
國立臺灣大學「台大工程」學刊 第九十期 民國九十三年二月 第 121–130 頁 121
Bulletin of the College of Engineering, N.T.U., No. 90, February 2004, pp. 121–130

以族群競爭式基因演算法解決具有次序及時間限制的載運

路徑規劃問題

A FAMILY COMPETITION GENETIC ALGORITHM FOR
THE PICKUP AND DELIVERY
PROBLEMS WITH TIME WINDOW

摘 要

族群競爭式基因演算法 (FCGA) 是架構在傳統基因

演算法上的新方法。根據已往的研究顯示，傳統的基因演

算法能夠在合理的時間範圍內找到可行解，甚至是近似最

佳解。FCGA 主要是在傳統的基因演算法中，加入族群競

爭的觀念，使問題在求解過程中能夠更具有多樣性及變

化，進而提高找到可行解的機率，最後並得到更好的結

果。在本論文中，我們將利用 FCGA 來解決單一車輛在具

有載運次序及時間限制的問題 (1-PDPTW)。 同時，藉由

大量的實驗數據，在小於 50 組的工作排程上，驗證 FCGA
能有效的找到最佳解。而當動態規劃方法 (dynamic
programming) 無法安排 50 組以上的工作排程時，FCGA
仍能有效的提供可行解給使用者。

關鍵詞： 取貨及送貨問題、載運路徑安排問題、時間限

制、基因演算法

Abstract

This paper presents a new approach based on
genetic algorithms to solving the single-vehicle pickup
and delivery problem with time window constraints
(1-PDPTW). In particular, we illustrate how the
Family Competition Genetic Algorithm (FCGA) is
applied to the 1-PDPTW, and compare its results with
previous solutions to the problem. Genetic algorithms
have been shown to find feasible or near-optimal
solutions when traditional methods would fail within a
reasonable amount of time. By incorporating the
concept of families to maintain diversity, FCGA further
improves solution quality and increases the probability
of finding the optimal solutions without much extra
resource demands. Extensive experiments on FCGA
with various crossover and mutation operators show that
the new approach succeeds in finding the optimal
solutions for 1-PDPTW under 50 tasks, and can obtain
near-optimal or feasible solutions in most problems up
to 100 tasks.

Keywords: pickup and delivery problem, vehicle routing
problem, time windows, genetic algorithm

1. INTRODUCTION

Many real-world transportation problems, such as
vehicle dispatching [1,2] and winter gritting [3,4], can
be formulated as the pickup and delivery problems (PDP)

[5]. When the problem involves finding a set of
minimum-cost routes for a fleet of vehicles to satisfy
transportation requests with time constraints, it is called
the pickup and delivery problem with time windows
(PDPTW). Vehicles are assumed to depart from a

紀 婉 容** 許 永 真*

 Wan-rong Jih Jane Yung-jen Hsu
**
博士候選人 *教授

國立台灣大學資訊工程研究所
**Ph.D. candidate *Professor

Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan 10617, R.O.C.

122 Bulletin of the College of Engineering, N.T.U., No. 90, February 2004

common depot. For each transportation request, or a
task, loading and unloading shall be done within a
particular time interval. It is also associated with a
load, that is, the specific weight to be delivered. Each
vehicle can carry a limited weight. A special class of
PDPTW, the 1-PDPTW, is to find the optimal route for a
single vehicle to serve all the transportation requests.

The PDPTW belongs to the class of NP-hard
problems [6], that is, the computation required to find a
solution grows exponentially with its problem size.
Psaraftis [7~9] proposed a solution using dynamic
programming with a time complexity of O(n23n), where
n is the number of tasks. The proposed method solved
PDPTW problems with up to 10 transportation requests,
i.e., the solution route involves at most 21 location
points. Desrosiers et al. [10] improved the original
dynamic programming algorithm with elimination
criteria, and solved the problems up to 40 tasks
effectively. While faster CPUs have enable optimal
solutions to be obtained for slightly larger problems, the
algorithms still fail to find optimal solutions except for
problems of relatively small size. Therefore, heuristic
methods are designed to solve large problems of
PDPTW on demand. Sexton et al. [11] formulated the
problem as a linear program and decompose it into
independent subproblems. Dumas et al. [12] employed
the column generation scheme to solve 1-PDPTW for up
to 55 paired requests. Comprehensive surveys have
been compiled by Dumas [12], Savelsbergh [13] and
Sigurd [14].

There are several well-known problems related to
PDPTW. In the dial-a-ride problem (DARP), customers
making the transportation requests are the load to be
carried, and each customer is assumed to be of unit
weight. DARP can be solved by dynamic programming
as proposed by Psaraftis [7~9] and Desrosiers [10].
Furthermore, approximation algorithms for solving
DARP were given in Madsen [15] and Charikar et al.
[16] Surveys by Christofides [17] and Laporte [18]
include both exact and heuristic cases to solving the
traveling salesman problem (TSP). The traveling
salesman problem with precedence constraints (TSPPC)
imposes an ordering on the locations to be visited.
Heuristic approaches have been developed by Anily [19],
Gendreau [20] and Moon [21]. The vehicle routing
problem (VRP) is a PDP, except that every task has
been assigned to a common delivery location.
Overviews of exact and approximate algorithms for
VRP are provided by Psaraftis [22] and Laporte [23].
Readers may refer to Golden [24] Solomon [25] and
Desrochers [26] for surveys on VRPTW, and a recent
survey by Desaulniers et al. [27]. Laporte [28]
collected a bibliography of routing related problems,
including references on VRP and TSP.

