starting values for the parameters.
Step 2: Using these values, predict £ for each individual using the posterior expectation of Z given X.

Step 3: Treating these expected values as if they were true values, estimate the parameters by maximum
likelihood.

Step 4: Retum to Step 2 and repeat the cycle until convergence is attained.

3 Review #2: Generalized Linear Models (GLMs)

See Dobson (1990), McCullagh and Nelder (1989), and Fahrmeir and Tutz (1994) for details.
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3.1 Model Specification and Interpretation

A peneralized linear model (GLM) is

9{u:) = Ay F;

where ¢ indexes observation, u; = E{Y}), and

* g(-): A link function, which is monotonic and differentiable,
o Y; ~ Exponential family of distributions,

o Ay: Unknown regression parameters,

F;: Covariates,
Examples:

1. Linear regression model;

E[Y;]] = Ay F;
which is a GLM because
o Yi~ N(pi, 0%,
s g is the identity function, i.e,
9ls) =

2. Logistic regression model:

which is a GLM because

» ¥; ~ Bernoulli(p;),

¢ g is the fogit function, i.e.

g(u) = logit{p) = log (1 fipi) :

and thus

1
14 exph>Fi’

13
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Then,

since E(U} = 0.

The jth score equation is

U; = 2 = Z ) (é‘p,-) =0,
i=1

BA; Var(¥:}) \ o
and thus
ol Ter—1
U==—=D"V Y - =
Ay (Y -p)=0,
where
ni=g(m) = Ay F;
and
0
-1
D= (2 F

And, the information matrix I has the elements

_ &1

Bl &) _
- A0 |

Lix = ElU;Uk] = E [B_J\,ﬁ

When applying the Newton-Raphson method to solve for the maximum likelihood estimates (MLEs)

ﬁy of Ay, at the mth iteration

a(m)  ~(m=1) [ a2 }"‘

_ ot (m-1)
Ay =Ay W um-1,

Ay =3Fym—l]

If the method of scoring is used to obtain the MLEs /3, then at the mth iteration

AP = APV [romen] Ty,
DR o pimeng D e (3.1)

where

rrant - m [0 ] N~ FyFu (0’
I_Tk = E[UJUk] =E [a}lj aAk:’ - i=1 Vﬂ-’r(}:) (aﬂz) -
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Notice that we can write
I=F"WF

where W is an n x n diagonal matrix with elements
U S /- ?
U Vear(Y) \Om /S

Define a pseudo-response variable

Zi= szcm-l)Fik + (g—:‘:) (i — )

k

or in matrix notation
Z=AvF +g'(p)y-p)
Then, the right-hand side of Eq. (3.1), which has the elements
Z Z ﬁﬁf) ( ) $im-1) Z (y:va:ﬂ;:)) i (%}e:t)
can be written as
FTwz.

It is straightforward to show that

1. E(Z) = Ay F,

2. Var(Z) =W,

Hence, the iterative equation for the method of scoring can be written as a normal equation
FIWAS P =F'wz

or
F'W (z - A{"F) =0

for a weighted least squares (WLS) estimation of the regression coefficients Ay in the above linear model of
the pseudo-response variable Z. This is the fteratively reweighied least squares (IRLS) algorithm. Thus, MLEs
of the regression coefficients Ay in GLMs can be obtained by applying the unified [RLS procedure.
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3.3 Statistical Inference
The statistical inference on Ay of a GLM is based on

1. the asymptotic distribution of the score function U(Ay) (by a central fimit theorem) and

2. a first-order Taylor expansion of U'{Ay) for Ay.

“Dobson (1990, Chap. 5, pp. 49-67) gives the details.

3.4 Model-Fitting Techniques
When fitting 2 GLM to data in practice, the techniques for accomplishing the following tasks are needed:

1. Goodness of fit: See Dobson (1990, Secs. 5.5 and 5.8, pp. 56 and 60-61) for a nice discussion.

2. Model selection: Fahrmeir and Tutz (1994, Sec. 4.1, pp. 119-124) discuss several methods for variable

selection.

3. Regression diagnostics and remedies: One may consult McCullagh and Nelder (1989, Chap. 12, pp.
391-418) and Fahmmeir and Tutz (1994, Secs. 4.2-4.3, pp. 124-149).

4 Research Problem

Factor analysis {(FA) has been used widely in various branches of sciences to discover the latent measurement
structure from a set of cbserved indicator variables, Both the observed and the latent variables are usually
assumed to be continuous and, at least, symmetrically distributed. In the past 30 years or 50, several methods
had been proposed to extend the FA method for categorical observed indicator variables and/or latent variables,
which include latent structure analysis, latent profile analysis, latent class analysis, [atent trait analysis, and
factor analysis of categorical data. See, for example, the books written by Bartholomew (1987) and Basilevsky

(1994) and the references therein.
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4.1 Framework

We are interested in developing a general framework for FA, called the generafized factor analysis (GFA), for
continuous, discrete, or mixed observed indicator variables, as long as they are from the exponential family
of distributions such as Normal, Binomial, and Poisson distributions. Just like the generalized linear models
(GLMs), which include analysis of variance (ANQVA), linear regression, logistic regression, and Poisson re-
gression as the special cases, we hope that the GFA method extends the standard FA method to explore or verify
the measurement structure of continuous latent variables from observed continuous, binary, ordinal, count, or

mixed indicator variables in a unified way.

For example, if an investigator is interested in studying child’s health status, which is an abstract
construct, a set of indicator variables may be used to measure the latent variable. Let's consider the following

potentially useful indicator variables:

1. Body strength: What is herthis body mass index (BMI)? (Ratio data)
2. Physical activity: How fast can the kid run for a 50 meter distance? (Comtinuous data)

3. Parents’ judgment: Which one, 1,2, ..., 7 (from the weakest to the strongest) do you think suitable for
ranking your kid’s health status among all the kids of the same age? (Ording! data)

4. Disease history: How many times had the kid got cold in the past two months?  (Counts data)}

Obviously, these measurements consist of different types of data — ratio, continuous, ordinal, and counts.
The standard FA usually assumes that both the observed and latent variables are continuous and, at least,
symmetrically distributed. Although several past researches had tried to extend the FA to be used with categoricat
observed and/or latent variables, it is still difficult to handle indicator variables of such a mixed type. Thus,

two questions arise:

I. How can we use the FA method to analyze some special types of noncontinuous data, e.g., counts data?

2. Can FA be generalized to analyze indicator variables of a mixed type?

4.2 OQOutline

What we plan to do is to put the standard FA in a more general framework so that different types of indicator
variables can be put together for constructing a “generalized” factor model (see below). Just like the generalized
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linear models (GLMs), which include analysis of variance (ANOVA), linear regression, logistic regression, and
Poisson regression as special cases, we hope that the generafized factor analysis {GFA) extends the standard
FA to discover a latent measurement structure from the observed continuous, binary, ordinal, or count indicator
variables in a unified way, as long as they belong to the exponential family of distributions such as Normal,

Binomial, and Poisson distributions.

