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Abstract

Introduction Breast cancer screening with mammography has been demonstrated to
reduce 20 to 30% mortality of breast cancer in western country for aged 40-69
(Nystrom et al, 1993; Tabar et al, 2000). Although incidence and mortality of breast
cancer have increased over the past decade in many Asian countries, the incidence
seems still too low to reach the criteria of mass screening for breast cancer with
mammography compared with western country.

This year we developed a Bayesian method in terms of evaluation of different
screening strategy in selecting individuals at risk to determine the criteria for the
selection of general population at risk of developing breast cancer. In addition, a
three-state Markov model including both fixed effect, random effect was developed to
capture the heterogeneity caused by individual variation after adjusting for correlated

property and measured covariates by Bayesian approach.

Materials and methods The high-risk group was first included the women aged
50-69 years who has the family history of first degree relative of breast cancer, and
second defined by a risk score higher than a cutoff point. Risk score based on logistic
regression model that incorporates all significant reproductive and menstrual factors
obtained from data with mammographic and physical examination of the past
community-based out-reaching screening program (1999~2001). We also proposed a
Bayesian hierarchical multi-state model to tackle these problems with the
incorporation of random-effect parameters. The model was applied to data from a
high-risk group (family history of breast cancer) screening for breast cancer. There
were 4,867 women with family history derived from 4,464 families attending the

screening program. Among them, 130 breast cases were identified by the end of 2002,
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For modeling the disease natural history of breast cancer from the data described
above, we developed a three-state Markov model including both fixed effect, random
effect and to capture the heterogeneity caused by individual variation after adjusting

for correlated property and measured covariates by Bayesian approach.

Results For the breast cancer screening with family history of first-degree relative, Of
147 cases, there were only 9 cases with family history. The sensitivity was only 5.8%
and the specificity was 97.9%. The average high-risk score of breast cancer cases

was —5.05 (SD=3.41) and the average high-risk score of none breast cancer cases

was —7.76 (SD=3.75). Apparently, the score was higher in breast cancer rather than in
non-breast cancer. The results from Bayesian random-effect Markov model showed
that the remarkable effect of age at first full-term pregnancy was seen in the transition
from the PCDP to clinical phase. Those who were age at first full-term pregnancy
older than 30 years had approximately two-fold risk for the progression from the
PCDP to clinical phase (Rate ratio=1.89, 95% credible interval=1.02-3.66). The

random effect was still statistically significant.



Introduction

Breast cancer screening with mammography has been demonstrated to reduce
20 to 30% mortality of breast cancer in western country for aged 40-69 (Nystrom et al,
1993; Tabar et al, 2000). Although incidence and mortality of breast cancer have
increased over the past decade in many Asia countries, the incidence seems still too
low to reach the criteria of mass screening for breast cancer with mammography
compared with western country. Even if the efficacy is one of most essential elements
to pursue for any screening programme, the efficiency of screening should be also
taken into consideration when positive predictive value might be low. However, how
to screen women at average risk is no consensus on the optimal modality so far.
Providing the genetic testing and counseling for women belonging to family with
familial is one of the strategy to reduce the risk for developing breast cancer (Eccles et
al, 2000; NICE). According to the number of affected relatives, the age at onset and
the cancers associated, three groups of risk have been defined as low, moderate and
high for secondary prevention. Women belong to moderate or high risk should
undergo annual mammography (Kriege et al, 2004; Kuhl et al, 2005). Similarly, for
general population, we should take selective screening into account from the
consideration of cost- effectiveness in breast cancer screening programme.
Accordingly, in large-scale population screening for breast cancer by high-risk group
(i.e., with family history of breast cancer, age at menarch), special attention should be
paid to certain number of mammography from the economic aspect. Another
viewpoint is the positive predictive value would be improved and save the
mammaographic cost through selective screening.

No matter what screening modality was considered, the understanding of
disease natural history is essential for policy making. However, the estimation of

parameters in multi-state process regarding the tumour progression form the



pre-clinical screen-detectable phase (PCDP) to clinical phase is intractable because of
multi-level data structure inherent from cluster(family)-based service screening
program, which is characterized by correlated property between rounds of screen in
the same individual or different subjects but within the same cluster (family), and
residual heterogeneity after being explained by measured or known covariates. We
proposed a Bayesian hierarchical multi-state model to tackle these problems with the
incorporation of random-effect parameters. The model was applied to data from a
high-risk group (family history of breast cancer) screening for breast cancer.

