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Abstract. We are what we eat. Our everyday food choices affect our long-term 
and short-term health. In the traditional health care, professionals assess and 
weigh each individual’s dietary intake using intensive labor at high cost. In this 
paper, we design and implement a diet-aware dining table that can track what 
and how much we eat. To enable automated food tracking, the dining table is 
augmented with two layers of weighing and RFID sensor surfaces. We devise a 
weight-RFID matching algorithm to detect and distinguish how people eat. To 
validate our diet-aware dining table, we have performed experiments, including 
live dining scenarios (afternoon tea and Chinese-style dinner), multiple dining 
participants, and concurrent activities chosen randomly. Our experimental re-
sults have shown encouraging recognition accuracy, around 80%. We believe 
monitoring the dietary behaviors of individuals potentially contribute to diet-
aware healthcare.  

1   Introduction 

Our dietary habits affect our health in many ways.  Research [12] has confirmed that 
dietary habits are important factors for healthy living and have profound impacts on 
many chronic illnesses.  The vast majority of the population has chronic illnesses [4] 
such as heart disease, diabetes, hypertension, dyslipidemia, and obesity. A recent 
Surgeon General Report indicated that approximately 300,000 U.S. deaths are associ-
ated with obesity and overweight each year. The total cost attributed to overweight 
and obesity amounts to $117 billion in 2000. Proper dietary intake and related inter-
ventions are effective in ameliorating symptoms and improving health [5][12][13].   

Nutritious dietary is one of the most accessible means for people to prevent illness 
and to promote well-being [5]. Unlike traditional healthcare in which professionals 
assess and weigh one’s dietary intake and then develop a plan for behavioral changes, 
ubiquitous healthcare technologies provide an opportunity for individuals effortlessly 
to quantify and acknowledge their dietary [5][6] intake. For example, at home patients 
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face the cumbersome need to record everything they eat, a task which can take a 
minimum of 15-20 minutes per day [2]. Ubiquitous computing technologies provide a 
means for individuals to proactively monitor their intake and act upon it, leading to 
better food selection and more sensible eating.  

This paper proposes a diet-aware dining table that automatically tracks what and 
how much each individual eats over the course of a meal. This is in accord with the 
vision of disappearing computers [15], where computing hardware (HW) & software 
(SW) are hidden into everyday object (i.e., dining table) and remain invisible to hu-
man users. There are no digital access devices (such as cell phones, PDAs, or PCs) 
needed in order for human users to interact with this digital dietary service. In com-
parison, traditional dietary tracking software requires human users to recall the 
amount of food consumed, and then manually enter the data. This is less precise due 
to mistakes in visual measurement and imperfect memory. More importantly, the 
traditional method requires explicit human effort to operate digital devices.  

We have augmented a dining table with two layers of sensor surfaces underneath – 
the RFID (Radio Frequency Identification) surface and the weighing surface. By 
combining the RFID and weighing surfaces, our system can trace the complete food 
movement path from its tabletop container source to other containers, and eventually 
to the individual. To validate our diet-aware dining table, we have performed experi-
ments, including live dining scenarios (afternoon tea and Chinese-style dinner), mul-
tiple dining participants, and concurrent activities chosen randomly. Our experimental 
results have shown encouraging recognition accuracy around 80%, which is as good 
as the 80% accuracy of the traditional dietary assessment methods [3]. 

 

Fig. 1. Typical Chinese dining table setting 

Our diet-aware dining table supports multiple people sharing a meal on the same 
dining table. Fig. 1 shows a typical meal setting for a Chinese family – the family 
members sit around a circular table with the main dishes placed in the center. Individ-
ual rice bowls and plates are arranged on the table periphery. Participants first use 
shared utensils to transfer food servings from the main dishes to their personal plates 
or rice bowls, and then eat from there. In this dining scenario, multiple table partici-
pants are continuously and concurrently engaging in food transferring and eating 
motions. This creates multiple, concurrent person-object interactions (objects are 
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tabletop objects such as plates, bowls, etc.) from which a single table surface needs to 
observe, track, and then infer high level interaction semantics. This is the main tech-
nical challenge addressed in this paper – how to design a sensor-embedded tabletop 
surface to track food consumption from each of many table participants. 

The remainder of this paper is organized as follows. Section 2 states the design 
choices, assumptions, and limitations. Section 3 presents our design and implementa-
tion. Section 4 describes the experimental set-up and results. Section 5 describes the 
related work. Finally, Section 6 draws our conclusion and future work. 