Genetic algorithms (GAs) have been successfully
applied to solve many combinatorial problems, including
several types of VRP and TSP. Two edge-based
recombination operators, alternate edges crossover and
edge recombination crossover, were proposed by
Grefenstette [29] and Whitley [30]. Starkweather [31]
introduced the enhanced edge recombination crossover
on TSP. He also compared many genetic operators
including order crossover, order crossover #2 [32],
partially-mapped crossover [33] and cycle crossover
[34]. Homaifar [35] presented matrix representation
and matrix crossover for solving the TSP. Freisleben
and Merz [36,37] invented distance preserving crossover
for TSP such that the offspring of this operator can
escape the local optima in the search space. Surveys of
GA on TSP were presented by Potvin [38] and Larranaga
[39].

Blanton and Wainwright [40] proposed two
crossover operators, merge crossover #1 and merge
crossover #2, that utilize global knowledge to explore
the solution space. Jih [41,42] performed a comparative
study of GA with various recombination operators in
solving PDPTW, and showed that the merge crossover
operators are superior to the traditional ones. On the
other hand, a new variation of GA called Family
Competition Genetic Algorithm (FCGA) has been
successfully applied to TSP and routing-related problems
[43]. This research explores FCGA-based solutions to
1-PDPTW.

Section 2 presents the formal definition of
1-PDPTW, followed by the GA construction in terms of
the chromosome representation, fitness function, and
genetic operators. The FCGA algorithm is outlined in
Section 4. Experimental results are summarized in
Section 5, followed by the conclusions in Section 6.

2. PICKUP AND DELIVERY
PROBLEM WITH TIME

WINDOWS

In the single-vehicle pickup and delivery problem
(1-PDP), a route must be constructed in order to satisfy
transportation requests. Each transportation request
specifies the weight of the load to be transported, a
location where it is to be picked up and another location
where it is to be delivered. Suppose that the beginning
of a route is a depot from which the vehicle departs.
Starting from the depot, the vehicle travels through all
the locations where the transportation requests are
specified. After the vehicle has fulfilled all the
transportation requests, the vehicle will park at one of
the delivery locations.

The single-vehicle pickup and delivery problems

 Wan-rong Jih．Jane Yung-jen Hsu：A Family Competition Genetic Algorithm for the Pickup and Delivery Problems with Time Window123

with time constraints (1-PDPTW) are strictly harder
than the basic 1-PDP problems. In addition to the
intrinsic precedence and capacity constraints, the
temporal constraints complicate the problem significantly.
Each pickup and delivery location is associated with a
time window, which specifies the service time interval
allowed.

2.1 1-PDPTW

Let N = {1, … , n} represent the set of n
transportation requests. For each task i∈N, the time
windows [ai+, bi+] and [ai−, bi−] denote the available time
interval of pickup location i+ and delivery location i−,
respectively. A positive number qi indicates the load
of task i. While serving the transportation requests, the
vehicle shall not exceed the capacity limit Q.

Given a directed graph G = (V, A), let V = {0}∪V +

∪V − be a set of nodes, where 0 is an initial depot. V + =
{i+⎪i∈N} is the set of pickup locations, and V − = {i−⎪i∈N}
is the set of delivery locations. The arc set is A = {(r,
s)⎪ r≠s, r, s∈V}.

There are three types of constraints for 1-PDPTW:
precedence constraints, capacity constraints and time
window constraints. Assume that a vehicle is parked at
the initial depot 0, and it shall visit all the specified
locations exactly once. To accomplish a task i∈N, the
vehicle shall serve the pickup location i+ before the
delivery location i−; this is the precedence constraint.
The capacity constraint states that the total load of a
vehicle cannot exceed its capacity Q.

If the vehicle arrives at location r∈V +∪ V −, its
arrival time tr should meet the criterion r r ra t b≤ ≤ ,
where [ar, br] is the time window of location r.
However, if the arrival time tr is earlier than the lower
bound of the available time interval ar, it has to wait
until the time reaches ar. That is, the departure time of
a vehicle at location r will be equal to max{ar, tr}.
These criteria form the time window constraints.

2.2 Goal

Our goal is to find a vehicle route that starts from
an initial depot, fulfills all the transportation requests,
and ends at one of the delivery locations. The path
should be a feasible route that satisfies the associated
constraints, and minimizes the total traveling time and
the total waiting time of the vehicle.

