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 I 

摘 要 

利用三元體(父、母、一個染病孩子) 資料之標識基因是否由親代傳至染病

子代之傳遞-不傳遞訊息來建立檢定連鎖方法，已有許多被發展出來。推廣這些

方法至其它方面，諸如：多對偶基因、缺失資料、異質性、數量性狀、多標識基

因等問題，亦已有許多研究可見。雖然如此，此方面仍存有二個主要問題值得探

究：(1) 在一般化之遺傳模式下 (如顯、隱、累加、相乘模式)，影響連鎖之干擾

參數為何？ (2) 在一般化模式下，除已提出之連鎖檢定方法外，是否還有其它？

在本論文中，將先導出三元體資料於一般化遺傳模式下之標識基因傳遞-不傳遞

資料結構，由此資料結構推得於無連鎖情形下的邊際同質與對稱性，利用這些特

性建立九種檢定連鎖統計量 (其中三種為新的方法)，並推導出於一般化遺傳模

式下對應於各統計量之干擾參數組成結構。最後，以模擬方法探討干擾參數對檢

定連鎖的影響。 

 

關鍵字：遺傳模式；邊際同質性；對稱性；傳遞 
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Abstract 

Using the information of transmission-nontransmission of a parental marker 
allele to the affected child in a case-parent triad family, currently there have been 
many transmission linkage tests proposed for the inference of linkage between a 
marker and a disease-susceptibility gene. Extensions of these methods to a variety of 
problems such as multiple alleles, parent-missing, genetic heterogeneity and 
quantitative trait loci were also widely studied. However, there still remain a couple of 
problems that are worth studying: (1) There is not a comprehensive study that 
investigates all the possible transmission linkage tests under the general disease 
models. Therefore, it is not clear whether there still are, other than the existing ones, 
some statistics that are valid for the test of linkage and how they perform. (2) It is 
known that there are several nuisance parameters (linkage disequilibrium, marker and 
disease allele frequencies, penetrances of disease genes) that can interfere with the 
test of linkage, but it is not clear that how they jointly interfere with the test of linkage 
under the general disease models. Here, we distinguish three types of 
transmission-nontransmission data structure generated from the case-parent triad data 
under the general disease models. For the three types of data structure we discover 
twelve properties of symmetry or marginal homogeneity under the null hypothesis of 
no linkage. Based on these properties, a systematic class of nine transmission linkage 
tests under general disease models is developed. Three in it are new. The joint 
interference structures of the studied nuisance parameters for the respective tests are 
formulated. Simulations are conducted to examine the joint effect of the nuisance 
parameters on the test of linkage under the general situations.  
 
Key words: inheritance mode; marginal homogeneity; symmetry; transmission 
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Purpose of the Project 

It is known that association could interfere with the test of linkage in case-parent 
triad (CPT) data under the recessive mode of inheritance (MOI) of a disease. Yet, it is 
not very clear that what other nuisance parameters may also interfere with the test of 
linkage if the recessive disease model is extended to the general models; and what 
other tests exist beyond the known ones. Here, we look into the possible nuisance 
parameters that may interfere with the test of linkage and investigate the valid linkage 
test statistics for CPT data under general disease models. We will first identify three 
types of transmission-nontransmission data structure for CPT data by relaxing the 
recessive assumption. For each type of data structure we formulate the relevant 
properties under the null hypothesis of no linkage between two loci. Utilizing these 
properties we systematically construct a class of valid linkage test statistics for CPT 
data. Last, we will investigate the power performance of all the methods. 

 

Method 

P-Based, PM-Based and CPM–Based Transmission-Nontransmission 
Probabilities 

Consider a disease locus and a marker locus in a study. There are two alleles A 

and a at the disease locus and two codominant alleles B1 and B2 at the marker locus. 

