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中文摘要 

 

前言  利用乳房攝影術進行大規模乳癌篩檢已被西方國家證實可達到 20%-30%

的乳癌死亡率降低，然而大規模篩檢是否適用於乳癌發生率不若西方國家高的亞

洲地區則為一個爭議性的議題，是否改採用高危險篩檢？若是，該用怎樣的條件

篩選所謂高危險群。本年度我們利用貝氏方法發展適用於一般族群的乳癌危險性

計算公式，此外，亦利用貝氏理論發展同時考慮固定效應及隨機效應三階段馬可

夫鏈模式以量化乳癌的疾病自然史。 

 

材料與方法 利用羅吉斯迴歸模式可以產生乳癌危險計算公式，再利用病例與對

照兩群人的危險分數分佈結合貝氏法則計算不同切點下可以達到的辨識危險比

例，並據此決定最佳切點。此外，利用貝氏多層次分析技巧引入不同層次的隨機

效應並檢視是否隨機效應的引入可以有效的改善模式表現。 

 

結果 乳癌個案的得病危險分數平均值為-5.05（標準差為 3.14），非病例個案之

得病危險分數平均值為-7.76（標準差為 3.75）。切點值與貝氏因子（辨識危險比）

呈反比關係。貝氏隨機效應模式結果顯示第一胎足產年齡較晚為統計上具顯著意

義的危險因子（OR=1.89，95%信賴區間：1.02-3.66），且隨機效應的存在具統計

上顯著意義。 
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Abstract 

 

Introduction Breast cancer screening with mammography has been demonstrated to 

reduce 20 to 30% mortality of breast cancer in western country for aged 40-69 

(Nystrom et al, 1993; Tabar et al, 2000). Although incidence and mortality of breast 

cancer have increased over the past decade in many Asian countries, the incidence 

seems still too low to reach the criteria of mass screening for breast cancer with 

mammography compared with western country. 

This year we developed a Bayesian method in terms of evaluation of different 

screening strategy in selecting individuals at risk to determine the criteria for the 

selection of general population at risk of developing breast cancer. In addition, a 

three-state Markov model including both fixed effect, random effect was developed to 

capture the heterogeneity caused by individual variation after adjusting for correlated 

property and measured covariates by Bayesian approach. 

 

Materials and methods The high-risk group was first included the women aged 

50-69 years who has the family history of first degree relative of breast cancer, and 

second defined by a risk score higher than a cutoff point. Risk score based on logistic 

regression model that incorporates all significant reproductive and menstrual factors 

obtained from data with mammographic and physical examination of the past 

community-based out-reaching screening program (1999~2001). We also proposed a 

Bayesian hierarchical multi-state model to tackle these problems with the 

incorporation of random-effect parameters. The model was applied to data from a 

high-risk group (family history of breast cancer) screening for breast cancer. There 

were 4,867 women with family history derived from 4,464 families attending the 

screening program. Among them, 130 breast cases were identified by the end of 2002. 



 3

For modeling the disease natural history of breast cancer from the data described 

above, we developed a three-state Markov model including both fixed effect, random 

effect and to capture the heterogeneity caused by individual variation after adjusting 

for correlated property and measured covariates by Bayesian approach.  

 

Results For the breast cancer screening with family history of first-degree relative, Of 

147 cases, there were only 9 cases with family history. The sensitivity was only 5.8% 

and the specificity was 97.9%. The average high-risk score of breast cancer cases 

was –5.05 (SD=3.41) and the average high-risk score of none breast cancer cases 

was –7.76 (SD=3.75). Apparently, the score was higher in breast cancer rather than in 

non-breast cancer. The results from Bayesian random-effect Markov model showed 

that the remarkable effect of age at first full-term pregnancy was seen in the transition 

from the PCDP to clinical phase. Those who were age at first full-term pregnancy 

older than 30 years had approximately two-fold risk for the progression from the 

PCDP to clinical phase (Rate ratio=1.89, 95% credible interval=1.02-3.66). The 

random effect was still statistically significant. 
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Introduction 

     Breast cancer screening with mammography has been demonstrated to reduce 

20 to 30% mortality of breast cancer in western country for aged 40-69 (Nystrom et al, 

1993; Tabar et al, 2000). Although incidence and mortality of breast cancer have 

increased over the past decade in many Asia countries, the incidence seems still too 

low to reach the criteria of mass screening for breast cancer with mammography 

compared with western country. Even if the efficacy is one of most essential elements 

to pursue for any screening programme, the efficiency of screening should be also 

taken into consideration when positive predictive value might be low. However, how 

to screen women at average risk is no consensus on the optimal modality so far. 