3. CONSTRUCTION OF
GENETIC ALGORITHM

Genetic algorithms (GAs) are search algorithms
based on the mechanics of natural selection and natural

genetics. As in evolution, genetic algorithms utilize
genetic recombination and replication on strings as the
optimization procedures. The approach has been
shown to be very effective in searching for solutions to
NP-hard problems [6].

Deployment of any genetic algorithm requires
defining the problem encoded in some chromosome
representation, as well as the corresponding evaluation
function, also called the fitness function. Parent
selection methods often choose individuals from the
current population based on their fitness functions.
Given a chromosome representation, recombination
operators are designed to create new individuals from
the selected parents.

3.1 Chromosome Representation

A solution to 1-PDPTW will be represented as an
ordered list of locations. Given a set of transportation
requests N = {1, …, n}, let i+ and i− denote the pickup
and delivery location of task i, respectively. For
instance, (0 3+ 1+ 1− 2+ 2 3−) is the chromosome
representation of route 0 → 3+ → 1+ → 1− → 2+ → 2− → 3−.
By simply counting the pickup and delivery locations of
every transportation request and a initial depot, the
length of every chromosome will be 2n + 1. The
simple permutation representation intuitively follows the
travelling sequence, and it is the most common and
popular representation for solving the order-based
problems.

3.2 Fitness Function

Given a chromosome that represents a route S, the
corresponding fitness function is defined in Eq. (1).

travelcost penalty() () ()S f S f SΦ = + (1)

The value of ftravelcost(S) is the total travel time for a
vehicle to complete route S, including the waiting time
if the vehicle arrives at a location early. The penalty
function of route S, fpenalty(S), defines the punishments
for violating some of the constraints. The vehicle
receives a penalty if it is overloaded or late at any
location. In a route, if any specific task i violates the
precedence constraint, an adjustment procedure will be
performed. This procedure swaps the positions of
location i+ and i− and makes the pickup location i+ to
appear before the delivery location i−.

A route may violate the constraints during the
exploration of genetic algorithm. A route is feasible if
it does not violate any constraint; otherwise, it is
infeasible. According to the definition of Φ(S), the
value of Φ(Sinfeasible) is typically much larger than that of

124 Bulletin of the College of Engineering, N.T.U., No. 90, February 2004

Φ(Sfeasible), where Sfeasible denotes a feasible route and
Sinfeasible is an infeasible route. The goal of the
1-PDPTW is to find a feasible route S such that
minimize Φ(S).

3.3 Crossover

In this paper, we consider four crossover operators.
The order crossover [34] (OX) and uniform order-based
crossover [32] (UOX) are two popular traditional
crossovers to solve routing-related problems. Merge
crossover #1 (MX1) and merge crossover #2 (MX2) are
recently invented by Blanton [40] for solving VRPTW;
these two merge crossovers utilize global knowledge to
explore their search space. The two traditional
crossover operators have been introduced by many
exhaustive studies [32,34].

Most traditional order-based crossover operators do
not have strong connections to the constraints in the
problem domain. In contrast, the merge crossover
operators utilize global knowledge about 1-PDPTW
constraints, in the form of a global precedence vector, in
order to achieve the precedence relationship among the
genes. For example, in 1-PDPTW, the order of time
windows can be represented as a global precedence
vector for the merge crossovers. Operators MX1 and
MX2 will produce new chromosomes according to the
precedence among the genes. Operator MX1 produces
a child with the sequence of order close to the global
precedence vector; while MX2 produces an offspring in
which the genes with lower priority are moved to the
end of the chromosome.

3.4 Mutation

A mutation operator works on a single chromosome,
which will be substituted by the mutated individual. In
this approach, instead of using a fixed mutation rate,
mutation is applied only when the offspring are identical
to their parents.

The genetic algorithms in our experiments applied
two mutation operators in solving the 1-PDPTW. The
first mutation operator, named 2-point mutation, selects
two genes randomly, and their positions are interchanged.
This operator creates a new route with four different
edges from its original route. The second mutation
operator chooses two cut sites randomly and reverse the
sub-route among the cut sites. This mutation operator
is identical to the 2-opt move in TSP [32], in which the
new route differs from the original one by two edges.

4. FAMILY COMPETITION GA

The family competition genetic algorithm (FCGA)

is a modern approach introduced by Yang [44].
Adapting the concept of families to traditional GA yields
the principal of FCGA. Once an individual has been
selected to perform crossover, traditional GA selects
another individual to produce a single offspring,
whereas FCGA produces a family with more than one
offspring, one from each randomly selected mate. In
FCGA, the scheme of family competition maintains a
constant size of the population, that is, only the
champion of each family survives.