2   Design Choices, Assumptions, and Limitations 

Although the ultimate design objective is to create a restriction-free, automated die-
tary-tracking system that can achieve both high accuracy and precision, this is a 
grand challenge requiring extensive future research efforts [9]. We acknowledge this 
fact, and consider our dietary-tracking system as an early effort to address this prob-
lem. Since our work is not yet a perfect solution, we need to state our assumptions, 
present our design rational, and discuss our design limitations.  

2.1   Why RFID and Weighing Surfaces? 

Our diet-aware dining table tracks tabletop interactions such as transferring food 
among containers and eating food by an individual. To correctly infer individuals’ 
dietary behaviors from their tabletop interactions, our system needs to track how 
much (weight) and what food items are involved in these interactions. To observe 
these interactions, a weighing surface and a RFID surface are embedded into an ordi-
nary dining table. Assume that food items are correctly labeled by the RFID tags on 
food containers, the surface can then be used to identify these RFID-tagged contain-
ers. Furthermore, the RFID surface can obtain nutritional information such as calorie 
count by looking up a food label database indexed by RFID code.  

This assumption raises a question as to who would perform the work of inputting 
the food information for the RFID tags into the database. Three possible scenarios 
apply: (1) prepared foods (e.g., microwave-ready) are purchased from supermarkets 
are heated and then placed on the dining table with their original containers and pack-
ages containing RFID tags. This is applicable to people who subscribe to a weight-
loss dietary program; (2) when the food containers (dishes) are first placed on the 
dining table, the table explicitly asks users for the food contents through a natural, 
easy-to-input UI, such as speech interface; and (3) when food is prepared in the 
kitchen, the cooking person can input the food’s content as the food is placed in a 
serving container.  

The weighing surface is used to measure (1) the amount of food transferred across 
different tabletop containers, as servings of food are transferred between different 
tabletop containers, and (2) the amount of food consumed by an individual, as per-
sonal plates lose weight. More details on how the weight measurements are used to 
detect food transfer and food consumption events are described in Section 3. 
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2.2   Complex and Concurrent Interactions Involving Multiple Tabletop Objects 

In a typical family meal setting, there are multiple people dining together on a dining 
table, and table needs to track multiple, concurrent person-object interactions. In an 
afternoon tea scenario, if one person is pouring tea to a cup while another one is eat-
ing cake, it is impossible to use a single weighing surface to distinguish the amount of 
tea weight transfer to the cup vs. the amount of cake weight lost through a person’s 
consumption. This scenario is shown in Fig. 2-(a). This is also called the single-cell-
concurrent-interactions problem where it is impossible to distinguish multiple, con-
current person-object interactions over a single surface using the weight information 
from only one sensor1. To address this problem, our solution is to divide the tabletop 
surface into multiple cells, shown in Fig. 2-(b). When the size of each cell is small 
enough, it is likely that each tabletop object occupies a different cell. Therefore, our 
solution uses multiple weighing sensors at different cells to distinguish the weight-
change of the tea cup from the weight-change of the cake plate. This idea is general-
ized as follows: the larger the size of each weighing cell relative to the average size of 
objects, the higher the likelihood that multiple, concurrent person-object interactions 
can occur within the same cell, therefore the higher the probability of single-cell-
concurrent interactions. To reduce this probability, we divide the weighing surface 
into cells of an appropriate size that just fit the average size of tabletop food contain-
ers, such as plates, bowls, etc.  
 

 

Fig. 2. Surface structure [This illustrates that a multi-cells surface (b) can track multiple person-
object interactions whereas a single-cell surface (a) cannot] 

Where single-cell-concurrent-interactions problem still occurs, we introduce com-
mon sense semantics to discern the amount of weight-changes in these concurrent 
interactions. Consider the situation where a cup and a plate are placed at the same cell 
X at the same time. When a user pours tea from a tea pot to a cup (leading to weight 
increase at cell X), we can correctly infer the tea is transferred to a cup rather than to a 
plate by using common sense in normal dining behavior.  

Also, relying only on a weighing surface (i.e., without RFID surface) is insufficient 
to identify tabletop objects. Distinguishing a tabletop object by its weight is difficult, 
given that the weights of food containers change over the course of a meal as people 

                                                           
1  In the Lancaster’s approach [14], the scale is made up of four weighing sensors at four cor-

ners of a table. 

(a) (b)
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transfer food servings. Therefore, we augment the weighing surface with a passive 
RFID surface to help identify tabletop objects. Each cell contains a RFID antenna that 
can read the unique IDs from RFID-tagged objects on that cell.   