This year we developed a Bayesian method in terms of evaluation of different
screening strategy in selecting individuals at risk to determine the criteria for the
selection of general population at risk of developing breast cancer. In addition, a
three-state Markov model including both fixed effect, random effect was developed to
capture the heterogeneity caused by individual variation after adjusting for correlated

property and measured covariates by Bayesian approach.

Materials and methods

High-risk group predict model

A two-stage breast cancer screening for selecting high-risk group was adopted
from July 2002 in Taiwan. In the first stage, we used questionnaire screening to define
each individual who was high-risk group or not. Several modalities had been used in
communities for risk assessment. The risk assessment tools were provided including
reference table and computer software. For reference table, the individual risk score
was elucidated by the combination of multi-dimensions with risk indicators on table.

The most efficient tool was used by information technology from web-site was



conducted to access risk for all participates on-line. Public health nurse will transfer
high-risk group to receive mammaography by referred messages in second stage.

The high-risk group was first included the women aged 50-69 years who has the
family history of first degree relative of breast cancer, and second defined by a risk
score higher than a cutoff point. Risk score based on logistic regression model that
incorporates all significant reproductive and menstrual factors obtained from data
with mammaographic and physical examination of the past community-based
out-reaching screening program (1999~2001) (Wu et al, 2006).

According to the cost and the capacity of mammography, the cut-off point of
score was defined at —9. It would be getting around 50% high-risk women based on
this criterion in general population screening. The score higher than cut-off point was

defined as the high-risk cases.

Bayesian analysis for high-risk score
The Bayesian analysis was approached to evaluate the two-stage breast cancer
screening. The posterior probability of two-stage breast cancer screening was assess

by Bayesian analysis and expressed as follow:

P(BC|X=y) 3 P(BC) y P(X=x|BC)
P(BC|X=y4) P(BC) P(X=y|BC)

1)

BC is breast cancer and BC is none breast cancer. P(BC) s the prior probability

of breast cancer and P(BC) s the prior probability of none breast cancer. The
high-risk score is X.

The general form for likelihood as in (1) is expressed by could be written as (2):
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1 was the average score and o; was the standard deviation for breast cancer

cases > o was the average score and oo was the standard deviation for none breast
cancer cases ° If the score was follow as Normal distribution. The random variable of
risk score of breast cancer was X; and assume the distribution of  X;~N(u1,01), and
the random variable of risk score of none breast cancer was X, and assume the
distribution of  Xo~N(p0,00).

The posterior odds can be written as follow:

2 2
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Finally, Bayesian factor (weight of evidence) can be written as (4):
P(X|BC) _ P(BC|X) /P(BC)
P(X|BC) P(BC|X)/ P(BC) ()

Bayesian random-effect Markov model for breast cancer screening for women
with positive family history

There were 4,867 women with family history derived from 4,464 families
attending the screening program. Among them, 130 breast cases were identified by the
end of 2002. For modeling the disease natural history of breast cancer from the data
described above, we developed a three-state Markov model including both fixed
effect, random effect and to capture the heterogeneity caused by individual variation

after adjusting for correlated property and measured covariates by Bayesian approach.



Bayesian hierarchical model with random effect

A Bayesian hierarchical model was proposed to estimate the three-state Markov
model with the incorporation of random effect and fixed effect.

Figure 2 shows acyclic graph model for estimating the parameters of £ ’s and
o’ s for random-effect of Z’s. Three hierarchical levels were formulated due to
repeated screening visit level (v), subject level (s), and family level (f).

A typical non-informative but proper prior parameter was specified by a gamma
distribution with small but positive values. Hence, Gamma (107, 10®) distribution
was used as the prior distribution for transition rates, A, and A,, and the precision
of random effect parameter, 7, which is equivalent to the inverse of variance, o?.
For ease of convergence, several boundaries of gamma distribution were set up as
0.001-1 for 4,,0.1-1for A4,,0-5for z.For modeling the fixed effect, a typical
non-informative prior, normal distribution, Normal(0, 10°), was assigned for
regression coefficient, £, with the range between -2 and 2, assuming the odds ratio
for the effect of covariate on risk would not be greater then 7.

The Gibbs sampler, an iterative Markov-chain Monte Carol (MCMC) simulation,
was used to estimate the posterior distribution. Bayesian analysis software WinBUGS
(Spiegelhalter et al., 2004) was used. For each model, 50,000 samples were drawn
following a burn-in period of 10,000 iterations. Convergence was assessed by
checking the history of iterations and the Kernal density for each parameter in each

model.