Algorithm 1 The procedures of FCGA
1: t = 0;
2: Initial population: Pt←{I1

t, I2
t,…, Im

t};
3: Evaluation: Φ(I1

t), Φ(I2
t),…, Φ(Im

t)
4: Repeat
5: T ← Ø;
6: for i = 1 to m do
7: Family father : Fi

t ← Ii
t;

8: Family: Ci
t ← Ø;

9: for j = 1 to u do
10: Selection: alternative parent Aj

t∈Pt;
11: Recombination: cj ← Om(Oc(Fi

t, Ai
t));

12: Evaluation: Φ(cj);
13: Ci

t ←Ci
t ∪ {cj};

14: end for
15: T ← T ∪ best (Ci

t);
16: end for
17: P t + 1⊂{Pt ∪ T};
18: t = t + 1;
19: until reach the termination condition

20: Output the solutions;

Algorithm 1 elaborates the procedure of the family
competition genetic algorithm. The first three steps are
the initialization process of FCGA. For any given
generation t, the population Pt contains m individuals.
The evaluation function Φ is as defined in Eq. (1) of
Section 3.2.

Steps 4 through 19 present the main procedure of
FCGA in generation t. Each individual Ii

t in Pt, where
i = 1, 2, …, m, takes turn to be the father Fi

t in creating
a family Ci

t of u offspring. The family construction
process is detailed in Steps 9 to 14. To produce a new
offspring cj, an alternative parent Aj

t, which should be
distinct from the family father Fi

t, is randomly selected
from population Pt. Crossover operator Oc and
mutation operator Om are then applied to Fi

t and Aj
t. In

Step 15, function best(Ci
t) returns the individual with the

best, i.e., lowest, fitness value from family Ci
t. The

best members of each family are collected in a
temporary set T. In Step 17, the best m individuals
from either Pt or T are selected to form the next
generation. Algorithm 1 repeats the main loop until

 Wan-rong Jih．Jane Yung-jen Hsu：A Family Competition Genetic Algorithm for the Pickup and Delivery Problems with Time Window125

the termination conditions are met. Upon termination,
FCGA outputs the best solutions explored so far.

5. EXPERIMENTAL DESIGN
AND RESULTS

A major problem for research on solving PDPTW
is the lack of standard test sets. While standard data
sets for several related problems do exist, they cannot be
used to test PDPTW. The TSP data sets do not include
precedence, capacity or time window constraints; while
the VRPTW data sets lack precedence constraints. In
order to compare the genetic algorithms for solving
PDPTW under various combinations of operators and
parameters, it is necessary to create our own test data
sets.

5.1 Experimental Design
Algorithm 2 describes the procedure for generating

the random test sets used in our experiments. The
main challenge is to create test data that is random
enough to provide good coverage on the problem space,
while ensuring the constraints are not too tight to
exclude all possible solutions.

Algorithm 2 Create test data for 1-PDPTW
Require: Given the number of task n, and the width of

time window width
Ensure: To produce a task set N with n transportation

requests, including pickup and delivery
locations from a set V, loads {q1…qn} and time
window {[a1,b1] … [an, bn]}, which admits
feasible solutions.

1: 0 is an initial depot;
2: N = {1, …, n}
3: for i ∈ N do
4: Generate the pickup location i+ ∈ V+ randomly;
5: Generate the delivery location i- ∈ V− randomly;
6: Generate the load qi randomly;
7: end for
8: V = {0 ∪ V+ ∪ V−};
9: Evaluate the traveling time drs, r, s ∈ V;

10: Randomly generate a route, which satisfies the
precedence contraint;

11: AverageTime =
| | | |

rsr V s V
d

V V
∈ ∈

×

∑ ∑

12: Suppose that the vehicle arrives location i at time ti;
13: for i ∈ V +∪ V − do
14: ai = ti− random(width) × AverageTime;
15: bi = ti+ random(width) × AverageTime;
16: end for
17: [ai, bi] is the time window of location i ∈ V;
18: Output the test data;

Each generated test set consists of n tasks with
2n + 1 locations. Steps 1 to 8 in Algorithm 2 initialize
the essential elements of tasks, including the pickup
locations, delivery locations and the loads. Step 9
calculates the travel time between any locations
involved in the requests.

Moreover, this algorithm guarantees the existence
of solutions. To assure the production of a test set with
at least one solution, Algorithms 2 randomly generates a
primary route that satisfies the intrinsic precedence
constraints. The arrival time ti of location i is used to
generate the corresponding time window [ai,bi] using the
parameter width in deciding the width of time window.
Function random(width) in Steps 14 and 15, randomly
generates a real number between 0 and width. As a
result, the difference between ai and bi is no more than
2 × width × AverageTime.

5.2 Experimental Results

In our experiments, the family competition genetic
algorithm (FCGA) is compared with the traditional
genetic algorithm (GA) using four crossovers operators
under three different crossover rates (0.45, 0.60, and
0.75). Comparative results are tabulated for the four
crossover operators, which are referred to as order-based
crossover (OX), uniform crossover (UOX) [32], merge
crossover #1 (MX1), and merge crossover #2 (MX2)
[40]. The experiments also adopt two mutation
operators: 2-point mutation and the 2-opt mutation.
For each test case, we perform 30 trials under the same
configuration of parameters.

