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以族群競爭式基因演算法解決具有次序及時間限制的載運

路徑規劃問題 

A FAMILY COMPETITION GENETIC ALGORITHM FOR 
THE PICKUP AND DELIVERY  
PROBLEMS WITH TIME WINDOW 
 

摘  要 
 

族群競爭式基因演算法 (FCGA) 是架構在傳統基因

演算法上的新方法。根據已往的研究顯示，傳統的基因演

算法能夠在合理的時間範圍內找到可行解，甚至是近似最

佳解。FCGA 主要是在傳統的基因演算法中，加入族群競

爭的觀念，使問題在求解過程中能夠更具有多樣性及變

化，進而提高找到可行解的機率，最後並得到更好的結

果。在本論文中，我們將利用 FCGA 來解決單一車輛在具

有載運次序及時間限制的問題 (1-PDPTW)。 同時，藉由

大量的實驗數據，在小於 50 組的工作排程上，驗證 FCGA
能有效的找到最佳解。而當動態規劃方法  (dynamic 
programming) 無法安排 50 組以上的工作排程時，FCGA
仍能有效的提供可行解給使用者。 

關鍵詞： 取貨及送貨問題、載運路徑安排問題、時間限

制、基因演算法 

Abstract 

This paper presents a new approach based on 
genetic algorithms to solving the single-vehicle pickup 
and delivery problem with time window constraints 
(1-PDPTW).  In particular, we illustrate how the 
Family Competition Genetic Algorithm (FCGA) is 
applied to the 1-PDPTW, and compare its results with 
previous solutions to the problem.  Genetic algorithms 
have been shown to find feasible or near-optimal 
solutions when traditional methods would fail within a 
reasonable amount of time.  By incorporating the 
concept of families to maintain diversity, FCGA further 
improves solution quality and increases the probability 
of finding the optimal solutions without much extra 
resource demands.  Extensive experiments on FCGA 
with various crossover and mutation operators show that 
the new approach succeeds in finding the optimal 
solutions for 1-PDPTW under 50 tasks, and can obtain 
near-optimal or feasible solutions in most problems up 
to 100 tasks.   

 

Keywords: pickup and delivery problem, vehicle routing 
problem, time windows, genetic algorithm 

1.  INTRODUCTION 

Many real-world transportation problems, such as 
vehicle dispatching [1,2] and winter gritting [3,4], can 
be formulated as the pickup and delivery problems (PDP) 

[5]. When the problem involves finding a set of 
minimum-cost routes for a fleet of vehicles to satisfy 
transportation requests with time constraints, it is called 
the pickup and delivery problem with time windows 
(PDPTW).  Vehicles are assumed to depart from a 
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common depot.  For each transportation request, or a 
task, loading and unloading shall be done within a 
particular time interval.  It is also associated with a 
load, that is, the specific weight to be delivered.  Each 
vehicle can carry a limited weight.  A special class of 
PDPTW, the 1-PDPTW, is to find the optimal route for a 
single vehicle to serve all the transportation requests.  

The PDPTW belongs to the class of NP-hard 
problems [6], that is, the computation required to find a 
solution grows exponentially with its problem size.  
Psaraftis [7~9] proposed a solution using dynamic 
programming with a time complexity of O(n23n), where 
n is the number of tasks.  The proposed method solved 
PDPTW problems with up to 10 transportation requests, 
i.e., the solution route involves at most 21 location 
points.  Desrosiers et al. [10] improved the original 
dynamic programming algorithm with elimination 
criteria, and solved the problems up to 40 tasks 
effectively.  While faster CPUs have enable optimal 
solutions to be obtained for slightly larger problems, the 
algorithms still fail to find optimal solutions except for 
problems of relatively small size.  Therefore, heuristic 
methods are designed to solve large problems of 
PDPTW on demand.  Sexton et al. [11] formulated the 
problem as a linear program and decompose it into 
independent subproblems.  Dumas et al. [12] employed 
the column generation scheme to solve 1-PDPTW for up 
to 55 paired requests.  Comprehensive surveys have 
been compiled by Dumas [12], Savelsbergh [13] and 
Sigurd [14]. 