Model selection
Deviance information criterion (DIC), the summation of posterior mean of the
deviance and the effective number of parameters (penalty term for increasing model

complexity), was used to compare series of proposed random effect models listed in



Table 2 because only a fraction of degree of freedom as a result of random effect was
removed (Spiegelhalter et al., 2002). The model with the smallest DIC was considered

as the best one.

Preliminary Results

For the breast cancer screening with family history of first-degree relative, Of
147 cases, there were only 9 cases with family history. The sensitivity was only 5.8%
and the specificity was 97.9% (Table 1).

Of all participants, the average high-risk score of breast cancer cases was —5.05
(SD=3.41) and the average high-risk score of none breast cancer cases was —7.76
(SD=3.75). The average high-risk score of breast cancer cases was —4.60 (SD=3.48)
and the average high-risk score of none breast cancer cases was —9.364 (SD=3.19) for
age 50-59 years. The average high-risk score of breast cancer cases was —5.87
(SD=3.15) and the average high-risk score of none breast cancer cases
was —9.36(SD=3.19) for age 60-69 years (Table 2). Apparently, the score was higher
in breast cancer rather than in non-breast cancer. The distributions of high-risk score
between breast cancer and none breast cancer by age groups were demonstrated as
Figure 2. The distributions of high-risk score are closer between breast cancer and
none breast cancer for women who belong to age under 60 rather than age over 60.

Table 2 shows the posterior odds conferred by each high-risk score and age
group after applying the equation (4) to empirical data with all participants. Bayesian
factor decreases with the level of score at decreasing rate. If we take the high risk
score between 14 and -13, the highest and lowest, it represented that the ranges of
Bayesian factor could reflects the degree of prior odds. Less Bayesian factor presents
the less probability to detect breast cancer from the same age group. In contrast with

younger women aged under 60, women for aged over 60 has higher Bayesian factor



when score is greater than -9. A posterior odd is the outcome for breast cancer
compared with non breast cancer with selecting individuals at risk. For instance, we
could detect one breast cancer case for every 1,406 normal cases screened regarding
score defined as -9.

Table 3 shows the estimated results by the incorporation of one significant
covariate, age at first full-term pregnancy (AP) model, into M3 models. The
remarkable effect of age at first full-term pregnancy was seen in the transition from
the PCDP to clinical phase. Those who were age at first full-term pregnancy older
than 30 years had approximately two-fold risk for the progression from the PCDP to
clinical phase (Rate ratio=1.89, 95% credible interval=1.02-3.66). The random effect
was still statistically significant. The model fitting was lacking of statistical
significance (P=0.10 for M3+AP) as the predicted numbers were closer to the
observed by taking the heterogeneity from measured covariates and unmeasured

covariates.
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Table 1 Breast cancer finding by family history of first-degree relative

Breast Cancer

Family history Total
Yes No
Yes 9(5.8%) 4613(2.1%) 4622(2.1%)
No 146(94.2%) 214054 (97.9%) | 214200 (97.9%)
Total 155 218667 218822

Breast cancer finding was included 8 interval cases
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Table 2 The posterior odds conferred by each high-risk score and age group

Risk Age
Score 50-59" 60-69° 50-69'
Posterior Bayesian Posterior Bayesian Posterior Bayesian
Odds Factor Odds Factor Odds Factor