Providing the genetic testing and counseling for women belonging to family with 

familial is one of the strategy to reduce the risk for developing breast cancer (Eccles et 

al, 2000; NICE). According to the number of affected relatives, the age at onset and 

the cancers associated, three groups of risk have been defined as low, moderate and 

high for secondary prevention. Women belong to moderate or high risk should 

undergo annual mammography (Kriege et al, 2004; Kuhl et al, 2005). Similarly, for 

general population, we should take selective screening into account from the 

consideration of cost- effectiveness in breast cancer screening programme. 

Accordingly, in large-scale population screening for breast cancer by high-risk group 

(i.e., with family history of breast cancer, age at menarch), special attention should be 

paid to certain number of mammography from the economic aspect. Another 

viewpoint is the positive predictive value would be improved and save the 

mammographic cost through selective screening. 

No matter what screening modality was considered, the understanding of 

disease natural history is essential for policy making. However, the estimation of 

parameters in multi-state process regarding the tumour progression form the 
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pre-clinical screen-detectable phase (PCDP) to clinical phase is intractable because of 

multi-level data structure inherent from cluster(family)-based service screening 

program, which is characterized by correlated property between rounds of screen in 

the same individual or different subjects but within the same cluster (family), and 

residual heterogeneity after being explained by measured or known covariates. We 

proposed a Bayesian hierarchical multi-state model to tackle these problems with the 

incorporation of random-effect parameters. The model was applied to data from a 

high-risk group (family history of breast cancer) screening for breast cancer. 

This year we developed a Bayesian method in terms of evaluation of different 

screening strategy in selecting individuals at risk to determine the criteria for the 

selection of general population at risk of developing breast cancer. In addition, a 

three-state Markov model including both fixed effect, random effect was developed to 

capture the heterogeneity caused by individual variation after adjusting for correlated 

property and measured covariates by Bayesian approach. 

 

 

Materials and methods 

 

High-risk group predict model 

     A two-stage breast cancer screening for selecting high-risk group was adopted 

from July 2002 in Taiwan. In the first stage, we used questionnaire screening to define 

each individual who was high-risk group or not. Several modalities had been used in 

communities for risk assessment. The risk assessment tools were provided including 

reference table and computer software. For reference table, the individual risk score 

was elucidated by the combination of multi-dimensions with risk indicators on table. 

The most efficient tool was used by information technology from web-site was 
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conducted to access risk for all participates on-line. Public health nurse will transfer 

high-risk group to receive mammography by referred messages in second stage. 

The high-risk group was first included the women aged 50-69 years who has the 

family history of first degree relative of breast cancer, and second defined by a risk 

score higher than a cutoff point. Risk score based on logistic regression model that 

incorporates all significant reproductive and menstrual factors obtained from data 

with mammographic and physical examination of the past community-based 

out-reaching screening program (1999~2001) (Wu et al, 2006).  

According to the cost and the capacity of mammography, the cut-off point of 

score was defined at –9. It would be getting around 50% high-risk women based on 

this criterion in general population screening. The score higher than cut-off point was 

defined as the high-risk cases.  

 

Bayesian analysis for high-risk score 

     The Bayesian analysis was approached to evaluate the two-stage breast cancer 

screening. The posterior probability of two-stage breast cancer screening was assess 

by Bayesian analysis and expressed as follow: 

BC)|P(X
BC)|P(X

)BCP(
P(BC)

)X|BCP(
)X|P(BC

χ
χ

χ
χ

=
=

×=
=
=      (1) 

 

BC is breast cancer and BC  is none breast cancer. P(BC)  is the prior probability 

of breast cancer and )BCP(  is the prior probability of none breast cancer. The 

high-risk score is X. 