There are several well-known problems related to 
PDPTW.  In the dial-a-ride problem (DARP), customers 
making the transportation requests are the load to be 
carried, and each customer is assumed to be of unit 
weight.  DARP can be solved by dynamic programming 
as proposed by Psaraftis [7~9] and Desrosiers [10].  
Furthermore, approximation algorithms for solving 
DARP were given in Madsen [15] and Charikar et al. 
[16] Surveys by Christofides [17] and Laporte [18] 
include both exact and heuristic cases to solving the 
traveling salesman problem (TSP).  The traveling 
salesman problem with precedence constraints (TSPPC) 
imposes an ordering on the locations to be visited.  
Heuristic approaches have been developed by Anily [19], 
Gendreau [20] and Moon [21].  The vehicle routing 
problem (VRP) is a PDP, except that every task has 
been assigned to a common delivery location.  
Overviews of exact and approximate algorithms for 
VRP are provided by Psaraftis [22] and Laporte [23]. 
Readers may refer to Golden [24] Solomon [25] and 
Desrochers [26] for surveys on VRPTW, and a recent 
survey by Desaulniers et al. [27].  Laporte [28] 
collected a bibliography of routing related problems, 
including references on VRP and TSP.  

Genetic algorithms (GAs) have been successfully 
applied to solve many combinatorial problems, including 
several types of VRP and TSP.  Two edge-based 
recombination operators, alternate edges crossover and 
edge recombination crossover, were proposed by 
Grefenstette [29] and Whitley [30].  Starkweather [31] 
introduced the enhanced edge recombination crossover 
on TSP.  He also compared many genetic operators 
including order crossover, order crossover #2 [32], 
partially-mapped crossover [33] and cycle crossover 
[34].  Homaifar [35] presented matrix representation 
and matrix crossover for solving the TSP.  Freisleben 
and Merz [36,37] invented distance preserving crossover 
for TSP such that the offspring of this operator can 
escape the local optima in the search space.  Surveys of 
GA on TSP were presented by Potvin [38] and Larranaga 
[39].  

Blanton and Wainwright [40] proposed two 
crossover operators, merge crossover #1 and merge 
crossover #2, that utilize global knowledge to explore 
the solution space. Jih [41,42] performed a comparative 
study of GA with various recombination operators in 
solving PDPTW, and showed that the merge crossover 
operators are superior to the traditional ones.  On the 
other hand, a new variation of GA called Family 
Competition Genetic Algorithm (FCGA) has been 
successfully applied to TSP and routing-related problems 
[43].  This research explores FCGA-based solutions to 
1-PDPTW.   

Section 2 presents the formal definition of 
1-PDPTW, followed by the GA construction in terms of 
the chromosome representation, fitness function, and 
genetic operators.  The FCGA algorithm is outlined in 
Section 4.  Experimental results are summarized in 
Section 5, followed by the conclusions in Section 6.  

2.  PICKUP AND DELIVERY 
PROBLEM WITH TIME 

WINDOWS 

In the single-vehicle pickup and delivery problem 
(1-PDP), a route must be constructed in order to satisfy 
transportation requests.  Each transportation request 
specifies the weight of the load to be transported, a 
location where it is to be picked up and another location 
where it is to be delivered.  Suppose that the beginning 
of a route is a depot from which the vehicle departs.  
Starting from the depot, the vehicle travels through all 
the locations where the transportation requests are 
specified.  After the vehicle has fulfilled all the 
transportation requests, the vehicle will park at one of 
the delivery locations.   

The single-vehicle pickup and delivery problems 
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with time constraints (1-PDPTW) are strictly harder 
than the basic 1-PDP problems.  In addition to the 
intrinsic precedence and capacity constraints, the 
temporal constraints complicate the problem significantly.  
Each pickup and delivery location is associated with a 
time window, which specifies the service time interval 
allowed.  

2.1  1-PDPTW  

Let N = {1, … , n} represent the set of n 
transportation requests.  For each task i∈N, the time 
windows [ai+, bi+] and [ai−, bi−] denote the available time 
interval of pickup location i+ and delivery location i−, 
respectively.  A positive number qi indicates the load 
of task i.  While serving the transportation requests, the 
vehicle shall not exceed the capacity limit Q.  