Yet, since we have investigated the equivalence between EFA and CFA in the previous chapter, we
shall focus on CFA in this chapter. To estimate the factor loadings in a GFA model, we apply the iterative
reweighted least squares (IRLS} algorithm of GLMs to "linearize” the generalized factor model first, and then
use the usual estimation methods of factor analysis to obtain the estimates of the factor loadings. Specifically, we
develop independently a unified three-step estimation procedure for GFA, which is similar to the £-M algorithm
discussed in Bartholomew (1987, Sec. 6.1, pp. 107-115).

On the other hand, we treat the estimation of factor loadings in GFA medels as an error-in-variable
problem of GLMs, and then take an econometricians’ instrumental variable (IV) approach for simultaneous

eguations model (SiIEM) to estimating factor loadings.

The objective of this project is to develop the estimation methods for GFA models. An outline is
given below. We shall conduct simulations to examine and compare numerically the performances of different

estimators.

1. Model Specification:

For each indicator variable Y;, a generalized factor model {GFA) is:
glpy) = Ay F
(a) Y; ~ Exponential family of distributions, i =1,.-- ,p.  (p indicator variables)

(b) g;: a suitable Jink function for the mean uy, of the indicator variable ¥;.

(c) Ay, F: a linear combination of the unobserved m latent variables F and the factor loadings Ay, .
2. Estimation Methods:

{a) The EM-CFA Estimator:
A main task is to find a feasible way to estimating the factor loadings Ay for all indicator variables.
What is new in our approach is that we apply the iterative reweighted least squares (IRLS) algo-
rithm of GLMs to “linearize™ the generalized factor model first, and then use the usua! estimation
method(s) of factor analysis to obtain the estimates of the factor loadings. Specificaily, we develop
independently a unified three-step estimation procedure for GFA:
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» Step {: Set the initial estimates of the factor loadings Ay .

e Step 1: Obtain the factor scores F.

¢ Step 2: Treat the pseudo-response variables! Z;’s derived from the indicator variables ¥;’s in
the IRLS algorithm of GLM as observed continuous indicator variables to obtain the updated
estimates of the factor loadings Ay.

¢ Step 3: [terate between Steps 1 and 2 until the estimates of the factor loadings converge.

This estimation method is similar to the £-A algorithm discussed in Bartholomew (1987, Sec. 6.1,
pp. 107-115) except that numerical integration in the'E-Step is avoided on purpose. The details will
be given in Section 5.4,

{b) The Instrumental Variable #1 (IV1) Estimator:

» Step 1: Obtain the predicted values of Y2 and ¥yy3, ?”2 and ’?”3, using the ordinary linear
model (LM).

« Step 2: Fit the GLM for the response variable ¥ on the covariate ?1|3 and Y5 on the covariate
}7'”2 using the IRLS algorithm to obtain the estimates of the factor loadings Ay = [1, Az, A3]T
from the GLM’s parameters Ay, = [Aoo, A2]T and Ay, = [Aag, A3]T respectively. where Az

and Agp are the intercept coefficients, and Az and A3 are the slope coefficients.

Notice that this method is the same as that of Carrell and Stefanski (1994). See Carroll and Stefanski
(1994) and Carroll, Ruppert, and Stefanski (1995) for the technical details.

(¢) The Instrumental Variable #2 (IV2) Estimator:

¢ Step 0: Fit the GLM for the response variable Y2 on the covariate ¥; using the IRLS algorithm
to obtain the initial estimate of the factor loadings X2 which is the GLM's slope coefficient,
and fit the GLM for the response variable Y3 on the covariate Y7 using the IRLS algorithm to
obtain the initial estimate of the factor loadings A3 which is the GLM’s slope coefficient, which
are the naive estimates of Ay = [I, Az, A3]7T.

o Step 1: Obtain the predicted values of Yy and Y3, ?II? and 17'1|3, as the IV using the ordinary
linear model (LM).

e Step 2: Treat the pseudo-response variables Z;’s derived from the indicator variables ¥7’s in the

IRLS algorithm of GLM as observed continuous indicator variables to obtain the updated esti-
mates of the factor loadings Ay = [1, Ag, A3]T using the IRLS algorithm through the following

They are also called the iransformed or adjusted response variables in the literatures.
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formula, and iterate Z; and Ay until Ay converge:

Ay, = [M20,22]T

Ay, = [Aao, Aa]T

= [Yfg’(p)'117’1|a(f’]fsVﬁs)"ﬁTag’(p)"lYl]_1 x

Yg (1) Prp (Vi V ¥y} ¥ e (1) Z2, where V = Var(Ya)
= [ BTV Bip) e () 7 Y] T x

Yo (6) VYRV ¥ip) ' Yiag'(8) " Zs, where V = Var(Ys).

Then, the statistical properties of our estimators will be examined numericatly in simulations.

5 Model Specification, Assumptions, and Interpretation

5.1 Factor Analysis (FA) Model

I
Iy

I3

or, in matrix notation,

where

Cow(8, F)

= Aafit+ i+ -+ MnFn+ 6
= P+ deF+ -+ damFrn 4+ 82
= Aa B+ A32F2 + - Ay Fm 601
= AP1F1 + }\szz + e )\mem + ép
T = A F+ 8
E{(F) =0, Var(F) =& = [¢y]

1 fori=3j
i =
i fori#;
E& =0
Var{d) = O; is a diagonal matrix

0.

il
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5.2 Generalized Factor Analysis (GFA) Model

or, in matrix notation,

ox (Bx.) = MiFi+raFr+---
9xa(px.) = AaFi+raF+.--
axa(px;) = AaFfi+ApFr+- -

gx,(px,) = ApF1+rpeFa+---

gx{ux) = AxF

E(F) =0, Var(F) =

Cov(Ax, F) = 0.

+ )"lmFm
+ AZmFm
+ AgmFm

+ )*mem

® = [¢i;]

1. X; ~ Exponential family of distributions with mean p,,, i =1,-.-,p.

2. gt A suitable fink function for the mean g, of the indicator variable X;.

3. Az F: A linear combination of the unobserved m latent variables F and the factor loadings A,.

6 Estimation

6.1 Tools

Our original ideas about two important tools for estimation are discussed below.

Tool #1: The /RLS algorithm linearizes GLMs!

1. Equivalence: The IRLS estimator is equivalent to the MLE in GLMs.

{p indicator variables).

22

2. Transformation: At each iteration indexed by (m), the IRLS algorithm takes a special transformation on

the original response variable ¥; to obtain a psewdo-response variable Z;, no matter what type of ¥} is,

to modify the property of the original response variable such that the original GLM

glw) =x1p
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becomes a linear regression model
E[2{™] = g™

until the convergence of ﬁ Most importantly, the derived linear regression model for the pseudo-response
variable Z; at the lasr iteration of the IRLS algorithm provides an "equivalent” linzar model for the

original GLM in the sense that they have the same values of the regression coefficients,
Yet, instead of writing specific programs for a variety of GLMs according to their likelihood functions to obtain
MLEs, one can just apply one single unified IRLS algorithm for all kinds of GLMs.

Tool #2: The estimation methods previously developed for linear factor models may be applied to the derived
linear regression model for the pseudo-response variable Z; at each iteration, including the last one, of the IRLS

algorithm.

1. Treat the pseudo-response variable Z; constructed at the last iteration of the IRLS algorithm for a GLM

as if it is a “continuous” response variable of a linear model.