The three genotypes AA, Aa and aa of the disease locus may all lead to the occurrence 

of the disease. Let p and q be the frequencies of A and a and r and s be the frequencies 

of B1 and B2, respectively. Assume that the population is in Hardy-Weinberg 

equilibrium. The frequencies of the four haplotypes at the two loci are P(AB1) = x1 = 

pr + D, P(AB2) = x2 = ps – D, P(aB1) = x3 = qr – D, P(aB2) = x4 = qs + D, where D is 

the linkage disequilibrium or association parameter. Denote the recombination 

fraction between two loci by θ, the penetrances of the genotypes AA, Aa and aa by 

f2, f1 and f0, and the prevalence rate in the population by ψ, ψ = p2f2 + 2pqf1 + q2f0. 

The four parental marker alleles in a CPT family are classified into two groups: the 

transmission group (or the case group) and the nontransmission group (or the 

pseudocontrol group). Denote the four possible haplotypes in the transmission group 

by aB1, aB2, AB1 and AB2, and the two possible marker alleles in the nontransmission 

group by 1B  and 2B , where the “underline” labels the alleles transmitted from 
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parents to the affected children and the “upper bar” labels those nontransmitted. Ott 

(1989) derived the conditional joint distribution of transmitted and nontransmitted 

marker alleles for one parent in CPT families for a recessive disease. Extending Ott’s 

result to the general MOI, Knapp, Seuchter and Baur (1993) derived the conditional 

joint distribution of transmitted and nontransmitted marker genotypes in CPT families. 

Following their derivations, we can immediately write down the conditional joint 

distribution of transmitted haplotypes and nontransmitted marker alleles for one 

parent in CPT families for the general MOI. Because in practical studies we can only 

observe marker genotypes of affected children (i.e., we can not distinguish between 

aB1 and AB1 and between aB2 and AB2), combining the undistinguishable haplotypes 

together we obtain the conditional joint distribution of transmitted and nontransmitted 

marker alleles for one parent for the general MOI (Table 1). We call the probabilities 

in Table 1 the parent-based transmission- nontransmission probabilities (P-based 

TNTP). 

According to the marker genotype of the affected child in the family, the four 

parental marker alleles can be identified as either transmitted or nontransmitted. Let 

B1/B1, B1/B2 and B2/B2 represent the three possible assorted types of the two 

transmitted parental alleles, and 1B / 1B , 1B / 2B  and 2B / 2B  represent the three 

possible assorted types of the two nontransmitted parental alleles. Based on such a 

(transmission-nontransmission) classification of the four parental alleles, the parental 

matings in a population are classified into nine (3×3) categories. Under the 

assumptions: (i) no selection or mutation, (ii) Hardy-Weinberg equilibrium for 

marker-disease genotypes, and (iii) random mating with respect to marker and disease 

genotypes, the corresponding conditional joint probabilities for these nine categories 

were derived. We call these probabilities the parental mating-based transmission- 

nontransmission probabilities (PM-based TNTP). 

In practical analysis, a 3×3 table may be condensed to a 2×2 table so that some 

simple statistics such as t, χ2, log-likelihood ratio statistic G2 or odds ratio can be used. 

Combining the two rows B1/B2 and B2/B2 in Table 3 into one category and the two 

columns 1B / 2B  and 2B / 2B  into one category as well, the observed numbers and 

conditional joint probabilities of the four condensed parental mating types are also 

derived. These probabilities will be called condensed parental mating-based 
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transmission-nontransmission probabilities (CPM-based TNTP). 

The P-based, PM-based and CPM-based TNTPs are composed of four parts: (1) 

the allele frequencies r and s at the marker, (2) the allele frequencies p and q and the 

penetrance parameters f2, f1 and f0 at the disease locus, (3) the association parameter D 

and (4) the recombination fraction θ . Let τ ′ = (f2-f1)- (f1-f0)=f2-2f1+f0, which is 

defined as an MOI index of the disease. If the MOI of the disease is recessive (f1=f0), 

τ ′ = f2-f1= f2-f0. If the MOI of the disease is dominant (f1=f2), τ ′ =-(f2-f0)=-(f1-f0). If the 

MOI of the disease is additive (f1=(f2+f0)/2), τ ′ =0. If the MOI of the disease is 

multiplicative (f1= 02 ff ), τ ′ =(f2+f0)-2 02 ff . It can be verified that τ ′  is an 

unambiguous index that can completely distinguish the four genetic models. Also, let 

)()( 0112 ffqffp −+−=′β , which can be regarded as the average gene substitution 

effect of the disease locus.  