Given a directed graph G = (V, A), let V = {0}∪V + 

∪V − be a set of nodes, where 0 is an initial depot.  V + = 
{i+⎪i∈N} is the set of pickup locations, and V − = {i−⎪i∈N} 
is the set of delivery locations.  The arc set is A = {(r, 
s)⎪ r≠s, r, s∈V}.  

There are three types of constraints for 1-PDPTW: 
precedence constraints, capacity constraints and time 
window constraints.  Assume that a vehicle is parked at 
the initial depot 0, and it shall visit all the specified 
locations exactly once.  To accomplish a task i∈N, the 
vehicle shall serve the pickup location i+ before the 
delivery location i−; this is the precedence constraint.  
The capacity constraint states that the total load of a 
vehicle cannot exceed its capacity Q.  

If the vehicle arrives at location r∈V +∪ V −, its 
arrival time tr should meet the criterion r r ra t b≤ ≤ , 
where [ar, br] is the time window of location r.  
However, if the arrival time tr is earlier than the lower 
bound of the available time interval ar, it has to wait 
until the time reaches ar.  That is, the departure time of 
a vehicle at location r will be equal to max{ar, tr}.  
These criteria form the time window constraints.  

2.2  Goal  

Our goal is to find a vehicle route that starts from 
an initial depot, fulfills all the transportation requests, 
and ends at one of the delivery locations.  The path 
should be a feasible route that satisfies the associated 
constraints, and minimizes the total traveling time and 
the total waiting time of the vehicle.  

3.  CONSTRUCTION OF 
GENETIC ALGORITHM 

Genetic algorithms (GAs) are search algorithms 
based on the mechanics of natural selection and natural 

genetics.  As in evolution, genetic algorithms utilize 
genetic recombination and replication on strings as the 
optimization procedures.  The approach has been 
shown to be very effective in searching for solutions to 
NP-hard problems [6].  

Deployment of any genetic algorithm requires 
defining the problem encoded in some chromosome 
representation, as well as the corresponding evaluation 
function, also called the fitness function.  Parent 
selection methods often choose individuals from the 
current population based on their fitness functions.  
Given a chromosome representation, recombination 
operators are designed to create new individuals from 
the selected parents.  

3.1  Chromosome Representation  

A solution to 1-PDPTW will be represented as an 
ordered list of locations.  Given a set of transportation 
requests N = {1, …, n}, let i+ and i− denote the pickup 
and delivery location of task i, respectively.  For 
instance, (0  3+  1+  1−  2+  2  3−) is the chromosome 
representation of route 0 → 3+ → 1+ → 1− → 2+ → 2− → 3−.  
By simply counting the pickup and delivery locations of 
every transportation request and a initial depot, the 
length of every chromosome will be 2n + 1.  The 
simple permutation representation intuitively follows the 
travelling sequence, and it is the most common and 
popular representation for solving the order-based 
problems.  

3.2  Fitness Function  

Given a chromosome that represents a route S, the 
corresponding fitness function is defined in Eq. (1). 

travelcost penalty( ) ( ) ( )S f S f SΦ = +  (1) 

The value of ftravelcost(S) is the total travel time for a 
vehicle to complete route S, including the waiting time 
if the vehicle arrives at a location early.  The penalty 
function of route S, fpenalty(S), defines the punishments 
for violating some of the constraints.  The vehicle 
receives a penalty if it is overloaded or late at any 
location.  In a route, if any specific task i violates the 
precedence constraint, an adjustment procedure will be 
performed.  This procedure swaps the positions of 
location i+ and i− and makes the pickup location i+ to 
appear before the delivery location i−.  

A route may violate the constraints during the 
exploration of genetic algorithm.  A route is feasible if 
it does not violate any constraint; otherwise, it is 
infeasible.  According to the definition of Φ(S), the 
value of Φ(Sinfeasible) is typically much larger than that of 
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Φ(Sfeasible), where Sfeasible denotes a feasible route and 
Sinfeasible is an infeasible route.  The goal of the 
1-PDPTW is to find a feasible route S such that 
minimize Φ(S).  