Table 1 shows the best results of running the four
crossover operators respectively. The first column
represents the number of transportation requests.
Under the common heading “Genetic Operators &
Approaches,” Columns 2 to 9 list the results of using the
four crossover operators. Each cell consists of two
elements: the top value indicates the best result found by
the corresponding approach, whereas the value in the
bottom represents the number of times when the best
result is found. The latter is also called the appearance
count. Symbol ‘x’ indicates that no feasible solution
can be found. Values equal to the best-known result
are printed in italicized style. The rightmost columns
record the best solutions obtained by using GA, FCGA,
and dynamic programming (DP) [9] respectively.

The results in Table 1 show that the order-based
crossover OX is unable to find any feasible solution for
relatively small problems. Therefore, it is not suitable
for 1-PDPTW. On the other hand, dynamic
programming produces optimal solutions for problems
with size smaller than 50; the uniform crossover and two
merge crossover operators can find optimal solutions in

126 Bulletin of the College of Engineering, N.T.U., No. 90, February 2004

Table 1 A comparison of the best results

Genetic operators & approaches
OX UOX MX1 MX2

The best or
optimal result

Task
Size GA FCGA GA FCGA GA FCGA GA FCGA GA FCGA DP

875 872 872 872 872 872 872 872 872 872 87210
1 2 18 27 30 30 30 30
x 2186 2030 2030 2030 2030 2030 2030 2030 2030 203020
x 1 22 30 1 1 21 11
x x 3713 3713 3713 3720 3713 3713 3713 3713 371330
x x 5 20 2 4 24 7
x x 4386 4386 4389 4389 4386 4386 4386 4386 438640
x x 3 23 2 10 28 12
x x 5752 5752 5753 5723 5752 5753 5752 5752 575250
x x 1 17 30 30 3 24
x x 5658 5658 5658 5658 5658 5658 5658 5658 x60
x x 3 5 3 1 29 30
x x 7221 7221 7252 7239 7221 7221 7221 7221 x70
x x 2 19 10 1 2 2
x x 7849 7849 7903 7909 7850 7849 7849 7849 x80
x x 1 4 1 18 1 1
x x x 8618 8622 8645 8618 8618 8618 8618 x90
x x x 5 1 1 1 1
x x 10600 10600 10616 10600 10600 10600 10600 10600 x100
x x 1 5 4 3 10 26

most cases. The results also show that FCGA
consistently improves the quality of solutions and the
chance of producing optimal solutions using the uniform
crossover operator. When applied with the merge
crossover operators, FCGA improves the quality of
solutions for most, while slightly worsens the solutions
of MX1 for task size 30, 80 and 90, as well as the
solution of MX2 for 50 tasks.

Consider the chance of producing the best solutions
for the various combinations. Applying UOX in
FCGA generally increases the appearance count of the
best results. In contrast, the appearance count
decreases for MX1 in FCGA for task size 60 and larger;
FCGA with MX2 obtains fewer optimal solutions for
task size of 20, 30 and 40.

To evaluate the quality of the solutions found by
the various genetic algorithms, Fig. 1 depicts the best
and average fitness values of the solutions for
1-PDPTW involving 80 tasks. The x-coordinate
denotes the number of generations, whereas the
y-coordinate correspond to the fitness values.
Compared with FCGA, the average fitness values for
GA are much higher (i.e., worse) in every generation
and the curve converges more slowly. In addition, the
results indicate that the best results obtained by FCGA
and GA are very close and the lines converge at the
same point.

Most of the configurations in our experiments
generated similar results to the ones shown in Fig. 1.
There are notable exceptions. For example, Fig. 2
shows the best and average fitness values of solutions
found by MX2 over thirty trials on 50-task PDPTWs.
The curve denoting the average fitness values for FCGA
converges prematurely into a higher value. One
possible explanation is that the merge crossover
operators can create near-optimal solutions earlier in the
evolution process based on some domain knowledge.
Unfortunately, FCGA has a higher tendency of being

Fig. 1 The best and average fitness values of MX1
in 80 tasks

 Wan-rong Jih．Jane Yung-jen Hsu：A Family Competition Genetic Algorithm for the Pickup and Delivery Problems with Time Window127

Fig. 2 The best and average fitness values of MX2

in 50 tasks

Fig. 3 A comparison of CPU time (UOX, MX1, and

MX2)

trapped in a local minimum, and converges to a
non-optimal solution.

Figure 3 illustrates the average CPU time required
by FCGA and GA in solving the problems. The
x-coordinate represents the problem size, and the
y-coordinate denotes the execution time measured in
seconds. In general, the execution time for GA is
shorter than that of FCGA due to the overhead in the
reproductive process. Figure 3 also show that UOX
takes more time than the merge crossover operators in
finding a solution. The experimental results in Table 1
and Fig. 3 demonstrate that UOX works well with
FCGA in generating the best solutions despite a longer
execution time.