 

Symmetry and Marginal Homogeneity Properties of the Three Types of TNTP 

Based on the P-based TNTP and under the )1(
0H : (1 – 2θ)Dβ= 0, overall we can 

find three properties for the development of valid statistics for test of linkage: 

property (i): u12 = u21 (symmetry), property (ii): u1. = u.1 (marginal homogeneity), 

property (iii): u2. = u.2 (marginal homogeneity). Note that asθDβ= 0, uij = ui. u.j 

(independence). Hence, a P-based statistic developed for testing independence (e.g., 

Pearson’s χ2 for 2×2 tables) is invalid for test of linkage. 

For the PM-based TNTP, we have the following results: (1) under )2(
0H : (1 – 2

θ)(rE + F) = (1 – 2θ)(rDβ+ D2τ ) = (1 – 2θ)D(rβ+ Dτ ) = 0, v12 = v21; (2) under 
)3(

0H : (1 – 2θ)[2rsE + (s – r )F] = (1 – 2θ) [2rsDβ + (s – r ) D2τ ] = (1 – 2

θ)D[2r(1-r)β + (1 – 2r )Dτ ] = 0, v13 = v31; (3) under )4(
0H : (1 – 2θ)(sE – F) = 

(1 – 2θ) (sDβ – D2τ ) = (1 – 2θ)D((1-r)β – Dτ ) = 0, v23 = v32; (4) under )5(
0H : 

(1 – 2θ)(2rE + F) = (1 – 2θ) (2rDβ + D2τ ) = (1 – 2θ)D(2rβ + Dτ ) = 0, v1. = 

v.1; (5) under )6(
0H : (1 – 2θ)[(s – r )E – F] = (1 – 2θ) [(s – r )Dβ – D2τ ] = (1 – 2

θ) D[(1 – 2r )β –Dτ ] = 0, v2. = v.2; (6) under )7(
0H : (1 – 2θ)(2sE – F) = (1 – 2θ) 
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(2sDβ–D2τ ) = (1 – 2θ)D(2(1-r)β–Dτ ) = 0, v3. = v.3; (7). In summary, under the 

respective )(
0

kH , k = 2, 3, …, 7, there are six properties that can be used for the 

development of valid statistics for test of linkage: property (iv): v12 = v21 (symmetry), 

property (v): v13 = v31 (symmetry), property (vi): v23 = v32 (symmetry), property (vii): 

v1. = v.1 (marginal homogeneity), property (viii): v2. = v.2 (marginal homogeneity), 

property (ix): v3. = v.3 (marginal homogeneity). Note that a PM-based statistic 

developed for testing independence is also invalid for test of linkage. 

For the CPM-based TNTP it can be shown that under )8(
0H : (1 – 2θ)(2rE + F) 

= (1 – 2θ)(2rDβ+ D2τ ) = (1 – 2θ)D(2rβ+ Dτ ) = 0, w12 = w21, there are three 

properties that can be used for the development of valid statistics for test of linkage: 

property (x): w12 = w21 (symmetry), property (xi): w1. = w.1 (marginal homogeneity), 

property (xii): w2. = w.2 (marginal homogeneity). Again, the independence test using 

the CPM-based TNTP is invalid for test of linkage.  

 

P-Based, PM-Based and CPM-Based Transmission Linkage Disequilibrium Tests 

Since the linkage disequilibrium parameter D interferes with all tests of linkage 

under the eight null hypotheses )(
0

kH ’s, tests developed under these hypotheses are 

exactly to test linkage and linkage disequilibrium rather than linkage only. Based on 

the twelve properties demonstrated in the above section, nine linkage disequilibrium 

tests are derived : 

)(
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Simulation Results 

Our simulation results indicate that: 

(1) In most situations the three P-based statistics T1, T2 and T3 are more powerful than 

other statistics.  

(2) The nine test statistics are more powerful under the models of greater |E| values. 