3.3  Crossover 

In this paper, we consider four crossover operators.  
The order crossover [34] (OX) and uniform order-based 
crossover [32] (UOX) are two popular traditional 
crossovers to solve routing-related problems.  Merge 
crossover #1 (MX1) and merge crossover #2 (MX2) are 
recently invented by Blanton [40] for solving VRPTW; 
these two merge crossovers utilize global knowledge to 
explore their search space.  The two traditional 
crossover operators have been introduced by many 
exhaustive studies [32,34].  

Most traditional order-based crossover operators do 
not have strong connections to the constraints in the 
problem domain.  In contrast, the merge crossover 
operators utilize global knowledge about 1-PDPTW 
constraints, in the form of a global precedence vector, in 
order to achieve the precedence relationship among the 
genes.  For example, in 1-PDPTW, the order of time 
windows can be represented as a global precedence 
vector for the merge crossovers.  Operators MX1 and 
MX2 will produce new chromosomes according to the 
precedence among the genes.  Operator MX1 produces 
a child with the sequence of order close to the global 
precedence vector; while MX2 produces an offspring in 
which the genes with lower priority are moved to the 
end of the chromosome.  

3.4  Mutation 

A mutation operator works on a single chromosome, 
which will be substituted by the mutated individual.  In 
this approach, instead of using a fixed mutation rate, 
mutation is applied only when the offspring are identical 
to their parents.   

The genetic algorithms in our experiments applied 
two mutation operators in solving the 1-PDPTW.  The 
first mutation operator, named 2-point mutation, selects 
two genes randomly, and their positions are interchanged.  
This operator creates a new route with four different 
edges from its original route.  The second mutation 
operator chooses two cut sites randomly and reverse the 
sub-route among the cut sites.  This mutation operator 
is identical to the 2-opt move in TSP [32], in which the 
new route differs from the original one by two edges.  

4.  FAMILY COMPETITION GA 

The family competition genetic algorithm (FCGA) 

is a modern approach introduced by Yang [44].  
Adapting the concept of families to traditional GA yields 
the principal of FCGA.  Once an individual has been 
selected to perform crossover, traditional GA selects 
another individual to produce a single offspring, 
whereas FCGA produces a family with more than one 
offspring, one from each randomly selected mate.  In 
FCGA, the scheme of family competition maintains a 
constant size of the population, that is, only the 
champion of each family survives.  

Algorithm 1  The procedures of FCGA 
1: t = 0; 
2: Initial population: Pt←{I1

t, I2
t,…, Im

t}; 
3: Evaluation: Φ(I1

t), Φ(I2
t),…, Φ(Im

t) 
4: Repeat 
5: T ← Ø; 
6: for i = 1 to m do 
7: Family father : Fi

t ← Ii
t; 

8: Family: Ci
t ← Ø; 

9: for j = 1 to u do 
10: Selection: alternative parent Aj

t∈Pt; 
11: Recombination: cj ← Om(Oc(Fi

t, Ai
t)); 

12: Evaluation: Φ(cj); 
13: Ci

t ←Ci
t ∪ {cj}; 

14: end for 
15: T ← T ∪ best (Ci

t); 
16: end for 
17: P t + 1⊂{Pt ∪ T}; 
18: t = t + 1; 
19: until reach the termination condition 

20: Output the solutions; 

Algorithm 1 elaborates the procedure of the family 
competition genetic algorithm.  The first three steps are 
the initialization process of FCGA.  For any given 
generation t, the population Pt contains m individuals.  
The evaluation function Φ is as defined in Eq. (1) of 
Section 3.2. 