2.3   Intelligent Surface vs. Intelligent Containers 

Early in our design, we faced a fundamental design choice between embedding 
intelligence into the table or into the food containers. One advantage for choosing 
the intelligent food containers is that they do not have the single-cell-concurrent-
interactions problem, because each food container can weight itself and detect its 
own weight-change events. However, the intelligent containers approach also has 
many disadvantages. First, it may result in high cost since every food container 
must have a weight scale and wireless networking module. Second, the smart food 
containers require battery installments and replacements, whereas the dining table is 
a piece of stationary furniture that can be plugged into a wall socket.  The third 
disadvantage is that people may buy prepared food items from restaurants that have 
their own disposable packages and RFID tags. It is inconvenient to have people 
transfer the food into the intelligent containers every time, in contrast to the conven-
ience of putting tagged packages directly on the intelligent table. 

2.4   Assumptions 

From the above discussion on design choices, our assumptions for our system in this 
paper are: 

• The dining table, its RFID-tagged tabletop objects (food containers), and table 
participants form a closed rather an open system. That is, all food transfers can oc-
cur only among the tabletop objects and individual mouths. External objects and 
food sources are not allowed on the table. 

• All dining participant have their personal containers (personal plates and cups) that 
are usually placed in front of their seating. They are used to identify each individ-
ual user. 

• Food containers must be tagged with RFID tags. We assume that weight, nutrition, 
and ingredients of the food, as well, as, the weight and owners of food containers 
are known a-priori. 

• Tabletop objects are placed within each individual cell. No cross-cell objects are 
allowed. 

• Dining participants avoid leaning their hands and elbows on the table. 

3   Design and Implementation 

Our system is consisted of HW & SW components. The HW component is made up 
of the RFID and weighing sensors embedded underneath the table surface shown in 
Fig. 3. The SW component is made up a rule-based system that aggregates, inter-
prets, and infers tabletop dietary behaviors shown in Fig. 4. The HW component is 
described first, followed by the SW component. 
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Fig. 3. Embedded RFID and weighing table surfaces 

3.1   Hardware Design and Implementation 

Our current table prototype has a dining surface of 90x90 cm2, which is about the size 
of a small dining table. To detect multiple, concurrent person-object interactions on 
the tabletop surface, the tabletop surface is divided into a matrix of 3x3 cells, each 
with the size of 30x30 cm2

, about the average size of food containers. Each cell con-
tains a weighing sensor and a passive RFID antenna as shown in Fig. 3. The RFID 
reader is the i-scan MR100 made by Feig. The RFID antennas are connected to the 
RFID reader through a multiplexer. Each RFID antenna is positioned underneath the 
table surface such that it has an average, effective read rage of 3 cm above the table 
surface. The weighing sensor is attached to a weight indicator with a resolution of 0.5 
gram which can output weight readings through a serial port at a frequency of 8 sam-
ples per second.  

Fig. 4. System architecture 

3.2   Software Design and Implementation 

We have come up with a rule-based approach that applies our multi-cells weighing and 
RFID surfaces to detect multiple, concurrent person-object interactions. The system 
and inference rules are implemented in JESS rule engine [8].  
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The system architecture is based on a bottom-up event-triggered approach shown 
in Fig. 4. High level dietary behaviors, such as pour-tea and eat-cake, can be inferred 
by interpreting sensor Cell-Weight events and RFID-Presence events. We describe 
each software component as follows. 

The weight change detector performs the following two tasks: (1) it aggregates 
weight samples collected from each of the 9 weighing sensors; (2) it reports Cell-
Weight events when the weight has changed by filtering out noises in the stream of 
weight samples. The object presence detector performs similar tasks: (1) it continu-
ously checks for presence and absence of RFID-tagged tabletop objects within each of 
the 9 RFID reader cells, and reports RFID-Presence events as long as the change 
happens.  

The event interpreter interprets intermediate events shown in Table 1. The event 
interpreter builds internal states using sensor events from the weight change detector 
and the object presence detector, and then interprets Weight-Change events. Table 2 
shows the rules to interpret events. For example, the Weight-Change(Objecti, Δw) 
event represents that the Objecti’s weight is changed by Δw, where Objecti ∈{object 
on the table} and Cellj∈{cell[1-9]}. 

Table 1. Intermediate events, sensor events, and internal states  

Intermediate Events Descriptions  
Weight-Change(Objecti, Δw) Objecti’s weight is changed by Δw. 
Sensor Events Descriptions 
RFID-Presence(Objecti, Cellj) Cellj detects the presence of Objecti. 
Cell-Weight(w, Cellj) Cellj measures weight w. 
Internal State Descriptions 
Location(Objecti,Cellj) Objecti locates on Cellj. 
Weight(Objecti, w) Objecti has weight w. 