In real-world applications, it is often better to start
serving customer requests based on a feasible (or
near-optimal) solution instead of keeping them waiting
while searching for the optimal solution. Table 2
summarizes the hit ratio, in terms of percentage, of
finding a feasible solutions. The results indicate that
FCGA improves the probability of obtaining feasible
solutions in most cases. Based on the results in Fig. 3

Table 2 Hit ratios of feasible solution in 180 trials

feasible/trials (%)
UOX MX1 MX2 Task

size
GA FCGA GA FCGA GA FCGA

10 100.00 100.00 100.00 100.00 100.00 100.00
20 98.89 100.00 100.00 100.00 100.00 100.00
30 70.00 93.33 100.00 97.78 98.89 98.33
40 45.00 90.00 100.00 100.00 99.44 96.11
50 8.33 46.67 100.00 100.00 99.44 84.44
60 5.00 15.56 98.33 100.00 96.67 87.22
70 7.22 47.22 100.00 100.00 97.22 95.00
80 11.67 11.67 21.67 55.00 61.11 80.56
90 x 8.89 61.11 96.11 71.67 87.22

100 1.11 13.33 7.78 26.67 25.00 63.89

and Table 2, we can conclude that MX1 and MX2 are
the better choices for real-time applications.

Let us summarize the results from our experiments.
First, FCGA improves the solution quality of UOX, both
the solution costs and the appearance count. Second,
for uniform order-based crossover operator like UOX,
FCGA can enhance its local search capability, thereby
increase the opportunity of reaching the optimal solution.
On the other hand, while FCGA improves the execution
time of the merge crossover operators, it does not
increase the solution qualities as it tends to get stuck in
the local minimum.

6. CONCLUSION AND
DISCUSSION

This paper presented a comprehensive study on
genetic algorithm-based approach to solving the single-
vehicle pickup and delivery problem with time
constraints. Genetic algorithms have been shown to find
feasible or near-optimal solutions when traditional
methods would fail within a reasonable amount of time.
Instead of utilizing offsprings of parent chromosomes
directly, the Family Competition Genetic Algorithm
(FCGA) selects a champion offspring from siblings
from the same parents to maintain diversity and balance
of population. By incorporating the concept of families,
FCGA further improves solution quality and increases
the probability of finding the optimal solutions without
much extra resource demands.

Extensive experiments were conducted to compare
the FCGA with traditional GA’s under various crossover
and mutation operators. The results showed that the
FCGA succeeds in finding the optimal solutions for
1-PDPTW under 50 tasks, and can obtain near-optimal
or feasible solutions in most problems up to 100 tasks.
Additionally, by comparing the solution cost of FCGA

128 Bulletin of the College of Engineering, N.T.U., No. 90, February 2004

with that of traditional GA, we found that FCGA
improves the solution qualities in most cases.

One important observation from the experiments in
solving the 1-PDPTW is that not all recombination
operators benefit from FCGA. In particular, FCGA is
best suited for genetic operators that explore the search
space uniformly, such as uniform crossover. For
genetic operators designed to do greedy search, FCGA
may be trapped in local minimum. Our experiments
showed that applying family competition in merge
crossovers did not improve the solutions substantially.
We expect to continue designing additional recombi-
nation operators in order to further understand the
characteristics of the proposed scheme in solving
PDPTW and other related problems.

REFERENCES

 [1] O. B. G. Madsen, K. Tosti and J. Væds, “A
Heuristic Method for Dispatching Repair Men,”
Annals of Operations Research, Vol. 61, 1995, pp.
213−226.

 [2] Y. Shen, J. Y. Potvin, J. M. Rousseau and S. Roy,
“A Computer Assistant for Vehicle Dispatching
with Learning Capabilities,” Annals of Operations
Research, Vol. 61, 1995, pp. 189−211.

 [3] R. W. Eglese, “Routeing Winter Gritting
Vehicles,” Discrete Applied Mathematics, Vol. 48,
1994, pp. 231−244.

 [4] Y. O. Li and R. W. Eglese, “An Interactive
Algorithm for Vehicle Routeing for Winter-
Gritting,” Journal of the Operational Research
Society, Vol. 47, 1996, pp. 217−228.

 [5] A. A. Assad, “Modeling and Implentation Issues
in Vehicle Routing,” B. L. Golden and A. A.
Assad, Eds., Vehicle Routing: Methods and
Studies, Elsevier Science Publishers,
North-Holland, Amsterdan, 1988, pp. 7−45.

 [6] J. K. Lenstra and A. H. G. Rinnooy Kan,
“Complexity of Vehicle Routing and Scheduling
Problems, Networks, Vo1. 11, 1981, pp. 221−227.

 [7] H. N. Psaraftis, “A Dynamic Programming
Solution to the Single Vehicle Many-to-Many
Immediate Request Dial-a-Ride Problem,”
Transportation Science, Vol. 14, No. 2, 1980, pp.
130−154.

 [8] H. N. Psaraftis, “An Exact Algorithm for the
Single Vehicle Many-to-Many Dial-a-Ride
Problem with Time Windows,” Transportation
Science, Vol. 17, No. 3, 1983, pp. 351−357.

 [9] H. N. Psaraftis, “Scheduling Large-Scale Advance-

Request Dial-a-Ride Systems,” American Journal
of Mathematical and Management Sciences, Vol. 6,
No. 3 & 4, 1986, pp. 327−341.