Steps 4 through 19 present the main procedure of 
FCGA in generation t.  Each individual Ii

t in Pt, where  
i = 1, 2, …, m, takes turn to be the father Fi

t in creating 
a family Ci

t of u offspring.  The family construction 
process is detailed in Steps 9 to 14.  To produce a new 
offspring cj, an alternative parent Aj

t, which should be 
distinct from the family father Fi

t, is randomly selected 
from population Pt.  Crossover operator Oc and 
mutation operator Om are then applied to Fi

t and Aj
t.  In 

Step 15, function best(Ci
t) returns the individual with the 

best, i.e., lowest, fitness value from family Ci
t.  The 

best members of each family are collected in a 
temporary set T.  In Step 17, the best m individuals 
from either Pt or T are selected to form the next 
generation.  Algorithm 1 repeats the main loop until 
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the termination conditions are met.  Upon termination, 
FCGA outputs the best solutions explored so far.  

5.  EXPERIMENTAL DESIGN 
AND RESULTS 

A major problem for research on solving PDPTW 
is the lack of standard test sets.  While standard data 
sets for several related problems do exist, they cannot be 
used to test PDPTW.  The TSP data sets do not include 
precedence, capacity or time window constraints; while 
the VRPTW data sets lack precedence constraints.  In 
order to compare the genetic algorithms for solving 
PDPTW under various combinations of operators and 
parameters, it is necessary to create our own test data 
sets. 

5.1  Experimental Design 
Algorithm 2 describes the procedure for generating 

the random test sets used in our experiments.  The 
main challenge is to create test data that is random 
enough to provide good coverage on the problem space, 
while ensuring the constraints are not too tight to 
exclude all possible solutions. 

Algorithm 2  Create test data for 1-PDPTW 
Require: Given the number of task n, and the width of 

time window width 
Ensure: To produce a task set N with n transportation 

requests, including pickup and delivery 
locations from a set V, loads {q1…qn} and time 
window {[a1,b1] …  [an, bn]}, which admits 
feasible solutions. 

1: 0 is an initial depot; 
2: N = {1, …, n} 
3: for i ∈ N do 
4: Generate the pickup location i+ ∈ V+ randomly; 
5: Generate the delivery location i- ∈ V− randomly;
6: Generate the load qi randomly; 
7: end for 
8: V = {0 ∪ V+ ∪ V−}; 
9: Evaluate the traveling time drs, r, s ∈ V; 

10: Randomly generate a route, which satisfies the 
precedence contraint; 

11: AverageTime = 
| | | |

rsr V s V
d

V V
∈ ∈

×

∑ ∑
 

12: Suppose that the vehicle arrives location i at time ti;
13: for i ∈ V +∪ V − do 
14: ai = ti− random(width) × AverageTime; 
15: bi = ti+ random(width) × AverageTime; 
16: end for 
17: [ai, bi] is the time window of location i ∈ V; 
18: Output the test data; 

Each generated test set consists of n tasks with   
2n + 1 locations.  Steps 1 to 8 in Algorithm 2 initialize 
the essential elements of tasks, including the pickup 
locations, delivery locations and the loads.  Step 9 
calculates the travel time between any locations 
involved in the requests. 

Moreover, this algorithm guarantees the existence 
of solutions.  To assure the production of a test set with 
at least one solution, Algorithms 2 randomly generates a 
primary route that satisfies the intrinsic precedence 
constraints.  The arrival time ti of location i is used to 
generate the corresponding time window [ai,bi] using the 
parameter width in deciding the width of time window.  
Function random(width) in Steps 14 and 15, randomly 
generates a real number between 0 and width.  As a 
result, the difference between ai and bi is no more than  
2 × width × AverageTime. 

5.2  Experimental Results 

In our experiments, the family competition genetic 
algorithm (FCGA) is compared with the traditional 
genetic algorithm (GA) using four crossovers operators 
under three different crossover rates (0.45, 0.60, and 
0.75).  Comparative results are tabulated for the four 
crossover operators, which are referred to as order-based 
crossover (OX), uniform crossover (UOX) [32], merge 
crossover #1 (MX1), and merge crossover #2 (MX2) 
[40].  The experiments also adopt two mutation 
operators: 2-point mutation and the 2-opt mutation.  
For each test case, we perform 30 trials under the same 
configuration of parameters. 