Table 2. Rules for recognizing intermediate events 

Event Interpretation Rules 
• Weight(Objecti, w1) ∩  Weight’(Objecti, w2)  Weight-Change(Objecti, w2-w1) 

State Update Rules 
• RFID-Presence(Objecti1,Cellj)  Location(Objecti1,Cellj) 
• Location(Objecti, Cellj) ∩  Cell-Weight(w, Cellj)  Weight’(Objecti, w) 

The behavior inference engine infers dietary behaviors initiated by the user u 
shown in Table 3. Behavior inference engine is essentially the core of the system. It 
infers food transfer and eating behaviors over the table. In the real world scenarios, 
there are often different food items on the table, meaning that multiple food sources 
can be transferred to the same personal container. For example, the weight-increase to 
a cup may be contributed by pouring of coke, juice, or tea from different bottles and 
pots. Moreover, given that there are multiple food transfer interactions happening 
concurrently, how does the system identify and differentiate the food being trans-
ferred from which food source container to which user’s personal container? 
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3.2.1   Weight Matching Algorithm 
To track a food movement path from the food’s source containers to personal  
containers, we design a weight matching algorithm. The basic idea is to match a 
weight-decrease from one container to a complementary weight-increase from another 
container. This matching process can be thought as a hop of food transfer from the 
source food container in the center of the table, to the personal containers on the table 
periphery. This weight matching model is realized by maintaining a queue of recent 
Weight-Change events. When a new Weight-Change event is detected, our model 
applies a matching function to find a complementary Weight-Change event(s) in the 
waiting queue. A good match is found when the difference between the weight-
decrease and the weight-increase pairs is smaller than a chosen weight matching 
threshold value (ε). This weight matching model is coded as rules in Table 3. For 
example, Transfer(u, w, type) means that a serving of cake with a weight w has been 
transferred from the share-plate containing food of type to the user u’s personal plate, 
where type is obtained from RFID mappings. This behavior event can be inferred by 
first observing a weight decrease Δw1 (<0) in the share-plate, followed by a matching 
weight increase Δw2 on the user u’s Objecti2. A match is found when | Δw1 + Δw2 | < ε. 
The tag-object mappings provide two relations: Contains(Object, type) shows Object 
contains food of the type (type), such as cake or tea, and Owner(Object, u) means the 
owner (u) of the Object. In addition, Eat is inferred if there is a weight-decrease in 
any personal container. 

Table 3. Inference rules for dietary behaviors 

Dietary behaviors Behavior Inference Rules 
Transfer(u, w, type) Weight-Change(Objecti1, Δw1) ∩ (Δw1 < 0)  

∩ Weight- Change (Objecti2, Δw2) ∩  (Δw2 > 0)  
∩ Contains(Objecti1, type) ∩ Owner(Objecti2, u) ∩ (|Δw1 +Δ w2 |< 
ε) → Transfer (u, Δw2, type) 

Eat(u, w, type) Weight-Change(Objecti1, Δw) ∩ (Δw < 0) ∩ Contains(Objecti, type) 
∩  Owner(Objecti, u)→ Eat(u, -Δw, type) 

In real world scenarios, there are special, complex interactions that require match-
ing among three or more events. For examples, a person may pour tea from a tea pot 
to two cups within one continuous motion, or another person may transfer soup from 
a soup bowl to a personal bowl through multiple scoops. These two examples can be 
mapped to (1) the amount of one weight decrease matches with the sum of multiple 
weight increases, or (2) the amount of one weight increase matches with the sum of 
multiple weight decreases. To address this issue, the weight matching algorithm is 
extended to match more than two weight transfer events.  

3.2.2   Common Sense Semantics 
Although dividing the table into cells can reduce the probability of multiple objects on 
one cell, the situation mentioned in Section 2.2 may still happen. To address this 
situation, we add common sense semantics to extend the inference routines that can 
disambiguate the multi-objects on one cell problem. For example, if there are one cup  
and one plate on the same cell, and the user pours tea from the pot to the cup; the 
Weight-Change event of {cup, plate} will be reported by the Event Interpreter.  
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According to the common sense, tea should be poured into the cup rather than the 
plate. Therefore, the behavior inference engine matches the weight-decrease of the 
pot to weight-increase of {cup, plate} and generates Transfer(pot, cup, w) behavior.  