2. Then, apply the usual estimation methods for a linear factor model to obtain estimates of the structural

parameters.

6.2 Methods
We now introduce the EM-CFA, V1, and I¥2 methods for estimating the factor loadings of a GFA model.

1. The EM-CFA Estimator;

o Step 0: Set the initial estimates of the factor loadings A_,’s, &, and ©;. And, obtain Z;’s

. Zi = Ae, F + g{{po (X = pr,} = Aa F 4 8]

» Step 1@ Treat the pseudo-response variable Z;’s derived from the indicator variables X;’s in the
IRLS algorithm (as in GLMSs) as observed continuous indicator variables to obtain the updated

estimates of the factor loadings A, @, and B, respectively by CFA.

o Step 2: Update the factor scores F for Step 1. There are two methods to compute:
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(a) Method #1: The regression method
P ARg-120),

{b) Methed #2: The "EFA" method (by calling the EFA function in statistical software, e.g., $-Plus
2000 for Windows).

s Siep 3: Update the values of Z;'s, then iterate between Steps 1 and 2 until the estimates of the

factor loadings converge.

Notice that as shown in Table 2, Rubin’s E-M algorithm obtains the same results as the standard CFA
method in estimating the factor loadings of & CFA model. See Rubin and Thayer (1982, 1983) for the
technical details. According to our experience, the convergence of Rubin’s E-M algorithm is very slow

so that we choose the standard CFA method to be extended for GFA models.
2. The Instrumental Variable #1 (1¥1) Estimator:

e Step I: Obtain the predicted values of Y7)3 and Y73, ?IIE and 171|3, using the ordinary linear model
(LM).

s Step 2: Fit the GLM for the response variable Y3 on the covariate 17'1|3 and Y3 on the covariate ?“2
using the IRLS algorithm to obtain the estimates of the factor loadings Ay = [1, A2, A3]T from the
GLM’s parameters Ay, = [Agq, A2]T and Ay, = [Aao, As]T respectively. where Ay and Asg are

the intercept coefficients, and Az and A3z are the slope coefficients.

Motice that this method is the same as that of Carroll and Stefanski (1994). See Carroll and Stefanski
(1994) and Carroll, Ruppert, and Stefanski (1995) for the technical details.

3. The Instrumental Variable #2 {IV2) Estimator:

« Step (: Fit the GLM for the response variable ¥z on the covariate ¥; using the IRLS algorithm to

* obtain the initial estimate of the factor loadings A2 which is the GLM’s slope coefficient, and fit
. the GLM for the response varfable ¥; on the covariate Y7 using the IRLS algorithm to obtain the
initial estimate of the factor loadings As which is the GLM’s slope coefficient, which are the naive

. estimates of Ay = [1, Mg, Ag]T.
e Step 1: Obtain the predicted values of Y32 and Y73, ?llﬂ and ?1,3, as the IV using the ordinary
linear model (LM).

o Step 2: Treat the psendo-response variables Z;’s derived from the indicator variables ¥;’s in the

IRLS algorithm of GLM as observed continuous indicator variables to obtain the updated estimates
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of the factor loadings Ay = [1, Az, A3]T using the IRLS algorithm through the following formula,

and iterate Z; and Ay until Ay converge:

el LT o - y 11
Ay, = [Azo, Aa]T [1”'1119'(#) Iﬂca(}ﬁsvyus)_lyﬁsg'(#) 1Y1] x
Y ()" Hyja(¥iTy V?ua)_l?ﬁay’(ﬂ)-lzm where V = Var(Yz)
-1 Ear -~ Ty —_ -1
Ay, = (A0, 23T = [Y1T9'(ﬂ) 1Y1|2(}ET2V1‘?12) RAL IYI] X

1 .o S o1 -1
Yo' () Vi (Vi V Vi) " Yihg' ()7 23, where V = Var(Y3).

The details of the estimation procedures will be given in the following section.

7 An IHNustration: A One-Factor Three-Indicator GFA Model

Without loss of generalizability, we consider the following one-factor three-indicator GFA model

Yii = a1 +1 Fi+dy,

logit(pa;) = ag + Ao F;

i

ga{p2:)
log{#a:) = a3 + AsF;

It

g3{p3i)

where jig; and pa; are the means of the indicator variables Y5 and Y3, g2 and g3 are the /ink functions for uz
and jug;, dy,, is the measurement error of the indicator variable Y1, and the latent variable F’ is a continuous
variable measured by three indicator variables ¥7, Y2, and ¥; of a mixed type — continious, binary, and counis

— respectively. For exampie,

F~N(01) and &y, ~ N(0,0.25).
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Then, at each iteration in the IRLS algorithm, we construct the following pseudo-response variables, Z;, Zo,

and Z3, and the corresponding error terms, &y, dz,, and dz, as defined below:

Zn = Yi =a1+1-F,-+5y‘.,

Zai = o+ B+ 95;(#2:’)(1% ~ pai)
Yo — o
= g + I\QE + _li_
pizi(1 ~ pag)

= g+ MF;+ 8z,

Zyi = oa+ AF+ gy(pai)(Yai — p3i)

Ya; — pas

= o3 +AuFi+
pai

= a3+ A+ sz.

where a; {7 = 1,2, and 3} are intercepts, ¢ = Var(F), § = [dy, ,éz,,ézs]‘r, and B = Var(§) is a symmetric

positive definite matrix.

1. The EM-CFA Estimator:
First, we report the following interesting findings.
(a) The covariance of the derived residuals 4z, and &z, for the pseudo-response variables 25 and Zy
are not zero (see Tables 3-1 and 3-2).

(b) The means of the estimated covariances between dy, and dz,. dy, and dz,, and 8z, and 4z,
ie., 5;!)(5}"1,632), Cdf;;hv{é'yl,éza). 5;)-1;(622,623], at the convergence of GLM or LM over 100
repetitions are mof equal to zero (see Tables 3-3, 3-4, 3-5 and 3-6).

Then, we obtain

Var(Z;) = Var{oi+F +6y,} = ¢+ Var(dy,)

Var(Z:) = Var(ag +AF +8z,) = Aé + Var(dz,)

Var(Z;) = Var{es+ AF +8z2,) = A2¢ + Var{dz,)
Cov(Zy,22) = Covlay + F + 8y, 02 + hoF + 6z,) = Ao + Cov{by,, 8z,)
Cov(Z,,23) = Cov{on+ F+ 68y, as+AF +8z,) = \3é + Cov(dy,,8z,)
Cov(Z3,23) = Covloe+ AF +8z,, a3+ AaF +4dz,) = A2dad + Cov(dz,,6z,)
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which can be put into a matrix

¢+ Va:r(éyl) Ao+ CO’U(&YI s Jz,:] Az + CO’U{JYI . 523}
VGT(Z) = A+ COL‘[&YI, 532) quﬁ + Va'f‘(ﬁgj A2y + Cm'(ézg . 523}
Az + Covldy,,bz,) Apdap + Cw(&z,,ﬁzs} ).%qb + Va?‘[ﬁzs)

Hence, we use the following CFA formulas for this one-factor three-indicator GFA model to obtain the

estimates of the unknown parameters Az, Aa, &, Var{gyl 1 Var(gz,} and Var(gzsj respectively:

Xg - CO‘U(Zz1ZS) —CO’*-?(5221523)

CO‘U(Zl, ZE) - CO'U(EYU62'3}

X COU(EZ-. ZS) - Cw(azm‘sza}
3 =

Cov(Zy, Z3) — Cov(by,, 6z,)

[Cov(Z1, Z2) — Cov(dy,,62,)] x [Cov(Zy, Z3) — Cov(by,,bz,))
CO‘U(Zz, 33) — CO‘U(JZE,(SZ:,}

_ [CUU(Z]_, Zﬁ) — CW(JYU 522)] x [CG’U(.Z]_, Zﬁ-) — CW(JYU&Zz)]
CO’U(Zz, Zg) — CG’U(&ZI, 623)

_ [CoulZy, Zy) — Cov(dy,,8z,)] x [Cov(Zs, Z3) — Cov(dz,;,6z2,)]
Cov(Z1, Z3) ~ Cou(by,,8z;)

[Cov(Zy, Z3) — Cou(by,,éz,)] x [Cov(Z2, Z3) — Cov(dz,,62,))
Cov(Z1, Z2) — Couby,,8z,) '

<)
I

Var(dy,) = Var(Z)

Var{dz,) = Var(Z)

Var(sz,) = Var{Zs)—~

However, note that the conditional variances of the pseudo-response variables Zy and Z3 for

each subject i

Var(dz,) = Var[ Yai =~ piai ]... pai(l — pai) 1

prill — pas) | [wei(l — p2d? T a1 — pos)

Ya —#ai] _ Hai 1

#3i p%,- fA3i

Var(dz,) = Var[

are nof constant, which depend on each subject’s response means po: and pa;. Accordingly, the above
CFA formulas for the varignces of the pseudo-response variables Z; and Z3 are questionable due to the
heteroscedasticity problem. This finding actually maotivates us to also consider the second approach —

fitting the GLMs for uo; and pg; directly to the data with an imputed F; or instrumental variable.

Specifically, the six unknown parameters, A, As, ¢, Var(8y,), Var(dz,), and Var(dz,) in this

one-factor three-indicator GFA model are estimated by the following iterative three-step procedure;

s Step 0: Set igj) = E:[;O) =0, ﬁ;‘j’ = fia = Sample proportion of Y3, ﬁg?) = piy = Sample proportion
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of Y3, 5[22) =log (T_E_%;), and &:(,?) = log (Tf_i%;) Then, construct the pseudo-response variables
(0) A0) | FO) _ A0 s (~10) Oy _ ~(0) Yai — gy
2 = Gy iy, =8y +g (F‘zi ) (Yﬁ — Haq ) =%t T o
Hai (1 — Hay )
~{0 ]
5(0) A0 L O _ A(0) s {o(0) SO _ ), Yai = sy
Zy; = Qg +oz =0ay +gs (.“35 ) (Y:’-i — M3 ) =0y + '"“":EBT_I“
bz
~(0 0
= argi) + 3?83{

s Step 1: Treat the pseudo-response
tinuous™ variables to conduct a us
as continuous response variables, a

Var(dz,), and Var(dz,), denoted

variables Z = [Z,, Za, Z3]T in the IRLS algorithm as “con-
val factor analysis. That is, treat Z,{= Y¥1), 2;‘”, and 2;0)
nd then, find the estimates of oy, ovg, 3, Az, Az, &, Var(dy,),
by &, &, ai°, AV, XY, 8, var(8)), Var(3R)), and

Var(gga}) respectively by the CFA method using the estimates of the margina! variances of the

centered pseudo-response variable

pseudo-response variables first.

Z = {2\, Za, Zi|, @'{Z]. Specifically, we center these

. . . 0, . . =(0)
Since the variance-covariance of Z ~ is equal to the variance-covariance of 8, we use the fol-

lowing non-corrected CFA formulas for this one-factor three-indicator GFA model to obtain the

following estimates at the first iteration:
s _ CoulZy Zs)
2 Cov(Zy, Z3)
X(n - CO’U(ZQ, Zg)
2 Cov(Zy, Z3)
a(l) = [CO‘U(Zl, Zg)] x [Cw{zli ZE}]
COU(221 23)
1)y _ _ [Cov(Z,, Z2}] x [Cov(Zy, Z3}]
Var(dy') = Var(Zi) Cov(Zs, 7)
Ay _ _ [Cov(2, Z3)] x [Cov{Z2, Z5)]
Var{éz') = Var(Zz) ConlZo, 73]
Ay _ _ [Cov(2y, Z5)} % [Cov( 2, Z5)]
Var(é;') = Var(Z;) Cou(Zy, Z2) .

For the further iterations, we use the follewing CFA formulas for this one-factor three-indicator GFA
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s Step 3: Since

(1) _ 1
Hg = 1+ oA )
- ﬁgl) = e:(al}?(l)
we have
R . Yz — ~(1)
% o= a(@)(B-a") = 2
. S ] _ 2
Ha Ha
(1)
{1 ~(1 },3 — i
. &= 4 (#g )) (}E—ué ]) = ""ﬁ'['ﬁ'g"'
3

Thus, we update the pseudo-response variables

21 = N
A PR L E

7 = FWEO G,
And, go back to Step 2. lierate between Steps 2 and 3 until 32 and Xa converge,

2. The Instrumental Variable #1 (1V1) Estimator:

¢ Step 1: Obtain the predicted values of ¥7); and Y73, i}llﬁ and f’”a, using the ordinary linear model
{LM).

s Step 2: Fit the GLM for the response variable Yz on the covariate ?’”3 and Y5 on the covariate ?ﬂz
using the IRLS algorithm to obtain the estimates of the factor loadings Ay = [1, Ag, )\;;]T from the
GLM’s parameters Ay, = [Azg, 22]T and Ay, = [Aag, As]T respectively. where Ay and Aag are

the intercept coefficients, and Ay and Ay are the slope coefficients,

* Notice that this method is the same as that of Carroil and Stefanski {(1994). See Carroll and Stefanski
. (1994) and Carroll, Ruppert, and Stefanski (1995) for the technical details.

3. The Instrumental Variable #2 (IV2) Estimator:

e Step 0: Fit the GLM for the response variable ¥5 on the covariate ¥] using the IRLS algorithm to
obtain the initial estimate of the factor loadings Ay which is the GLM’s slope coefficient, and fit
the GLM for the response variable Y3 on the covariate ¥7 using the IRLS algorithm to obtain the
initial estimate of the factor loadings Aa which is the GLM's slope coefficient, which are the naive

estimates of Ay = [1, Az, Ag]T.
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e Step 1: Obtain the predicted values of Yyj; and Yy)3. ?112 and ‘?1|3. as the IV using the ordinary
linear model {LM).

o Step 2: Treat the pseudo-response variables Z;'s derived from the indicator variables ¥;’s in the
IRLS algorithm of GLM as cbserved continuous indicator variables to obtain the updated estimates
of the factor loadings Ay = [1, A2, A3]T using the IRLS algorithm through the following formula,

and tterate Z; and Ay until Ay converge:
- -~ - _ -1
Ay, = [Mao, AT = [Y1T9ffﬂ} 1Y1|3(Y1T3VY1|3)—1Y1139’[H) 11'”'1] b
Y9 () Waa(FsV 1) 1 ¥iag ()™ 22, where V = Var(Y;)

AY:; = [}'301 )‘3]T

1y e 1 _ -1
[Y{rg’(u} (Vv R e (0) 11"1] x
Yo' (1) ViV Vi) T ¥iag (1) s, where V = Var(Y3).