Table 1 shows the best results of running the four 
crossover operators respectively.  The first column 
represents the number of transportation requests.  
Under the common heading “Genetic Operators & 
Approaches,” Columns 2 to 9 list the results of using the 
four crossover operators.  Each cell consists of two 
elements: the top value indicates the best result found by 
the corresponding approach, whereas the value in the 
bottom represents the number of times when the best 
result is found.  The latter is also called the appearance 
count.  Symbol ‘x’ indicates that no feasible solution 
can be found.  Values equal to the best-known result 
are printed in italicized style.  The rightmost columns 
record the best solutions obtained by using GA, FCGA, 
and dynamic programming (DP) [9] respectively. 

The results in Table 1 show that the order-based 
crossover OX is unable to find any feasible solution for 
relatively small problems.  Therefore, it is not suitable 
for 1-PDPTW.  On the other hand, dynamic 
programming produces optimal solutions for problems 
with size smaller than 50; the uniform crossover and two 
merge crossover operators can find optimal solutions in 
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Table 1  A comparison of the best results 

Genetic operators & approaches 
OX UOX MX1 MX2 

The best or 
optimal result 

 
Task 
Size GA FCGA GA FCGA GA FCGA GA FCGA GA FCGA DP 

875 872 872 872 872 872 872 872 872 872 87210 
1 2 18 27 30 30 30 30   
x 2186 2030 2030 2030 2030 2030 2030 2030 2030 203020 
x 1 22 30 1 1 21 11   
x x 3713 3713 3713 3720 3713 3713 3713 3713 371330 
x x 5 20 2 4 24 7   
x x 4386 4386 4389 4389 4386 4386 4386 4386 438640 
x x 3 23 2 10 28 12   
x x 5752 5752 5753 5723 5752 5753 5752 5752 575250 
x x 1 17 30 30 3 24   
x x 5658 5658 5658 5658 5658 5658 5658 5658 x60 
x x 3 5 3 1 29 30   
x x 7221 7221 7252 7239 7221 7221 7221 7221 x70 
x x 2 19 10 1 2 2   
x x 7849 7849 7903 7909 7850 7849 7849 7849 x80 
x x 1 4 1 18 1 1   
x x x 8618 8622 8645 8618 8618 8618 8618 x90 
x x x 5 1 1 1 1   
x x 10600 10600 10616 10600 10600 10600 10600 10600 x100 
x x 1 5 4 3 10 26   

 

most cases.  The results also show that FCGA 
consistently improves the quality of solutions and the 
chance of producing optimal solutions using the uniform 
crossover operator.  When applied with the merge 
crossover operators, FCGA improves the quality of 
solutions for most, while slightly worsens the solutions 
of MX1 for task size 30, 80 and 90, as well as the 
solution of MX2 for 50 tasks. 

Consider the chance of producing the best solutions 
for the various combinations.  Applying UOX in 
FCGA generally increases the appearance count of the 
best results.  In contrast, the appearance count 
decreases for MX1 in FCGA for task size 60 and larger; 
FCGA with MX2 obtains fewer optimal solutions for 
task size of 20, 30 and 40.  

To evaluate the quality of the solutions found by 
the various genetic algorithms, Fig. 1 depicts the best 
and average fitness values of the solutions for 
1-PDPTW involving 80 tasks.  The x-coordinate 
denotes the number of generations, whereas the 
y-coordinate correspond to the fitness values.  
Compared with FCGA, the average fitness values for 
GA are much higher (i.e., worse) in every generation 
and the curve converges more slowly.  In addition, the 
results indicate that the best results obtained by FCGA 
and GA are very close and the lines converge at the 
same point. 

Most of the configurations in our experiments 
generated similar results to the ones shown in Fig. 1.  
There are notable exceptions.  For example, Fig. 2 
shows the best and average fitness values of solutions 
found by MX2 over thirty trials on 50-task PDPTWs.  
The curve denoting the average fitness values for FCGA 
converges prematurely into a higher value.  One 
possible explanation is that the merge crossover 
operators can create near-optimal solutions earlier in the 
evolution process based on some domain knowledge.  
Unfortunately, FCGA has a higher tendency of being 

 

Fig. 1 The best and average fitness values of MX1 
in 80 tasks 
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Fig. 2 The best and average fitness values of MX2 

in 50 tasks 

 
Fig. 3 A comparison of CPU time (UOX, MX1, and 

MX2) 

trapped in a local minimum, and converges to a 
non-optimal solution. 