4   Experimental Set-Up and Results  

We have conducted several experiments to evaluate the accuracy of our dietary track-
ing table under different dining scenarios. The evaluation metric, weight accuracy, 
measures how well the system can correctly recognize the amount of weight from 
different food items consumed by the dining participants. It is determined by how 
well the system can correctly recognize the high-level dietary behaviors: specifically 
the food transfer event and eat event. Therefore, the intermediate evaluation metric, 
behavior accuracy, is listed as well. Note that both behaviors are associated with 
attributes defined in Table 3. The transfer event has three attributes (source object, 
destination object, weight), whereas the eat event also has three attributes (user, 
source object, weight). Correct event recognition is defined as the event’s attributes, 
except the weight attribute, are correctly identified. Since the weight measurements 
have inherent sensor errors, they are evaluated separately. Specifically, the behavior 
accuracy is the number of behaviors recognized divided by the number of behaviors 
conducted by participants. The weight accuracy is the sum of measured weight di-
vided by the sum of actual weight corresponding to dietary behaviors. 

The experiments involve three participants. The first two participants are graduate 
students from our research team who are familiar with our system. The third partici-
pant is a graduate student from our department, who is not familiar with our system.  

Dining Scenarios (# participants, predefined vs. random activity sequences) 
We have designed four different dining scenarios. The varying parameters are (1) the 
number of dining participants and (2) whether dietary behaviors are predefined or 
random. As the number of dining participants increases, we expect that they will 
generate higher number of non-overlapping and concurrent events. Predefined activi-
ties mean that the dining participants repeat some pre-arranged sequences of dietary 
steps which we expect in normal dietary behaviors. The predefined activities may 
include both sequential and concurrent activities. The exact activity sequences depend 
on the dining settings described in later subsections. Random activities mean that the 
dining participants are more or less free to follow their natural eating behaviors within 
the assumptions of our system defined in Section 2.4. 

Dining Settings (afternoon tea vs. dinner) 
There are two dining settings: an afternoon tea setting and a Chinese-style dinner 
setting. The dinner setting is more complex than the afternoon tea setting since it 
involves a larger number of food containers. We describe these two settings in more 
details as follows. In the afternoon-tea scenario, participant(s) enjoyed an afternoon 
tea with a cake, a pot of tea, sugar, and milk. The objects (food containers) on the 
intelligent table are shown in Fig. 5-(a), including a tea pot, a cake plate, a sugar jar, a 
milk creamer, personal cake plates, and tea cups.  The personal cake plates and tea 
cups are placed on the cells in front of each participant. The cake plate is placed on 
one center cell. The tea pot, the sugar jar, and the milk creamer are placed together on 
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another center cell. Possible high-level dietary behaviors are transferring-cake (to a 
personal plate), pouring-tea (to a personal cup), eating-cake (from a personal plate), 
and drinking-tea (from a personal cup). In the dinner scenario, three dining partici-
pants enjoyed a sumptuous dinner with three shared dishes, one shared soup bowl, and 
a shared rice bowl. The objects (food containers) on the table are shown in Fig. 6-(a), 
including these shared plates & bowls, as well as personal bowls located on cells in 
front of each of three participants. Possible high-level dietary behaviors are transfer-
ring-food (to a personal bowl) and eating-food (from a personal bowl). Note that given 
the weight and type of the food items consumed, it is relatively straight-forward to 
compute the calorie count by looking up a nutritional table for these food items. 

 

 
Fig. 5. Afternoon tea scenario showing the placements of table objects and participants 

 
Fig. 6. Chinese-style dinner scenario showing the placements of table objects and participants 

We describe the result for each of four dining scenarios as follows. A summary of 
their experiment results are shown in Table 4. 

4.1   Dining Scenario #1: Afternoon Tea – Single User – Predefined Activity  
Sequence  

The first dining scenario involves the afternoon tea setting, single user, and prede-
fined activity sequence. The predefined activity sequence is consisted of the following 
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steps: (1) cut a piece of cake and transfer it to the personal plate; (2) pour tea from the 
tea pot to the personal cup; (3) add milk to the personal cup from the creamer; (4) eat 
the piece of cake from the personal plate; (5) drink tea from the personal cup; and (6) 
add sugar to the personal cup from the sugar jar. This 6-steps sequence is repeated 
twice during the experiment. The results are shown in Table 4. Based on our meas-
urements, the dietary behavior’s recognition accuracy (i.e., transfer & eat events) is 
100%. This result is expected, given that the predefined activity sequence has been 
anticipated and tested extensively during our prototyping. In addition, this scenario 
involves only a single user with no concurrent interactions. 