When |E| ≤ 0.01, no matter how small theθvalue is, the power of any statistic 

approaches theαlevel. 

(3) Because the magnitude of E affects the testing power and the magnitude of E is 

affected by the disease gene frequency, the testing power is affected by q. In our 

study with the decrease of q value, the powers of the nine tests have the tendency 

to increase under the recessive and dominant models, but to decrease under the 

additive and multiplicative models. 

(4) When the sample size is 50, no matter under which model all tests show low 

powers. High powers are observed when the number of CPT families increases to 

300 for the recessive and dominant models. 

 

Discussion 

The conventional linkage analysis methods collect pedigree data to perform 

parametric inference of linkage between a disease gene and a marker. These methods 

are usually involved in complex sampling and cumbersome computation. The 

methods developed with the use of case-parent triad data avoid these disadvantages 

and stratification problem, but they have the limitation that their powers may be low 
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unless the detected locus is closely linked to the disease locus. In the previous 

sections we have extended the recessive disease model to general situations and 

demonstrated three ways of extracting the transmission and nontransmission 

information from a CPT family. The PM-based TNTP is the basic one from which the 

P-based and CPM-based TNTPs evolve. Based on the three types of TNTP and under 

the null hypothesis of eitherθ= 1/2 (no linkage), D = 0 (no association) or certain 

nuisance composition structures, twelve properties of symmetry and marginal 

homogeneity are formulated for the development of linkage disequilibrium test 

statistics. T1, T4 and T7 are three McNemar-type statistics, which are derived by the 

symmetric properties of P-based, PM-based and CPM-based TNTPs respectively. T2, 

T5, T6 and T8 are developed with the idea of combining two or more binomial 

statistics. The two odds-ratio-type statistics are T3 and T9. It appears that T3, T5 and T6 

have not been discussed before. The power performance of the TDT under different 

modes of inheritance had been investigated by different studies (e.g., Knapp, 1999). 

Our simulation studies for the testing powers of the nine statistics T1, T2,…, T9 

indicate that these statistics may be suitable for the analysis of the recessive and 

dominant disease models but not suitable for the additive and multiplicative models. 

Nevertheless, the P-based methods (T1, T2, T3) are generally the best choices under all 

disease models. Effective designs should be developed to enhance the test powers for 

the additive and multiplicative models (e.g., Zheng et al., 2002). 

 

計畫成果自評： 

傳遞連鎖檢定方法屬於無母數檢定方法一種，由於收集資料較家族資料容易，故

常被考慮為人類基因定位時的一種實作方法。本研究討論了九種檢定方法，其中

三種屬於新的方法；此外，本研究更清楚推導出干擾這些檢定的干擾參數聯合結

構形式。整體而言，這些新的結果都是以往所未知的。非常感謝國科會自然處支

持本計畫。 
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Table 1 

Conditional joint probabilities of transmitted and nontransmitted marker alleles 

for one parent in CPT families for general disease models (P-based TNTP) 

Nontransmitted allele Transmitted 
allele 

1B  (j=1) 2B  (j=2) Sum 

 
1 1B B * 

1 2B B  1B  

 u11
** u12 u1. 

1B  (i=1) = r2 + rE = rs + sE –θE = r + E –θE 

 m11
*** m12 m1. 

 = 2n11 + n12 + n21 + n221 = n12 + 2n13 + n222 + n23 = 2n1. + n2. 

    

 
1 2B B  

2 2B B  2B  

 u21 u22 u2. 

2B  (i=2) = rs – rE +θE = s2 – sE = s – E +θE 

 m21
 m22 m2. 

 = n21 + n222 + 2n31 + n32 = n221 + n23 + n32 + 2n33 = 2n3. + n2. 

 
1B  2B   

Sum u.1 = r +θE u.2 = s –θE u.. = 1 

 m.1 = 2n.1 + n.2 m.2 = 2n.3 + n.2 m.. = 2n 

*  : marker genotypes with transmitted and nontransmitted information 

** : uij, conditional joint probabilities of parental genotypes 

***: mij, observed numbers of parental genotypes, where nij is defined in Table 3 

 