The general form for likelihood as in (1) is expressed by could be written as (2): 
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µ1 was the average score and σ1 was the standard deviation for breast cancer 

cases，µ0 was the average score and σ0 was the standard deviation for none breast 

cancer cases。If the score was follow as Normal distribution. The random variable of 

risk score of breast cancer was X1 and assume the distribution of  X1~N(µ1,σ1), and 

the random variable of risk score of none breast cancer was X0 and assume the 

distribution of  X0~N(µ0,σ0).  

The posterior odds can be written as follow: 
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Finally, Bayesian factor (weight of evidence) can be written as (4): 

)BCP(
P(BC)

X)|BCP(
X)|P(BC

BC)|P(X
BC)|P(X

=
          (4) 

 

Bayesian random-effect Markov model for breast cancer screening for women 

with positive family history 

     There were 4,867 women with family history derived from 4,464 families 

attending the screening program. Among them, 130 breast cases were identified by the 

end of 2002. For modeling the disease natural history of breast cancer from the data 

described above, we developed a three-state Markov model including both fixed 

effect, random effect and to capture the heterogeneity caused by individual variation 

after adjusting for correlated property and measured covariates by Bayesian approach.  
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Bayesian hierarchical model with random effect 

A Bayesian hierarchical model was proposed to estimate the three-state Markov 

model with the incorporation of random effect and fixed effect. 

Figure 2 shows acyclic graph model for estimating the parameters of β ’s and 

2σ ’s for random-effect of Z’s. Three hierarchical levels were formulated due to 

repeated screening visit level (v), subject level (s), and family level (f).  

A typical non-informative but proper prior parameter was specified by a gamma 

distribution with small but positive values. Hence, Gamma (10-3, 10-3) distribution 

was used as the prior distribution for transition rates, 1λ  and 2λ , and the precision 

of random effect parameter, τ , which is equivalent to the inverse of variance, 2σ . 

For ease of convergence, several boundaries of gamma distribution were set up as 

0.001-1 for 1λ , 0.1-1 for 2λ , 0-5 for τ . For modeling the fixed effect, a typical 

non-informative prior, normal distribution, Normal(0, 10-6), was assigned for 

regression coefficient, β , with the range between -2 and 2, assuming the odds ratio 

for the effect of covariate on risk would not be greater then 7. 

The Gibbs sampler, an iterative Markov-chain Monte Carol (MCMC) simulation, 

was used to estimate the posterior distribution. Bayesian analysis software WinBUGS 

(Spiegelhalter et al., 2004) was used. For each model, 50,000 samples were drawn 

following a burn-in period of 10,000 iterations. Convergence was assessed by 

checking the history of iterations and the Kernal density for each parameter in each 

model. 

 

Model selection 

Deviance information criterion (DIC), the summation of posterior mean of the 

deviance and the effective number of parameters (penalty term for increasing model 

complexity), was used to compare series of proposed random effect models listed in 
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Table 2 because only a fraction of degree of freedom as a result of random effect was 

removed (Spiegelhalter et al., 2002). The model with the smallest DIC was considered 

as the best one.  

 

Preliminary Results 

For the breast cancer screening with family history of first-degree relative, Of 

147 cases, there were only 9 cases with family history. The sensitivity was only 5.8% 

and the specificity was 97.9% (Table 1). 

Of all participants, the average high-risk score of breast cancer cases was –5.05 

(SD=3.41) and the average high-risk score of none breast cancer cases was –7.76 

(SD=3.75). The average high-risk score of breast cancer cases was –4.60 (SD=3.48) 

and the average high-risk score of none breast cancer cases was –9.364 (SD=3.19) for 

age 50-59 years. The average high-risk score of breast cancer cases was –5.87 

(SD=3.15) and the average high-risk score of none breast cancer cases 

was –9.36(SD=3.19) for age 60-69 years (Table 2). Apparently, the score was higher 

in breast cancer rather than in non-breast cancer. The distributions of high-risk score 

between breast cancer and none breast cancer by age groups were demonstrated as 

Figure 2. The distributions of high-risk score are closer between breast cancer and 

none breast cancer for women who belong to age under 60 rather than age over 60. 