[10] J. Desrosiers, Y. Dumas and F. Soumis, “A
Dynamic Programming Solution of the Large-
Scale Single-Vehicle Dial-a-Ride Problem with
Time Windows,” American Journal of
Mathematical and Management Sciences, Vol. 6,
No. 3 & 4, 1986, pp. 301−325.

[11] T. R. Sexton and Y. M. Choi, “Pickup and
Delivery of Partial Loads with Soft Time
Windows,” American Journal of Mathematical
and Management Sciences, Vol. 6, No. 3 & 4,
1986, pp. 369−398.

[12] Y. Dumas, J. Desrosiers and F. Soumis, “The
Pickup and Delivery Problem with Time
Windows,” European Journal of Operational
Research, Vol. 54, 1991, pp. 7−22.

[13] M. W. P. Savelsbergh and M. Sol, “The General
Pickup and Delivery Problem,” Transportation
Science, Vol. 29, No. 1, 1995, pp. 17−29.

[14] Mikkel Sigurd, David Pisinger and Michael Sig,
“The Pickup and Delivery Problem with Time
Windows and Precedences,” Technical report,
University of Copenhagen, August 2000.

[15] O. B. G. Madsen, H. G. Ravn and J. M. Rygaard,
“A Heuristic Algorithm for a Dial-a-Ride Problem
with Time Windows, Multiple Capacities and
Multiple Objective,” Annals of Operations
Research, Vol. 60, 1995, pp. 193−208.

[16] M. Charikar and B. Raghavachari, “The Finite
Capacity Dial-a-Ride Problem,” IEEE Symposium
on Foundations of Computer Science, 1998, pp.
458−467.

[17] N. Christofides, “Vehicle Routing,” E. L. Lawler,
J. K. Lenstra, A. H. G. Rinnooy Kan and D. B.
Shmoys, Eds., The Traveling Salesman Problem:
A Guided Tour of Combinatorial Optimization,
Elsevier Science Publishers, John Wiley & Sons,
Ltd., 1985, pp. 431−448.

[18] G. Laporte, “The Traveling Salesman Problem: An
Overview of Exact and Approximate Algorithms,”
Management Science, Vol. 59, 1992, pp. 231−247.

[19] S. Anily and G. Mosheiov, “The Traveling
Salesman Problem with Delivery and Backhauls,”
Operations Research Letters, Vol. 16, 1994, pp.
11−18.

[20] M. Gendreau, G. Laporte and D. Vigo, “Heuristics
for the Traveling Salesman Problem with Pickup
and Delivery,” Computers and Operations
Research, Vol. 26, No. 7, 1999, pp. 699−714.

 Wan-rong Jih．Jane Yung-jen Hsu：A Family Competition Genetic Algorithm for the Pickup and Delivery Problems with Time Window129

[21] G. Choi, C. Moon, J. Kim and Y. Seo, “An
Efficient Genetic Algorithm for the Traveling
Salesman Problem with Precedence Constraints,”
European Journal of Operational Research, Vol.
140, No. 3, 2002, pp. 606−617.

[22] H. N. Psaraftis, “Dynamic Vehicle Routing
Problems,” B. L. Golden and A. A. Assad, Eds.,
Vehicle Routing, Methods and Studies, Elsevier
Science Publishers, North-Holland, Amsterdan,
1988, pp. 223−248.

[23] G. Laporte, “The Vehicle Routing Problem: An
Overview of Exact and Approximate Algorithms,”
Management Science, Vol. 59, 1992, pp. 345−358.

[24] B. L. Golden and A. A. Assad, “Vehicle Routing
with Time-Window Constraints,” American
Journal of Mathematical and Management
Sciences, Vol. 6, No. 3 & 4, 1986, pp. 251−260.

[25] M. M. Solomon and J. Desrosiers, “Time Window
Constrained Routing and Scheduling Problems,”
Transportation Science, Vol. 1, No. 1, 1988, pp.
1−13.

[26] M. Desrochers, J. K. Lenstra and M. W. P. Soumis,
“Vehicle Routing with Time Windows:
Optimization and Approximation,” B. L. Golden
and A. A. Assad, Eds., Vehicle Routing: Methods
and Studies, Elsevier Science Publishers, North-
Holland, Amsterdan, 1988, pp. 65−84.

[27] G. Desaulniers, J. Desrosiers, A. Erdmann, M. M.
Solomon and F. Soumis, “The VRP with Pickup
and Delivery,” Cahiers du GERARD G-2000-25,
Ecole des Hautes Etudes Commerciales, Montreal,
2000.

[28] G. Laporte, “Routing Problems: A Bibliography,”
Annals of Operations Research, Vol. 61, 1995, pp.
227−262.

[29] J. Grefenstette, R. Gopal, B. Rosmaita and D.
Gucht, “Genetic Algorithms for the Traveling
Salesman Problem,” Proceedings of the First
International Conference on Genetic Algorithms
and Their Applications, 1985, pp. 160−168.