Table 4. Experimental results for 4 dining scenarios & their recognition accuracy 

Scenarios Event Statistics Results 
Dining 

Scenarios 
 

# of 
users 

Activity 
Sequence 

Time 
Duration 
(seconds)

# of Die-
tary Be-
havior 

Dietary 
Behavior 

Recognition 
Accuracy 

Dietary 
Weight 

Recognition 
Accuracy 

#1 After-
noon tea 

1 Predefined 73 12 100% - 

#2 After-
noon tea 

2 Predefined 162 24 100% - 

#3 After-
noon tea 

2 Random 913 78 79.49% - 

#4 Chinese 
style dinner

3 Random 1811 162 83.33% 82.62% 

4.2   Dining Scenario #2: Afternoon Tea – Two Users – Predefined Activity 
Sequence  

The second dining scenario also involves the afternoon tea setting and predefined 
activity sequence, but with two users performing concurrent activities. The predefined 
activity sequence is consisted of the following steps:  (1) A cuts cake and transfers it 
to A’s personal plate; (2) B pours tea from the tea pot to B’s personal cup; (3) A pours 
tea to A’s personal cup while B cuts a piece of cake and transfers it to B’s personal 
plate; (4) A adds sugar from the sugar jar to A’s personal cup while B adds milk from 
the creamer to B’s personal up; (5) A eats cake and B drinks tea; (6) B eats cake from 
B’s personal plate while A drinks tea from A’s personal cup; and (7) A pours tea from 
the tea pot to both A’s and B’s personal cups. This 7-steps predefined activity se-
quence is repeated twice during the experiment. The results are shown in Table 4. 
Based on our measurements, the dietary behavior recognition accuracy is 100%. This 
result shows that our table is accurate in recognizing concurrent activities from multi-
ple participants. 

4.3   Dining Scenario #3: Afternoon Tea – Two Users – Random Activities  

The third dining scenario involves the afternoon tea setting and two users, but with 
random dietary activities. Random activities mean that the table participants are more 
or less free to perform any impromptu dietary behaviors for 913 seconds over the 
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table within the bound of our assumptions described in Section 2.4. The results are 
shown in Table 4. Based on our measurements, the recognition accuracy is 79.49%. 
Table 5 shows the recognition accuracy for each of the two dietary behaviors. The eat 
events have better recognition accuracy than the transfer events, because they can be 
directly deduced by personal container’s Weight-Change event. 

To determine the causes for the misses in activity recognition, we videotaped the 
afternoon tea scenario. By analyzing the video in combination with the system event 
logs, we derive four main leading causes shown in Table 6. They are described as 
follows. 

Table 5. The accuracy of activity recognition under afternoon tea scenario 

Dietary Behavior # of Actual Events Recognition Accuracy 
Transfer event 41 70.73% 

Eat event 37 89.19% 
 
(c1) Event interference within the weighing cell’s weight stabilization time: for ac-

tivities such as putting down an object on the table, it takes about 1.5 seconds for 
our weighing sensor to output a stable weight value. If two events occur on the 
same cell and their time interval is less than the weighing cell’s stabilization 
time, our system cannot differentiate these two Weight-Change events. Instead, 
our system will incorrectly recognize them as a single Weight-Change event. 
Consider the case where user A puts down the tea pot at cell X while user B im-
mediately (within 1.5 seconds) grabs a sugar cube from the sugar jar on the same 
cell X. There are actually two Weight-Change events of amount (Δw1) and of 
amount (-Δw2). However, due to two events interfering with each other within 
the weight stabilization time, our system can only detect one erroneous Weight-
Change event of amount  |Δ w1 –Δw2 |.  

Table 6. Causes of miss recognition in afternoon tea scenario #3. There are 78 activities ana-
lyzed from the video log. The number of misses counts both false positives and false negatives.  

Causes of misses # of misses of 
transfer events 

# of misses of 
eat events 

Total 

(c1) Event interference within the weighing 
cell’s weight stabilization time 

6 2 8 

(c2) Weight matching threshold 2 0 2 
(c3) (c3) Slow RFID sample rate 3 0 3 
(c4) Noise from weighing cell 1 2 3 

Total of misses 12 4 16 

(c2) Weight matching threshold: the current threshold value is set to be four grams to 
filter out noises in the weight readings from weighing cells. However, in some 
cases, such as transferring one cube of sugar, this threshold value may still be 
too large. As a result, it may lead to false weight matching involving unrelated 
weight transfers of similar amounts. Consider the example that user A is remov-
ing a cube of sugar from the sugar jar. This results in a Weight-Change of ap-
proximately four grams in the sugar jar. At the same time, user B is transferring 
food weighted approximately eight grams. Eight grams is twice as much as four 
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grams, but they are still within the weight matching threshold. Therefore, this 
leads to false weight matching. To address this issue, we may change the weight 
matching threshold to be a percentage of transferred weight rather than an abso-
lute value of four grams.  

(c3) Slow RFID sample rate: we have found cases when a user picks up a cup and 
quickly puts it down. This interval is less than the amount of time the RFID 
reader performs one round of reading over nine antennas. Therefore, a Weight-
Change event is generated without any corresponding RFID-Presence event. 
This leads to false inference. 

