Midterm Exam. (Special topics on graph algorithms)

Instructor: Kun-Mao Chao

April 15, 2004

Unless specified explicitly, a graph G is assumed to be simple and undirected, and the edge weights are nonnegative.

1. (10%) Assume the vertex set $V=\{1,2,3,4,5,6,7\}$. Decode the following Prüfer sequences: (a) $P=(1,2,3,4,5)$, and (b) $P=(1,1,3,5,7)$.
2. (10%) Let $F_{1}, F_{2}, \ldots, F_{k}$ be a spanning forest of G, and let (u, v) be the smallest of all edges with only one endpoint $u \in V\left(F_{1}\right)$. Prove that there is a minimum spanning tree containing (u, v) among all spanning trees containing all edges in $\cup_{i=1}^{k} E\left(F_{i}\right)$.
3. (10%) Apply the Bellman-Ford algorithm to Figure 1, and show how it detects the negative cycle in the graph.

Figure 1: A directed graph with a negative-weight cycle.
4. (15%) (a) What is a minimum routing cost spanning tree of a complete graph with unit length on each edge? Prove your answer. (b) What is a maximum routing cost spanning tree of a complete graph with unit length on each edge? Prove your answer.
5. (10%) (a) Give a tree with two centroids. (b) Show that any tree can have at most two centroids.
6. (10%) Construct an example where its minimum spanning tree has a routing cost $\Theta(n)$ times that of a minimum routing cost spanning tree.
7. (15%) Prove that a shortest-paths tree rooted at the median of a graph is a 2 -approximation of a minimum routing cost spanning tree of the graph.
8. (10%) Let $P=\left(p_{1}, p_{2}, \ldots, p_{k}\right)$ be a path separator of \widehat{T}. It is easy to see that a centroid must be in $V(P)$. Let p_{q} be a centroid of \widehat{T}. Construct $R=S P_{G}\left(p_{1}, p_{q}\right) \cup S P_{G}\left(p_{q}, p_{k}\right)$. In class, we show that

$$
\sum_{v \in V} d_{G}(v, R) \leq \sum_{v \in V} d_{\widehat{T}}(v, P)+(n / 12) w(P)
$$

Explain why we could have the coefficient $n / 12$ instead of $n / 6$ as in the case using only two end vertices p_{1} and p_{k}.
9. (10%) We are given a tree T with positive edge weights. Suppose that $P=S P_{T}\left(v_{1}, v_{2}\right)$ is a diameter. Starting at v_{1} and traveling along the path P, we compute the distance $d_{T}\left(u, v_{1}\right)$ for each vertex u on the path. Let u_{1} be the last encountered vertex such that $d_{T}\left(v_{1}, u_{1}\right) \leq \frac{1}{2} w(P)$ and u_{2} be the next vertex to u_{1}. Prove that u_{1} or u_{2} is a center of the tree.