4. The Naive Estimator:

For the purpose of comparison, we also compute the naive estimates of Az and 13 by directly fitting the
GLMs with the proxy of the latent variable F to the data, which are also taken as the initial values of the
V2 method.

8 Simulations

8.1 Design

Recall that the previously specified one-factor three-indicator GFA model is

Ifl = + 1- F + EY]_
logit{pz) = a2+ AF
log(pua) = o3+ MWF

where pg and u3 are the means of the indicator variables ¥2 and ¥3, the commonly used logit” and “log” link
functions are chosen for pg; and pg;, dy, is the measurement error of the indicator variable Y7, and the latent
variable F' is a continuous variable measured by three indicator variables Y;, Y5, and Y3 of a2 mixed type -

continuous, binary, and counts — respectively.

In the following simulations, the sample size () is 1000 and the number of repetition (m) is 500. We
foliow the following steps to generate the simulated data.
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1. Firstly, we set the true parameter values.

(a) For simplicity, we set all the intercepts to be zero, i.e, 0y = = a3 =0.
(b} For fixing the scale of F, let A; = 1.0.

(¢} For comparisons, we choose: (A2, As) = {0.25, 0.25), (0.5, 0.5), (0.75, 0.75), (1.0, 1.0), (1.25, 1.23),
(0.5, 1.0), and (1.0, 0.5), respectively.

2. Next, we generate the random variables
F ~ Normal(0,1),

by, ~ Normal(0,0.25).

3. Thirdly, we compute

gz = 1_«;-—53::124-_*25')
4y = eloatisF)
respectively.
4. Finally, we have
¥Yi = oo+1-F+dy

Yg ~ Bz'nmm’al(l,ug}

Yy ~ Poisson(u;)
as the simulated data.
Then, we compute the EM-CFA, 1V], and IV2 estimators in each repetition. For the purpose of

comparison, we also compute the naive estimates of Xz and A by directly fitting the GLMs with the proxy of

the latent variable F to the data, which are also taken as the initial values of the I'V2 method.

8.2 Results
The stmulation results are listed in Table 4. We find the following interesting results.

1. The naive estimator always seriously underestimates the true values of (A, A3z).
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2. General speaking, the EM-CFA, 1V, and 1V2 estimators perform well for an "identity” or a "log” link

function.
3. For logistic link,
(a) EM-CFA estimator performs well except when the true values of Ay = 1.25;

Xz = Ag] = [1.4022 — 1.25| = 0.1522.

* (b} V1 estimator performs well except when the true values of Az = 1.0 and 1.25:

® g = 1.0: |1.2453 — 1.0| = 0.2453
o Jg = 1.25: |2.2607 — 1.25| = 1.0107

{c) 1V2 estimator performs well except when the true values of Ay = 0.25:

Xz — Ag| = |0.1882 ~ 0.25] = 0.0618.

Among them, EM-CFA estimator always has a larger variance,

4. When the values of Ay and A, are different such as (0.5, 1.0) and (1.0,0.5), the performance of 1V has

a larger bias.

5. In all these values of (A2, Az), IV2 always has less bias and smaller variance except when (Ag, A3) =

(0.25,0.25),

* Az = 0.25: |0.1882 — 0.25| = 0.0618
o )3 =0.25: |0.1830 — 0.25 = 0.067

9 Discussions

9.1 Summary

) 1. Our EM-CFA and V2 estimators aim to extend the standard FA method for exploring and/or verifying a
latent measurement structure from a set of observed continuous, binary, ordinal, count, or mixed indicator
variables in a unified way, as long as they belong to the exponential family of disiributions, which include

Nomal, Binomial, and Poisson distributions.
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2. Bartholomew (1987) has proposed a class of fogit FA models for homogeneous birary indicator variables

9.2

and discussed an EM algorithm for estimation. Both the mode] and the estimation method may be

considered as special cases of GFA, but, in addition, our EM-CFA estimater avoids the hassle of numerical

integration.

. Yet, as shown in Table 4, the EM-CFA and IV estimators are away from the true values of (Ag, A3),

when the true values are too large (e.g., > 1.0), unless the link function is an "identity” or a "log” function.
The explanation for this unsatisfactory result is that when the true values of (A2, A3) are too large (e.g.,

> 1.0), the linear approximation used by those estimators are not very good,
See: Buzas and Stefanski (1994) and Liang and Liu (1991) ...

Note that we have not gone through intensive simulations to find out the exact problematic regions for
the values of (A2, A3} in our settings so that the values of (.25 and 1.0 are really tentative cutting points.
Also, it is worth mentioning that since the latent variable F is a continuous variable, the true values of

{Az, Az) between .25 and 1.25 are reasonably useful for logistic and Poisson regression models.

. Finally, notice that if there are more observed indicator variables available in the data set, then the [V2

estimator can easily take the extra IV’s to improve its efficiency in estimation,

. To sum up, our IV2 estimator is tentatively the best one among those three in terms of biasedness and

mean square error (MSE).

Future Work

. First, we shall improve our EM-CFA and [V estimators for the GFA models with relatively large values

of Az by correcting the bias caused by the poor linear approximation in such situations.

. To deal with the correlated factors and the correlations among measurement errors, we will further develop

the following two methods:

(a) Oblique rotations for GFA
() Fasan IV

respectively.

. Then, we should investigate analytically the statistical properties of our estimators such as

(a) consistency,

{b) asymptotic unbiasedness,
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{c) variance estimator, and

(d) asymptotic distribution
for making statistical inference by conducting

e simulations and/or
e a large sample study.
4. And, continue to develop the GFA as a statistical method with future efforts
(a) to improve estimation methods for multiple-factor GFA models,

(b) to develop model-fitting techniques for

o Goodness of fit?
s Model selection?

» Regression diagnostics and Remedies?
(¢) to analyze real data,
{d) to design measurement instruments using indicator variables of a mixed type, and

{e) to compare with the other FA methods for non-continuous indicator variables.

10 Appendices

10.1 Appendix 1: The Iteratively Reweighted Least Squares (IRLS) Algorithm for the

Two-Stage Least Square Estimator

For the GLM, let
Y ~ Exponential family of distributions (with one parameter )
and its log-likelihood function be
1(8;y) = log f(u: 6).
And, define

ol
U= T (Score).
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Then, it can be shown (see, e.g., Dobson 1990, Appendix A, pp. 142-144) that

EU) = 0,
Var(U) = E(U*)=E(-U") ({Information)
where
au
4
U= TR
The jeint log-likelihood function for the independent response variables Y7, Y3, - -+, Y, from a member

of the exponential family of distributions is of the following form

UB:y) =D wbl6) + 3 B+ 3 dly).

Then,

c'(8:)

u = E(Y;) = _b’r(&;)

since E(U} =0.