(c4) Noises from weighing cells: although we ask users not to touch the table, some 
still do during the experiment out of personal habits. This leads to erroneous 
generation of Weight-Change events. 

4.4   Dining Scenario #4: Chinese-Style Dinner – Three Users – Random Activities  

The fourth dining scenario involves the Chinese-style dinner setting, three users, and 
random dietary activities for 1811 seconds. Similar to the third scenario, three partici-
pants perform impromptu dietary behaviors within the bound of our assumptions 
described in Section 2.4. The results are shown in Table 4. Based on our measure-
ments, the recognition accuracy is 83.33%. Note that increasing number of table par-
ticipants only slightly increases the activity rate. The reason is that as the number of 
table participants increases, out of politeness they try to go the dishes less frequently 
to avoid in-the-air conflicts over the dishes.  

Table 7 shows the recognition accuracy (for the transfer and eat events) and 
weight accuracy for each of dietary behaviors. The weight accuracy is computed as 
the ratio between the measured and the actual weight transferred or consumed during 
dietary behaviors. Both the recognition and weight accuracy for the food transferring 
behaviors are between 80~85%, except for dish A, which is fluid-covered food. The 
reason for lower accuracy on transferring fluid-covered food is that juices from the 
fluid-covered food can easily drip from the chopsticks during food transfer (from a 
very lousy chopstick user). The juice dripping leads to erroneous generation of 
Weight-Change events with both positive and negative values, causing mismatches in 
the weight matching algorithm. Furthermore, the weight accuracy of transferring dish 
A is low at 68.42%, because these transfer recognition misses can accumulate to a 
large weight sum. Similar to the afternoon tea scenario, the eat events have better 
recognition accuracy because they can be directly deduced from the personal con-
tainer’s Weight-Change event. 

Table 7. The accuracy of the Chinese-style dinner scenario #4 

Dietary Behavior # of times Recognition Accuracy Weight Accuracy 
Transfer dish A events 19 73.68% 68.42% 
Transfer dish B events 29 79.31% 78.75% 
Transfer dish C events 23 82.61% 79.19% 

Transfer rice events 12 83.33% 81.88% 
Transfer soup events 19 84.21% 80.16% 

Eat events 60 88.33% 91.23% 
Overall 162 83.33% 82.62% 
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To determine the causes for the misses in activity recognition, we videotaped the 
Chinese-style dinner scenario and analyzed the video in combination with the system 
event logs. We derive five main leading causes shown in Table 8. They are described 
as follows. 

(c1) Segmented Weight-Change events: during a lousy food transfer where a user 
drops a part of food back into the container or on the table, the weight matching 
algorithm fails because of the difference between weight change values of the 
container and the personal plate. 

(c2) Eating before transferring food on personal containers: this occurs when a user 
picks up a serving of food from a shared plate. However, before the user com-
pletes the transfer to his/her personal plate, he/she eats a bite of food. This vio-
lates one of our assumptions in Section 3.4 that eating must come from food in 
the personal plates. In this case, weight matching method fails to recognize the 
food transfer event due to the disappearing weight on the intermediate bite. Al-
though the users are told about this restriction, some of them still do it out of 
personal habits.  

(c3) Weight matching ambiguity: weight matching ambiguity occurs when two unre-
lated Weight-Change events of similar weight values are mismatched by our  
system.  

(c4) Noises from weighing cells: the same as (c3) in afternoon tea scenario.  
(c5) Slow RFID sample rate: the same as (c4) in afternoon tea scenario.   

Table 8. Causes of miss recognition in Chinese-style dinner scenario #4. There are 162 activi-
ties analyzed from the video log. The number of misses counts both false positives and false 
negatives.  

Causes of misses # of misses of 
transfer events 

# of misses of 
eat events 

Total 

(c1) Segmented weight-change events 5 0 5 
(c2) Eating before transferring food on per-

sonal containers 
5 5 10 

(c3) Weight matching ambiguity 7 0 7 
(c4) Noises from weighing cells 3 2 5 
(c5) (c3) Slow RFID sample rate 3 0 3 

Total of misses 23 7 30 

5   Related Work 

The related work is organized into the following three categories: traditional dietary 
assessment methods, ubiquitous dietary tracking systems, and intelligent (tabletop) 
surfaces. The traditional dietary assessment methods consist of keeping food records, 
using twenty-four-hour recall, and filling food frequencies questionnaires [16]. In the 
food record method, food quantities can be either accurately weighed or estimated by 
household measures before a meal. The twenty-four-hour recall method asks a user to 
recall the amount of food intakes within the past 24 hours. Food Frequencies Question-
naires (FFQ) list popular food items and ask a user how often and how much these food 
items are consumed within a defined period, e.g., a week or a month. All traditional 
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assessment methods fail to capture actual energy intakes precisely [3]. Most methods 
underreport actual energy intake by at least 20 percent. Some of the errors are inevita-
ble because human beings tend to misreport their food intakes. In other words, under-
reporting errors can be higher (30 percent or more) for certain groups of users. In 
comparison, our method can achieve 80% plus accuracy, which is as good as the 
accuracy from these traditional assessment methods.  

