
FreeNet
A Distributed Anonymous Information

Storage and Retrieval System

Presented By Xiao Wei-Cheng
2004.04.06

Outline

● Introduction
● Architecture
– Keys and searching files
– Inserting, Storing, Retrieving, Managing files
– Adding nodes

● Security
● Performance Analysis

Introduction (1/2)

● Decentralization
● Privacy
● Sharing of Storage Space
● Location-independent file system
● Retrieving, Inserting, Storing files

Introduction (2/2)

● Design Goals
– Anonymity for producers and consumers
– Deniability for storers of information
– Resistance to attempts to deny access of information
– Efficient dynamic storage and routing of information
– Decentalization of ALL network functions

Architecture

● Freenet is like a peer-to-peer network
● Files are named by keys
● Each node has its own datastore and routing table
● Routing is driven by 'key'
● Each request has a unique ID
– prevent loop

Keys and Searching Files - KSK (1/4)

● Keyword-signed key (KSK) is derived from
Descriptive Text String (DTS)

● public/private key pair
● The file key is yielded by hashing the public part
● The file is encrypted with DTS
● The private part is used to sign the file
● Problem – Different files have the same DTS

Keys and Searching Files–SSK (2/4)

● Signed-subspace key
● Personal namespace is enabled, and generated

 randomly
● Files key = hash(XOR(hash(namespace),

 hash(DTS)))
● File is encrypted with DTS as KSK
● Private key is needed when storing the file

Keys and Searching Files-CHK (3/4)

● Content-hash key
● File key is derived by hashing the file content
● Files are encrypted by randomly-generated keys
● CHK is usually conjucted with SSK
– Indirect file
– Version updating
– file splitting

Keys and Searching Files (4/4)

● Problem – How to get the file key ?
– Through Web Server
– Lightweight indirect files

● Multiple indirect files may have the same key

– Still an open problem

Retrieving File (1/2)
● A Request.Data message is sent, with transaction

 ID, hops-to-live, depth, and search key
● A Send.Data message and the desired file will be

 sent back after successful request
● In the nodes on the path, file is cached, and

routing table is updated
● A Reply.NotFound message would be sent back

 if failed
● Files with similar keys would be cached in some

 group of nodes

Retrieving File (2/2)

Example of retrieving a file (DFS)

Storing and Inserting File
● A Request.Insert message is sent
● If inserting sucesses, a Reply.Insert message is

 sent back, and a Send.Insert is then sent by the
 requestor

● If failed, a Send.Data message with the existing
data or a Reply.NotFound message is sent back

● In the nodes on the path, file is cached, and
routing table is updated

● New nodes can use inserts to announce their
existence

Managing File

● Storages have finite capacity
● LRU algorithm is used to manage files
● Entries in routing table are deleted only when the

 routing table is full

Adding Nodes

● All nodes have to be consistent in deciding the
new node key (Address Resolution Key)

● The new node sends its address and hash(rand())
 out first

● Nodes in the path send hash(rand() XOR prehash)
 to the next one

● The final hash value becomes the key of the new
node

Security (1/3)

● Anonymity of sender, receiver, and the key
● Key anonymity is impossible since routing

depends on the key
● For malicious nodes, sender anonymity is

 preserved beyond suspicion

Security (2/3)
● Freenet + pre-routing
– For key anonymity and sender anonymity
– Messages are encrypted by a succession of public

 keys, and pre-routed first
– After pre-routing, the message is injected into the

 normal Freenet network
● The data source field can be resetted in the path
● A hops-to-live of 1 doesn't reveal an endpoint
– Finite probability

Security (3/3)

● Modification of requested files by malicious nodes
– Not feasible under CHK or SSK

● Displace existing files by malicious nodes
– Not feasible under CHK or SSK

● Prevent DoS attack
– Use 2 part of datastore

● Established files
● New files

Performance Analysis (1/5)

● Network for simulation
– 1000 nodes
– Datastore size of 50 items per node
– Routing table size of 250 addresses per node

Performance Analysis (2/5)
● Network Convergence

300 random requests per probe, hops-to-live = 500, every 100 timestemps

Performance Analysis (3/5)
● Scalability

Probing as previous simulation

Performance Analysis (4/5)
● Fault-tolerance – Because of small-world network

Performance Analysis (5/5)
● Small-world network