The jth score equation is

Z ¢ 3:13 (aﬂz) 0
Var(Y o ’

and thus
ot Tyr—1
= VY -
v= Ay =D ( H) =
where
T =g{) = Ay F;
and
0
-1
— a
D= (_%gﬁl) F

Let A be the 1V, which insteed the covariate F, then

=DT [g(w A VY ~p) =0
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And, the information matrix I has the elements

I=—EUY=Var(U) = {{g’(,u.}_lA]T -t } Var(Y) {[g'(u)-‘,q}"' V—I}T

= ATg'(u)'Vv7lg'(wta

When applying the Newron-Raphson method to solve for the maximum likelihood estimates {MLEs)

Ay of Ay, at the mth iteration

-~ ~(r— -1
A R0V [I{’“‘”] yim-1,

Ay =R(;n—»l}

then
e 1 ao{m} —lwr— _1 1o im-1) e ~(m-1)
AT ()Wl () ARy = ATg(u)"Wolg () TARY 4+ AT () VY - Ry )

= A4V [ARY T 4 g Gy - AT )]

~{m—1}

A = (4790 v g ] ATV (AR 4 gy - RS

10.2 Appendix 2: The Iteratively Reweighted Least Squares (IRLS) Algorithm for the
IV Estimator

Let A be the IV, and we obtain the IV stimator through
ming, Q = ming_ [AT (v - y(Kr))]T v [AT (v- p,(fxy))] .
where
V* = Var (AT (v - w(Ay))) = ATV A

The score equation is

_ a . T T ] -
R [A D] VLY — p) =0,

where

= g{pi) = Ay Yy,
and

. 0
8g{p:] -t f -1
D= ( Bss ) YVi=gl)™ Y
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then
U =Yg A[A™vA]" AT(Y - )
And, the information matrix I
I=-E(U) = Var(l') = ¥Tg' () A [ATVA] T A(1)1Y,

When applying the Newton-Raphson method to solve for the maximum likelihood estimates (MLEs) Ay of

Ay, at the mth iteration

A RV (1] yim=1,

Ay =Rf'rm -
then

-t 1y w(m) _ -1 1y 2im-D)
YTg(w)la[aATva] A7) O L TS T IA[ATVA] ATg) Y Ay

~[m—1})

YTg () A[ATVA] " ATy - wAY 7))

thus
AP = YT [47va] " ATy CyTewiaatval” ATg
VAT + g - BT )
= [Yigwr [ava] " Aty YT a[aTva] T ATy g
where -

-~ (rr—1)

- ~(m-1)
2 =¥y 49 ()Y —plAy )
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Table 1: Classification of Various Factor Analysis Methods

Source:

_ Observed Variables
Latent Variables | Metrical Categorical
(Factors) (Continuous, Ranks) | (Nominal)
Latent trait
Metrical Standard factor analysis (LTA);

{Continuous, Ranks)

analysis (FA)

FA of multivariate
multinomial data

Categorical

(Nominal)

Latent profile
analysis (LPA)

Latent class
analysis (LCA)

1. Basilevsky (1994, p. 608).
2. Bartholomew (1987, Table 1.1, p. 4).

42
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Table 2: The Simulation Result for the Standard CFA Method and

Rubin’s E-M Algorithm

Sample size (n) = 200.

Number of repetition (m) = 100.

[ M Az f A3
True Value 1.0 Q.5 1.5
{-) ) )
GLM® 1.007 0.5017 1.493
{0.07659) {0.07536) (0.06809}
CFA 1.0 0.5044 1.545
(-) (0.1004) (0.2823)
EM 1.0t 0.5044 1.545
(-) {0.1004) (0.2954)
True Value 1.0 1.0 1.0
-} ) -}
GLM® 1.00718461323299 1.00165958427255 0.9929110070574382
(0.07659218952307) {0.075359320015064) | (0.0630889066046947)
CFA 1.0t 1.00642332159071 1.00390032515117
) (0.146436136744037) | (0.127779493535428)
EM 1.0t 1.00642332159073 1.0039003251512
(-) (0.146486136744016) | (0.127779493535412)
True Value 1.0 -0.5 1.5
-} ) -)
GLM* 1.01080951 875209 -0.499908664997619 1.50316648639313
(0.0787165950331392) | (0.0620798552717672} | (0.0709859641717377)
CFA 1.0 -0.497106238392604 1.5274259107822
(-1 (0.100612888335183) | (0.301106425945521)
EM 1.0 -0.497105912444716 1.52420771991646
-) (0.100612640991489) {0.2925925393513)
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[ Var(d,) Var(d) Var(ds)
True Value 1 1 1
-) =) -)
GLM® - - -
) ) -}
CFA 0.9876 094917 0.9026
{0.2185) (0.1123) {0.3636)
EM 0.9875 0.9917 0.9026
{0.2209} {0.1123) {0.3824)
True Value 1 1 1
-) -) )
GLM® - - -
{-) ) -)
CFA 0.934060934093806 0.987879423883293 0.965065743683386
{0.172361031177362) | (0.161391795214473) | (0.129557416686403)
EM (1.984060934093876 0.98787942388328 0.965065743633358
(0.172361031177244) | {0.161391795214454) | (0.129557416636419)
True Value 1 1 |
-} -} -)
GLM*® - - -
-) ) -)
CFA 0.972624637395587 0.993004872439881 0.945644141370921
(0.208174371958415) | (0.106320764031874) | (0.405803006037516)
EM 0.971666938163725 0.99268945056702 0.95070315377262
(0.206280358720579) | (0.10627G157252494) | (0.390448600722036)
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¢
True Value 1.1.013
(0.1043)
GLM*® -
)
CFA 1.034
(0.281)
EM 1.034
(0.2829)
True Value 1.01284464109456
(0.104256888544777)
GLM*= -
=)
CFA 1.03797823394451
(0.246365505074508)
EM 1.03797823394444
{0.246365505074338)
True Value 1.0069160832841
(0.10342782462389)
GLM® -
-)
CFA 1.04607330864509
(0.263226799961674)
EM 1.04703100845262
(0.261897241882429)

45

a: Take the true factor scores F as the observed data, then estimate the parameters by directly fitting

the GLM models for comparison.

b: A1 = 1 (to fix the scale of F).
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Table 3-1: The Covariance Estimates of the Derived Residuals dy;, §z,,
and Jz, for the Pseudo-Response Variables Y;, Z,, and Z; from the Raw

Data
1 = F -I-é'yl
logit{pe) = O0.5F
log(pg) = 05F
Sample size n = 1000, F ~ N(0,1}, &y, ~ N(0,0.25)
Estimators Cov(F, dy,) Cov(F, éz,) Cow(F, z,)
Mean 0.00145622575741779 -0.000284173424563074 | 0.00147076032658248
SD 0.014568840760596 0.00797413291220497 0.0059295613079293]
Estimators Cov(dy,, dz,) Cov(éby,, éz,) Cov( éz,, bz,)
Mean 0.000725764225032145 0.00395229243467163 0.00600479275260526
SD ={ 0.00266820752352165 0.000510252226763834
Estimators Cov(F, Y2 — s} Cov(F, Y3 — u3) Cov(dy,, Yo — ug)
Mean -2.00240386790204e-006 | 0.00243583555551094 0.000191641208935875
Sb 0.00321754784298773 =0 =0
Estimators Cov(dy,, Ya — ua) Cov(Y; — piz, Y3 — i3} Cov(F, —7—=)
Mean 0.00375222926711774 0.00128226971780505 0.00338793663518931
SD =0 0.00399039021853967 0.0053682934424681
Estimators Cov(F, é_) Cov(dy,, m) Cov(dy,, #—13)
Mean -0.566665990748019 0.000927683128166474 | -0.000430536497826355
sSD 0.00360798386203851 =0 =0
Estimators Cov(m, i)
Mean 0.0784670653377518
SD =0
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Table 3-2: The Correlation Estimates of the Derived Residuals dy,, 6z,
and 6z, for the Pseudo-Response Variables Y;, Z5, and Z; from the Raw