14 1: 43.58 1837 1 0.56 1689.42  1: 16.79 50.80
13 1: 50.55 1584 1 0.79 119786  1: 20.36 41.90
12 1: 58.63 1365 1 111 849.33 1 24.68 34.57
11 1: 68.01 1177 1 1.56 602.21  1: 29.92 28.51
10 1: 78.89 1015 1 2.20 426.99 1 36.27 23.52
9 1: 91.50 875 1 3.11 30275 1 43.97 19.40
8 1.  106.14 754 1 4.38 21466 1 53.30 16.01
7 1. 12311 650 1 6.18 15220  1: 64.62 13.20
6 1. 142.80 561 1 8.72 107.92  1: 78.33 10.89
5 1.  165.64 483 1 12.29 7652  1: 94.96 8.98
4 1. 192.13 417 1 17.34 5425 1. 11512 7.41
3 1. 222.86 359 1 24.46 3847 1. 13955 6.11
2 1: 25850 310 1 34.49 2727 1. 169.17 5.04
1 1. 299.84 267 1 48.64 19.34  1:  205.09 4.16
0 1.  347.80 230 1 68.61 1371 1. 24862 3.43
-1 1:  403.42 198 1 96.76 9.72 1. 30139 2.83
-2 1. 467.94 171 1 136.47 6.89 1. 365.37 2.33
-3 1. 542.78 147 1 192.47 489 1. 44292 1.93
-4 1 629.59 127 1 271.45 347 1. 536.94 1.59
-5 1:  730.28 110 1 382.84 246 1.  650.92 1.31
-6 1. 847.07 095 1 539.94 1.74 1. 789.09 1.08
-7 1. 982.54 081 1 761.52 124 1. 956.58 0.89
-8 1: 1139.68 070 1. 1074.02 0.88 1. 1159.63 0.74
-9 1. 1321.95 061 1. 1514.76 0.62 1. 1405.79 0.61
-10 1: 1533.37 052 1. 2136.36 044  1: 1704.19 0.50
-11 1. 1778.61 045 1. 3013.04 031 1. 2065.93 0.41
-12 1: 2063.06 039 1. 4249.49 022 1. 2504.46 0.34
-13 1: 2393.01 033 1. 5993.32 016  1: 3036.08 0.28

* Breast Cancer (Mean=-4.60 SD=3.48), None Breast Cancer (Mean=-6.63 SD=3.70)
t Breast Cancer (Mean=-5.86 SD=3.15), None Breast Cancer (Mean=-9.36 SD=3.19)
t Breast Cancer (Mean=-5.05 SD=3.41), None Breast Cancer (Mean=-7.76 SD=3.75)
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Table 3 Results of random effect model with one covariate, age at first pregnancy

(AP).

Node Mean S.D. 2.50% Median 97.50%  y° df P-value
Model: M3+AP 13.3534 8 0.10025
A 0.0048  0.0006 0.0038 0.0048  0.0060

A, 0.56 0.11 0.38 0.55 0.81

B 0.64 0.33 0.02 0.63 1.30

exp(s,) 1.89 1.38 1.02 1.88 3.66

o’ 0.56 0.35 0.38 0.58 0.79

13



Figure 1 Distribution of Risk Score between Case and Non-case
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Figure 2. The acyclic graphic model for estimating the random effect and fixed

effect of multi-state process.**

*The nodes were excluded in the final model with random effects and fixed effects,

M3+AP.
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In this study, a two-stage screening modality was made the contribution of
finding the most of cases. If the risk prediction could be take into account, the
posterior odds could increase by the function of Bayesian factor to 3.43 fold for early
detection of breast cancer when risk score is greater than 0. When risk score is greater
than -9, the Bayesian factors are higher for women aged between 60 and 69 in
comparison with women aged between 50 and 59. Compared with disusing, more
information could be gained after conducting this screening tool in elder rather than
younger.

Moreover, the quantitative score is convenience to define the optimal cut-off
point using operator receiver curve (ROC) method. For all ages 50-69 years, the best
cut-off was —6 with a sensitivity of 63% and specificity of 68%. The cut-off score
actually used to refer to the second stage had been fixed at —9. This gave a sensitivity
of 87% and specificity of 37% (Kriege et al, 2004). Given a lower cut-off point,
higher sensitivity is accompanied by lower specificity. It need to be concerned for that,
at the lower cut-off value, unnecessary mammographic resulting from higher false
positive cases with risk assessment by questionnaire but high utility as a result of
lower false negative cases would be expected. By contrast, at higher cut-off value,
false positive rate could be reduced but false negative cases were increased.
Cost-effectiveness analysis therefore should be provided and applied to determining
the best cut-off value between sensitivity and specificity in the future.

We presented a Bayesian hierarchical multi-state model to estimate transition
parameters of the disease natural history based on multi-level data of breast cancer
screening for women with relatives suffering from breast cancer. The major of our

approach is to introduce random-effect parameters corresponding to different
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hierarchical levels to capture the heterogeneity resulting from correlations, measured
covariates, and residual variation that cannot be explained by measures covariates. It
can be found that the consideration of random-effect not only affects the mean value
but also the variance. In the three-state model, it can be seen that making allowance
for random-effects led to higher transition rate and wider confidence of lambda2, but
lower annual incidence rate and narrower confidence of lambdal (see Table 3). This
suggests that a shorter screening interval may be needed if such heterogeneity is

considered.
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