Table 2 shows the posterior odds conferred by each high-risk score and age 

group after applying the equation (4) to empirical data with all participants. Bayesian 

factor decreases with the level of score at decreasing rate. If we take the high risk 

score between 14 and -13, the highest and lowest, it represented that the ranges of 

Bayesian factor could reflects the degree of prior odds. Less Bayesian factor presents 

the less probability to detect breast cancer from the same age group. In contrast with 

younger women aged under 60, women for aged over 60 has higher Bayesian factor 
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when score is greater than -9. A posterior odd is the outcome for breast cancer 

compared with non breast cancer with selecting individuals at risk. For instance, we 

could detect one breast cancer case for every 1,406 normal cases screened regarding 

score defined as -9. 

Table 3 shows the estimated results by the incorporation of one significant 

covariate, age at first full-term pregnancy (AP) model, into M3 models. The 

remarkable effect of age at first full-term pregnancy was seen in the transition from 

the PCDP to clinical phase. Those who were age at first full-term pregnancy older 

than 30 years had approximately two-fold risk for the progression from the PCDP to 

clinical phase (Rate ratio=1.89, 95% credible interval=1.02-3.66). The random effect 

was still statistically significant. The model fitting was lacking of statistical 

significance (P=0.10 for M3+AP) as the predicted numbers were closer to the 

observed by taking the heterogeneity from measured covariates and unmeasured 

covariates. 
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Table 1 Breast cancer finding by family history of first-degree relative 

Breast Cancer 
Family history 

Yes No 
Total 

Yes 9(5.8%) 4613(2.1%) 4622(2.1%) 

No 146(94.2%) 214054 (97.9%) 214200 (97.9%) 

Total 155 218667 218822 

Breast cancer finding was included 8 interval cases
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Table 2 The posterior odds conferred by each high-risk score and age group 

Age 
50-59* 60-69‡ 50-69† 

Risk 
Score 

Posterior 
Odds 

Bayesian 
Factor 

Posterior 
Odds 

Bayesian 
Factor 

Posterior 
Odds 

Bayesian 
Factor 

14 1: 43.58  18.37 1: 0.56 1689.42 1: 16.79  50.80 

13 1: 50.55  15.84 1: 0.79 1197.86 1: 20.36  41.90 

12 1: 58.63  13.65 1: 1.11 849.33 1: 24.68  34.57 

11 1: 68.01  11.77 1: 1.56 602.21 1: 29.92  28.51 

10 1: 78.89  10.15 1: 2.20 426.99 1: 36.27  23.52 

9 1: 91.50  8.75 1: 3.11 302.75 1: 43.97  19.40 

8 1: 106.14  7.54 1: 4.38 214.66 1: 53.30  16.01 

7 1: 123.11  6.50 1: 6.18 152.20 1: 64.62  13.20 

6 1: 142.80  5.61 1: 8.72 107.92 1: 78.33  10.89 

5 1: 165.64  4.83 1: 12.29 76.52 1: 94.96  8.98 

4 1: 192.13  4.17 1: 17.34 54.25 1: 115.12  7.41 

3 1: 222.86  3.59 1: 24.46 38.47 1: 139.55  6.11 

2 1: 258.50  3.10 1: 34.49 27.27 1: 169.17  5.04 

1 1: 299.84  2.67 1: 48.64 19.34 1: 205.09  4.16 

0 1: 347.80  2.30 1: 68.61 13.71 1: 248.62  3.43 

-1 1: 403.42  1.98 1: 96.76 9.72 1: 301.39  2.83 

-2 1: 467.94  1.71 1: 136.47 6.89 1: 365.37  2.33 

-3 1: 542.78  1.47 1: 192.47 4.89 1: 442.92  1.93 

-4 1: 629.59  1.27 1: 271.45 3.47 1: 536.94  1.59 

-5 1: 730.28  1.10 1: 382.84 2.46 1: 650.92  1.31 

-6 1: 847.07  0.95 1: 539.94 1.74 1: 789.09  1.08 

-7 1: 982.54  0.81 1: 761.52 1.24 1: 956.58  0.89 

-8 1: 1139.68  0.70 1: 1074.02 0.88 1: 1159.63  0.74 

-9 1: 1321.95  0.61 1: 1514.76 0.62 1: 1405.79  0.61 

-10 1: 1533.37  0.52 1: 2136.36 0.44 1: 1704.19  0.50 

-11 1: 1778.61  0.45 1: 3013.04 0.31 1: 2065.93  0.41 

-12 1: 2063.06  0.39 1: 4249.49 0.22 1: 2504.46  0.34 

-13 1: 2393.01  0.33 1: 5993.32 0.16 1: 3036.08  0.28 

* Breast Cancer (Mean=-4.60 SD=3.48), None Breast Cancer (Mean=-6.63 SD=3.70) 