Data
Yi = F+éy
logit(py) = 0.5F
fog{us) = 0.5F

Sample size n = 1000, F ~ N(0,1), &y, ~ N(0,0.25)

Estimators Corr(F, dy,) Corr(F, 4z,) Corr(F, 4z,)
Mean 0.0028345673646307 | 0.0000979445140091732 | 0.00212153666724797
SD 1 0.0289173297462378 0.0078052289480203 0.00806928280432202
Estimators || Corr(3y,, 6z,) Cor(8y,, 6z,) Corr( 8z, 8z,)
Mean 0.000666048183312564 | 0.00748125926529849 0.00256267478777341
SD =0 0.00535659923415136 0.00201428345036792
Estimators Corr(F, Yz — p2) Corr(F, Y5 — ua) Cort(by,, Y2 — pa)
Mean 0.00014960135394405 0.00207858865524865 | 0.000762618568084194
SDh 0.0064895298526054 =0 =0

Estimators Corr(dy,, Y3 — p3) Corr(Yz — p2, Ya — p3) CO'T(F,HII_W)')
Mean 0.00706587218221219 0.00244002631560017 0.0082093196641338

SD ={ 0.00803329448853753 0.011709201950677
Estimators Corr(F, Iili'} Corr(dy,, m) Corr(by,, %)
Mean -0.939236332875279 0.00434795766923775 -0.0014054 1543868504
SD 0.00185147839582169 ={ =0
> T
Estimators Con‘(m, ;15)
Mean 0.32144296061664

sSD =0
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Table 3-3: The Covariance Estimates of the Derived Residuals dy,, dz,,
and 4z, for the Pseudo-Response Variables Y, Z;, and Z; after
converge of GLM with true 7' value

Yi = F+iéy
logit{us}) = 0.5F
log{pus) = 05F
Sampie size n = 1000, F ~ N(0,1), dy; ~ N(0,0.25)
Estimators Cov(F, &v,) Cov(F, éz,) Cov(F, 4z,)
Mean 0.0014562257574177¢ | 0.000294104772107693 -0.676858302067822
SD 0.014568840760596 0.00323734237539355 0.0101322436805901
Estimators Cov(dy,, éz,) Cov(dy,, 8z,) Cov{ 8z,, 8z,)
Mean 0.000671591683197729 | 0.00347084543633434 0.0186538672128944
sSD =0 =0 =0
Estimators Cov(F, Y3 — pi) Cov(F, Y3 — ua) Cov(dy,, Y2 — pta)
Mean 8.39354798828077e-006 -507.972862087114 0.000180144742518826
5D =10 0.113433835962197 = {)
Estimators Cov{dy,, Y3 — ta) Cov(¥z — g, Y3 — 13) CoV(F, —7—~)
Mean -8.58564340366774 4.80529291743544 0.00301277113367695
sD =0 0.220299729452898 0.00501396999578264
Estimators Cov(F, ﬁ) Cov(dy,, 'Ez{_ll-ﬁ) Cov(dy,, Pls)
Mean -2.60434736151852 0.00127146745550534 | -0.0222005570433585
SD 0.0222801312663991 =0 =0
0 1 1
Estimators COV(m, E)
Mean 2.10707836962572
SD =0
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Table 3-4: The Correlation Estimates of the Derived Residuals dy,, d2,,

and Jz, for the Pseudo-Response Variables Y, Z;, and Z; after
converge of GLM with true 7' value

Y1 = F+dy,
logit(pe) = Q.5F
log{ps) = OQ5F
Sample size n = 1000, F ~ N(0,1), dy, ~ N(0,0.25)
Estimators Corr(F, dy,) Corr(F, dz,) Cori(F, 8z,)
Mean 0.0028345673646307 0.000139992452784524 -0.26370740504046
SD 0.02891732974562378 0.0032614878463136 0.010368040067 1665
Estimators Corr(by,, 6z,) Cort{dy,, 6z;) Com( §z,, 82,)
Mean 0.000684925270228996 0.002912494860 11692 0.00235080309367759
sD =10 =0 ={
Estimators Corr(F, Y53 — u2) Corr(F, Y5 — p3} Corr{dy,, Y2 — u2)
Mean 0.00001726776238388288 -0.376283658317126 0.000717427626712922
Sb =0 =0 =0
Estimators Cort(dy,, Y3 — u3) Corr(Yz — g, ¥3 — u3) Com(Fori—y) |
Mean -0.00472580890234064 | -0.000858457664255342 | 0.00642724068258737
SD =( =0 0.0177467284442302
Estimators Corr(F, -&l—ﬂj Con(dy,, i 5my) Corr{dy,, ;15}
Mean -0.381665511121521 0.00424188830210559 0.00232851813836744
SD 0.0133310865295649 =0 =1q
Estimators Corr(ml—l_-ﬁj, ﬁ?)
Mean 0.53210355784553
SD =0
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Table 3-5: The Covariance Estimates of the Derived Residuals 4y, 4z,
and 4z, for the Pseudo-Response Variables Y], Z;, and Z; after
converge of LM with true I value

Yi = F+ 5]/1
logit(us) = O5F
log{pes) = 05F
Sample size n = 1000, F N{0,1}, dy, ~ N(0,0.25)
Estimators Cov(F, dv,) Cov(F, éz,) Cow(F, 62,)
Mean 0.00145622375741779 | -6.379192580692052-016 | -1.3079701930594 1e-014
sD 0.014568840760596 =0 =10
Estimators Cov(dy,, §z,) Cov(dy,, 6z,) Cov( bz,, dz,)
Mean 0.000653984643916516 0.00399136365924357 0.00582289303679342
SD ={ 0.00251405828046894 0.00165182045698597
Estimators Cov(F, Y5 — pu2) Cov(F, Y3 — u3) Cov(dy,, ¥2 — up)
Mean -0.000164903734209712 | 0.000477548846080722 0.000176219796114244
sD =0 =0 =0
Estimators CUV(&}’], 1,3 - ,(1-3) COV(H = M2, Y.'i - ﬂa) COV(F,ml—l_m)
Mean 0.00380409356892336 0.00127948449740848 0.00258503749764027
SD =0 0.003993404308313 0.00916176299987637
Estimators Cov(F, ﬁ} Cov(dy,, ;—;ﬁl-_—&-—)) Cov(dy,, %)
Mean -L577355347966404 0.00124578427075383 -0.000543822652515056
SD =0 =0 =0
Estimators Cov(m, i)
Mean 0.0842934951191868
sD =0
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Table 3-6: The Correlation Estimates of the Derived Residuals 6y, 6z,
and 6z, for the Pseudo-Response Variables Y, Z,, and Z; after
converge of LM with true F value