For the dietary-tracking systems, Mankoff et al. [9] has designed a low-cost track-
ing system based on scanning shopping receipts to estimate what food items people 
buy and consume. By analyzing the nutritional values of the purchased food items, 
their system detects missing nutrients and recommends healthier food items to 
achieve a better nutritional balance. However, their system does not perform individ-
ual dietary tracking. The purchased food items in a family setting may be consumed 
by different household members in different quantities. The household purchased 
food items can be considered healthy, but the dietary consumption of individual 
household member can be nutritionally unbalanced due to personal dietary prefer-
ences and habits. 

Dietary tracking at the individual level has been proposed by Amft et al. [1]. Their 
approach is to place a microphone around a person’s inner ear to detect chewing 
sound from the mouth. Since different types of foods (e.g., potato chips, apples, pasta, 
etc.) can give different chewing sound, their system can infer what a person is cur-
rently eating in his/her mouth. However, different food sources that vary in nutritional 
contents give out similar chewing sound, e.g., similar sound from drinking water vs. 
beer. Rather than tracking food intake from chewing sound, this work takes a different 
approach. It creates a smart dining table, enabling the table to track food transfers 
among containers and into the individuals’ mouths. 

The 3rd category of related work is about intelligent surfaces that can infer tabletop 
human-surface interactions. The closest system to our work is the load sensing table 
[14] from Lancaster University. They utilized four weighing cells installed at four 
corners of a rectangular table to acquire the positional information of tabletop objects, 
and infer interaction events such as adding, removing an object from the surface, or 
knocking an object over. They demonstrated success with these interaction events. 
However, their main limitation is recognizing complex, concurrent interactions in-
volving multiple objects. For example, their positioning algorithm fails if two or more 
objects are moved concurrently on the tabletop surface. In comparison, this paper 
expects such complex, concurrent interactions to be relatively common in family 
dining scenario; therefore, they are the paper’s target.  

Other related but less relevant works apply load sensing to derive context informa-
tion. Smart floor [11] demonstrated that by applying pressure sensors underneath the 
floors, it is possible to identity users and to track their locations. The posture chair by 
Selena [10] deployed two matrices of pressure sensors (called pressure cells) in a 
chair to recognize the posture of children, and then infer their affective interest level. 
To our knowledge, no work that attempts to address complex, concurrent person-
object interactions from a load sensing surface. This paper is believed to be the first to 
augment the load sensing surface with a RFID surface to enable tracking of multiple, 
concurrent person-object interactions over a tabletop surface. 
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6   Conclusion and Future Work 

We are what we eat. This paper describes the design and implementation of our diet-
aware dining table. We have augmented an ordinary dining table with two layers of 
sensor surfaces underneath the table – the RFID surface and the weighing surface. 
Given certain assumptions, the diet-aware dining table automatically tracks what and 
how much each individual eats from the dining table over the course of a meal. We 
have performed several experiments, including live dining scenarios (afternoon tea 
and Chinese-style dinner), multiple dining participants, and random concurrent activ-
ity sequences. Our experimental results have shown reasonable recognition accuracy 
of around 80%, which is at least as good as the accuracy of the traditional dietary 
assessment methods. 

Our future work will further improve the recognition accuracy, address some of the 
main causes of inaccuracy from our experimental results, and relax some of the as-
sumptions and restrictions. Note that some of the restrictions can be solved by making 
simple design changes. For examples, the current prototype does not allow hands or 
elbows on the table. To relax this restriction, we can add a slightly protruding frame 
around the edge of table, so that users can rest their elbows on the frame without af-
fecting our system. We also believe in multi-sensor approach. For example, by de-
ploying a video camera above the table, it is possible to observe events that cannot be 
detected by RFID and weighing surfaces. Since this table can track tabletop person-
food interactions in real time, we hope to build just-in-time persuasive feedbacks to 
encourage better healthy dining behaviors. For examples, users under a dietary pro-
gram could benefit from weekly warnings of unhealthy food. Patients who cannot 
consume high amount of sugar (diabetes patients) or water (patients with heart prob-
lems) could receive just-in-time notifications when they are over their recommended 
daily consumption.  
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