Figure 3 illustrates the average CPU time required 
by FCGA and GA in solving the problems.  The 
x-coordinate represents the problem size, and the 
y-coordinate denotes the execution time measured in 
seconds.  In general, the execution time for GA is 
shorter than that of FCGA due to the overhead in the 
reproductive process.  Figure 3 also show that UOX 
takes more time than the merge crossover operators in 
finding a solution.  The experimental results in Table 1 
and Fig. 3 demonstrate that UOX works well with 
FCGA in generating the best solutions despite a longer 
execution time. 

In real-world applications, it is often better to start 
serving customer requests based on a feasible (or 
near-optimal) solution instead of keeping them waiting 
while searching for the optimal solution.  Table 2 
summarizes the hit ratio, in terms of percentage, of 
finding a feasible solutions.  The results indicate that 
FCGA improves the probability of obtaining feasible 
solutions in most cases.  Based on the results in Fig. 3 

Table 2  Hit ratios of feasible solution in 180 trials 

feasible/trials (%) 
UOX MX1 MX2 Task

size
GA FCGA GA FCGA GA FCGA

10 100.00 100.00 100.00 100.00 100.00 100.00
20 98.89 100.00 100.00 100.00 100.00 100.00
30 70.00 93.33 100.00 97.78 98.89 98.33
40 45.00 90.00 100.00 100.00 99.44 96.11
50 8.33 46.67 100.00 100.00 99.44 84.44
60 5.00 15.56 98.33 100.00 96.67 87.22
70 7.22 47.22 100.00 100.00 97.22 95.00
80 11.67 11.67 21.67 55.00 61.11 80.56
90 x 8.89 61.11 96.11 71.67 87.22

100 1.11 13.33 7.78 26.67 25.00 63.89
 
 
and Table 2, we can conclude that MX1 and MX2 are 
the better choices for real-time applications. 

Let us summarize the results from our experiments.  
First, FCGA improves the solution quality of UOX, both 
the solution costs and the appearance count.  Second, 
for uniform order-based crossover operator like UOX, 
FCGA can enhance its local search capability, thereby 
increase the opportunity of reaching the optimal solution.  
On the other hand, while FCGA improves the execution 
time of the merge crossover operators, it does not 
increase the solution qualities as it tends to get stuck in 
the local minimum. 

6.  CONCLUSION AND 
DISCUSSION 

This paper presented a comprehensive study on 
genetic algorithm-based approach to solving the single- 
vehicle pickup and delivery problem with time 
constraints. Genetic algorithms have been shown to find 
feasible or near-optimal solutions when traditional 
methods would fail within a reasonable amount of time. 
Instead of utilizing offsprings of parent chromosomes 
directly, the Family Competition Genetic Algorithm 
(FCGA) selects a champion offspring from siblings 
from the same parents to maintain diversity and balance 
of population. By incorporating the concept of families, 
FCGA further improves solution quality and increases 
the probability of finding the optimal solutions without 
much extra resource demands. 

Extensive experiments were conducted to compare 
the FCGA with traditional GA’s under various crossover 
and mutation operators.  The results showed that the 
FCGA succeeds in finding the optimal solutions for 
1-PDPTW under 50 tasks, and can obtain near-optimal 
or feasible solutions in most problems up to 100 tasks. 
Additionally, by comparing the solution cost of FCGA 
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with that of traditional GA, we found that FCGA 
improves the solution qualities in most cases.  

One important observation from the experiments in 
solving the 1-PDPTW is that not all recombination 
operators benefit from FCGA.  In particular, FCGA is 
best suited for genetic operators that explore the search 
space uniformly, such as uniform crossover.  For 
genetic operators designed to do greedy search, FCGA 
may be trapped in local minimum.  Our experiments 
showed that applying family competition in merge 
crossovers did not improve the solutions substantially.  
We expect to continue designing additional recombi- 
nation operators in order to further understand the 
characteristics of the proposed scheme in solving 
PDPTW and other related problems.  
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