‡ Breast Cancer (Mean=-5.86 SD=3.15), None Breast Cancer (Mean=-9.36 SD=3.19) 

† Breast Cancer (Mean=-5.05 SD=3.41), None Breast Cancer (Mean=-7.76 SD=3.75) 
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Table 3 Results of random effect model with one covariate, age at first pregnancy 

(AP). 

Node Mean S.D. 2.50% Median 97.50% 2χ  df P-value 

Model: M3+AP     13.3534 8 0.10025 

1λ  0.0048 0.0006 0.0038 0.0048 0.0060    

2λ  0.56 0.11 0.38 0.55 0.81    

2β  0.64 0.33 0.02 0.63 1.30    

exp( 2β ) 1.89 1.38 1.02 1.88 3.66    

2
f2σ  0.56 0.35 0.38 0.58 0.79    
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Figure 1 Distribution of Risk Score between Case and Non-case 
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(a) Risk Score Distribution for Aged 50-59 
(b) Risk Score Distribution for Aged 60-69 
(c) Risk Score Distribution for Aged 50-69 
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for(f IN 1 : fno)

for(s IN 1 : fsize[f])

for(v IN 1 : sno[f,s])

sigma1.s*

z1.s[f,s]*

IC[f,s,v]

mu[f,s,v]

beta2

AP[f,s]

sigma2.f

lamda2.s[f,s]

z2.f[f]

lamda1.s[f,s]

p.dis[f,s,v]

SD[f,s,v]

lamda2

lamda1

time[f,s,v]

 

Figure 2.  The acyclic graphic model for estimating the random effect and fixed 

effect of multi-state process.** 

*The nodes were excluded in the final model with random effects and fixed effects, 

M3+AP. 
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計畫結果自評 

 

In this study, a two-stage screening modality was made the contribution of 

finding the most of cases. If the risk prediction could be take into account, the 

posterior odds could increase by the function of Bayesian factor to 3.43 fold for early 

detection of breast cancer when risk score is greater than 0. When risk score is greater 

than -9, the Bayesian factors are higher for women aged between 60 and 69 in 

comparison with women aged between 50 and 59. Compared with disusing, more 

information could be gained after conducting this screening tool in elder rather than 

younger. 

Moreover, the quantitative score is convenience to define the optimal cut-off 

point using operator receiver curve (ROC) method. For all ages 50–69 years, the best 

cut-off was –6 with a sensitivity of 63% and specificity of 68%. The cut-off score 

actually used to refer to the second stage had been fixed at –9. This gave a sensitivity 

of 87% and specificity of 37% (Kriege et al, 2004). Given a lower cut-off point, 

higher sensitivity is accompanied by lower specificity. It need to be concerned for that, 

at the lower cut-off value, unnecessary mammographic resulting from higher false 

positive cases with risk assessment by questionnaire but high utility as a result of 

lower false negative cases would be expected. By contrast, at higher cut-off value, 

false positive rate could be reduced but false negative cases were increased. 

Cost-effectiveness analysis therefore should be provided and applied to determining 

the best cut-off value between sensitivity and specificity in the future. 

We presented a Bayesian hierarchical multi-state model to estimate transition 

parameters of the disease natural history based on multi-level data of breast cancer 

screening for women with relatives suffering from breast cancer. The major of our 

approach is to introduce random-effect parameters corresponding to different 
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hierarchical levels to capture the heterogeneity resulting from correlations, measured 

covariates, and residual variation that cannot be explained by measures covariates. It 

can be found that the consideration of random-effect not only affects the mean value 

but also the variance. In the three-state model, it can be seen that making allowance 

for random-effects led to higher transition rate and wider confidence of lambda2, but 

lower annual incidence rate and narrower confidence of lambda1 (see Table 3). This 

suggests that a shorter screening interval may be needed if such heterogeneity is 

considered. 

 

 