Yi = F+iédy
logit{us) = O0.5F
log(ps} = O0O5F
Sample size n = 1000, F ~ N(0,1}, & ~ N(0,0.25)
Estimators Cor(F, dy,) Corr(F, 8z,) Corr(F, déz,)
Mean 0.0028345673646307 -3.0514209163557e-016 | -1.21146968498384e-014
sD 0.0289173297462378 =0 1.740655775537 1 6e-009
Estimators Corr{dy, , z,) Corr(dy,, dz,) Corr{ 8z,, 6z,)
Mean 0.000569452200100126 0.00747509838488736 0.00257984114156831
Sb =0 0.00554438256447983 0.00147153606964539
Estimators COIT(F: },-2 _ “2) COIT(F, }:'l _ #3) COIT(JYU },5.‘ - #’2)
Mean -0.000329480994746257 | 0.000404443598243263 | 0.000701573271903001
SD = { =0 =0
Estimators Comr(dy,, Y3 — pa) Corr(Y; ~ jia, Y3 — p3) Corr(F, - 11_“2 )
Mean 0.00717976099675851 0.00243512067156767 0.00463904414910382
sSD =10 0.00804802634749676 0.0183376025573628
Estimators Cort(F, i) Corr(dy,, FHII—T')') Corr(dy,, i)
Mean -0.93806825660643 0.0042501570935359 -0.00135764594156(8%
SD 0.00414662270356817 =0 =0
Estimators Cmr(ﬁ—ll_—mj, ﬁ)
Mean 0.320363054856871
SD =0
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Table 4: The Simulation Results li;(/)[r a One-Factor Three-Indicator GFA

Var(fy,) = 0.25.

Sample size {n) = 1000.

odel

Number of repetitions ()} = 500.

| Estimators | Aa | As !
True Value 0.25 0.25
EM-CFA Mean 0.25092649693 |87 0.25077280393814
5D (0.27188917804651) (0.25779815451420)
Vi Mean (0.23917803559980 0.24175813023387
SD {0.25016339007073) (0.26395594629856)
Iv2 Mean 0.18820484324542 0.18296473232450
sD {0.18962223003058) {0.18430516504135}
Naive Mean 0.20385240382896 0.19896037286348
SD (0.05616941128867) (0.02829132854139)
True Value 0.5 0.5
EM-CFA Mean || 0.506262456399002 0.52789336850906
SD (0.169496397921747) | (0.164492467426508)
V1 Mean i 0.479948009028105 0.49864687709039
sD (0.143898300631222) | (0.140166490686705)
Iv2 Mean || 0.491471572991417 0.528938137102815
SD (0.14695309863652) (0,14027973639975)
Naive Mean || 0.394203707107843 0.39879624899906
SD (0.060496465011727) | (0.026884175697182)
True Value 0.75 0.75
EM-CFA Mean || 0.770805776916108 0.803566453545436
sD (0.148548512532787}) | (0.112550796094448)
Ivi Mean || 0.755992332797742 0.755170694969821
SD (0.125516560084339) | (0.101351033826447)
V2 Mean || 0.741523132695775 0.75203472185432
SD (0.122236971276649) | (0.10145359485326)
Naive Mean {| 0.584053624312387 0.598897441281704
| sD (0.061932729997401} | (0.028905630245148)
True Yalue 1.0 1.0
EM-CFA Mean 1.06302978540374 1.0371487334856
SD {0.185307670785744) | (0.0905529213065184)
I¥1 Mean 1.24528305940761 1.00881819975644
SD {0.235194514154233) | (0.0949600132097685)
V2 Mean || 0.977987102582031 1.01534135675285
SD (0.139790973079505) | {0.08842560485614)
Naive Mean || 0.765614819012559 0.799832361822084
SD {0.071004341008492) | (0.0335064195148907)
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[ Estimators Ag A3 ]
True Value 125 1.25
EM-CFA Mean 1.40220449509103 1.16619704621377

sD (0.22217839066854) (0.14573630432616)
I¥1 Mean 2.26072152841259 1.24919145135057
sD {0.59010017172323) (0.09365187995617)
1V2 Mean 1.23995950680057 1.27412203789911
SD {0.18319664780851) (0.13824740378273)
Naive Mean 0.93681694772132 0.98987065901224
SD (0.07050462839213) {0.04518235185069)
True Value 0.5 1.0
EM-CFA Mean 0.51501650180935 1.01830285913052
sD {0.12144561744652) {0.1272447814200)
vl Mean 0.57738827699316 1.00381246264769
SD (0.16056702818523) {0.16801078221817)
vz Mean 0.49950397735152 1.06309367337369
SD {0.11158406617320) (0.26484241789319)
Naive Mean 0.39673543565992 0.79998715259196
sD {0.06377698891446) {0.03481135326788)
True Value 1.0 0.5
EM-CFA Mean 1.02781523803823 0.525066319497778
SD (0.232544586692135) | {0.0894179464868579)
Ivi Mean | 0.881558911810525 0.502297498621286
sD {0.146926308125686) | (0.0783581593224056)
Iv2 Mean 0.98426117666135 0.505227777936546
SD (0.189398517849977) | (0.0929382297309208)
Naive Mean || 0.772928740970611 0.4002852853845
sSD (0.071622819141420) | (0.0289400950712675)
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Table 5: The Simulation Results for a One-Factor Three-Indicator GFA

Model
Var(dy,) =0.75.  Sample size (n) = 1000.  Number of repetitions (m} = 500.
Estimators | Ag [ Az |
True Value 0.5 0.5
EM-CFA Mean 0.50980269530201 0.540865675393%4
sSD (0.16297579284051) (0.16893066097260)
Vi Mean 0.48905950906730 0.50672422925337
sSD (0.14336438742163) (0.14818503770210)
Iv2 Mean 0.48567788071355 0.50633361540587
SD || (0.13555834589625) | (0.16620030854094)
MNaive Mean 0.28302514728299 0.28543378712282
SD (0.05333027571444) (0.02520645751251)
True Value 0.75 0.75
EM-CFA Mean 0.761863519261033 0.821334437208613
sSD (0.149544362544804) | (0.118584875356677)
vl Mean 0.761533690363771 0.758161354341419
SD {0.129500897862386) | (0.104205697202766)
1v2 Mean 0.712425748525573 0.768824280159445
sD (0.116430454571507) | (0.159133311767691)
Naive Mean 0.410762197762189 0.429172468525754
SD {0.0502338619818798) | (0.024651456028187)
True Value 1.0 1.0
EM-CFA Mean 1.00648708302048 1.06342719346418
sD (0.17235372188075) (0.12208564398683)
v Mean 1.25428239402012 1.01478619076639
SD {0.24589805486487) (0.11023633023196)
vz Mean 0.926937993536161 1.04670254551449
SD {0.13418419966657) {0.18470383374334)
Naive Mean 0.52305716392208 0.56889119940112
sD (0.05613333518339) (0.03508548872038)