[30] D. Whitley, T. Starkweather and D. Fuquay,
“Scheduling Problems and Traveling Salesman:
The Genetic Edge Recombination Operator,”
Proceedings of the Third International Conference
on Genetic Algorithms and Their Applications,
1989, pp. 133−140.

[31] T. Starkweather, S. McDaniel, K. Mathias, D.
Whitley and C. Whitley, “A Comparison of
Genetic Sequencing Operators,” Proceedings of
the Fourth International Conference on Genetic
Algorithms and Their Applications, 1991, pp.
69−76.

[32] G. Syswerda, “Schedule Optimization Using
Genetic Algorithms,” L. Davis, Ed., Handbook of
Genetic Algorithms, van Norstrand Reinhold, New
York, 1991, pp. 332−349.

[33] D. E. Goldberg and R. Lingle, Jr., “Allels, Loci
and the Traveling Salesman Problem,”
Proceedings of the First International Conference
on Genetic Algorithms and Their Applications,
1985, pp. 154−159.

[34] I. M. Oliver, D. J. Smith and J. R. C. Holland, “A
Study of Permutation Crossover Operators on the
Traveling Salesman Problem,” Proceedings of the
Second International Conference on Genetic
Algorithms and Their Applications, 1987, pp.
224−230.

[35] A. Homaifar, S. Guan and G. E. Liepins, “A New
Approach on the Traveling Salesman Problem by
Genetic Algorithms,” Proceedings of the Fifth
International Conference on Genetic Algorithms
and Their Applications, 1993, pp. 460−466.

[36] B. Freisleben and P. Merz, “New Genetic Local
Search Operators for the Traveling Salesman
Problem,” Proceedings of 1996 IEEE
International Conference on Evolutionary
Computation, 1996, pp. 616−621.

[37] B. Freisleben and P. Merz, “New Genetic Local
Search Operators for the Traveling Salesman
Problem,” Proceedings of the 4th International
Conference on Parallel Problem Solving from
Nature (PPSN’96), 1996, pp. 890−899.

[38] J. Y. Potvin, “Genetic Algorithms for the
Traveling Salesman Problem,” Annals of
Operations Research, Vol. 63, 1996, pp. 339−370.

[39] P. Larranaga, C. Kuijpers, R. Murga, I. Inza and S.
Dizdarevich, “Genetic Algorithms for the
Travelling Salesman Problem: A Review of
Representations and Operators,” Artificial
Intelligence Review, Vol. 13, 1999, pp. 129−170.

[40] J. L. Blanton, Jr. and R. L. Wainwright, “Multiple
Vehicle Routing with Time and Capacity
Constraints Using Genertic Algorithms,”
Proceedings of the Fifth International Conference
on Genetic Algorithms and Their Applications,
1993, pp. 452−459.

[41] W. R. Jih, Y. P. Chen and Y. J. Hsu, “A
Comparative Study of Genetic Algorithms for
Vehicle Routing with Time Constraints,”
Proceedings of the 1996 International Computer
Symposium, 1996, pp. 17−24.

[42] W. R. Jih and Y. J. Hsu, “Dynamic Vehicle
Routing Using Hybrid Genetic Algorithms,”

130 Bulletin of the College of Engineering, N.T.U., No. 90, February 2004

Proceedings of the 1999 IEEE International
Conference on Robotics & Automation, 1999, pp.
453−458.

[43] H. K. Tsai, J. M. Yang and C. Y. Kao, “A Genetic
Algorithm for Traveling Salesman Problems,”
Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO-2001), 2001,
pp. 687−693.

[44] J. M. Yang and C. Y. Kao, “Integrating Adaptive
Mutations and Family Competition into Genetic
Algorithms as Function Optimizer, Soft Computing,
Vol. 4, No. 2, 2000, pp. 89−102.

Wan-rong Jih (紀 婉 容) is a Ph.D. candidate in the Department of Computer Science
and Information Engineering at the National Taiwan University, and her current research
focuses on the optimization searching algorithms, vehicle routing problems, and protein
folding simulation.

Jane Yung-jen Hsu (許 永 真) received her Ph.D. in Computer Science from Stanford
University in 1991. She is an associate professor of Computer Science and Information
Engineering at National Taiwan University. Her research interests include intelligent agents,
data mining, mobile robots, and e-commerce technologies.

Professor Hsu serves on the editorial board of Intelligent Data Analysis⎯An
International Journal and International Journal of Computational Intelligence. She is actively
involved in many key international conferences, e.g. as the Program co-Chair for the 2005
IEEE International conference on e-Technology, e-Commerce, and e-Service. She is a
member of AAAI, IEEE, ACM, and the Phi Tau Phi Scholastic Honor Society, an executive
committee member of TAAI, and helps initiate the Asian-Pacific Chapter of the IEEE
Technical Committee on E-Commerce.

收稿日期 92 年 12 月 17 日、修訂日期 93 年 2 月 18 日、接受日期 93 年 2 月 20 日
Manuscript received December 17, 2003, revised February 18, 2004, accepted February 20, 2004

