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A bs t r act 
The printed areas of a handprinted character with thick 
strokes were replaced by a frame formed by bended el- 
lipses to represent the character efficiently and emulate 
high order receptive fields in a visual system. To afford 
topology preservation during adaptive matching of this 
frame with a template frame, we employ a devised self- 
organization model. This model uses these bended el- 
lipses as training patterns in searching, measuring, and 
updating their corresponding ellipses in the template 
frame. The neighborhood of a corresponding ellipse is 
also weighted by the appearance of the training bended- 
ellipse. With this method, each handprinted character 
can effectively evolve into its template character with 
predetermined training parameters. Each template has 
a different number of training cycles. Within this con- 
trolled number of cycles, the model can flex a hand- 
printed character into a correct template. 

1 Introduction 
The recognition process in the brain could be briefly 
described as follows. Visual neurons which extract 
features are distributed in different layers in a hi- 
erarchical manner. The neurons in lower layers re- 
spond to simple features and those in higher layers 
respond to more complex features. The detected 
features of an image are then classified according 
to certain high cortical functions. A similar pro- 
cess is devised in this work. We develop a kind of 
high-order receptive field to extract various features 
from a pattern. The features are then classified in 

-preserving manner by a self-organizing izz?&. This network emulates the high corti- 
cal function. This method is inspired by biological 
evidence and is able to solve the cursive handprinted 
character recognition problem. 

The classification process is directed by the self- 
organizing network which can preserve the topol- 
ogy of a pattern in a neuron support with reduced 
dimensions. The training parameters in the net- 
work can be predetermined and controlled such that 
patterns which have the same topology can quickly 
evolve toward their object template within a fixed 
number of training cycles. In other words, a tem- 
plate on the support is stable for patterns with the 
same topology. It may not be stable for other pat- 
terns within the given number of training cycles. A 
new feature representation has also been devised for 
characters with thick strokes to aid correct conver- 
gence on this support. We will explore the above 
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idea and describe a pattern recognition process for 
handprinted characters with thick strokes. 

Most handprinted character recognition systems 
extract features. There are insufficiencies in the 
feature extraction methods. These features are 
extracted from the skeleton which is obtained af- 
ter applying a thinning process to the raw pat- 
tern [2, 31. As a result, the skeleton is oversim- 
plified compared to the original pattern. This sim- 
plification often causes distortion and confusion. So 
far, no work has provided a foundation for apply- 
ing such a thinning process. Another reason for not 
using a thinning process is that the human eye per- 
ceives edges rather than skeletons in many percep- 
tual aspects [4]. These facts suggest that we should 
not ignore the information found within the whole 
printed area. 

We propose a higher-order feature representa- 
tion which contains sufficient structure information. 
The new features of a standard pattern can be rep- 
resented by a set of 5-dimensional feature vectors, 
Si = {skll 5 n 5 Ni}, where Ni is the total num- 
ber of feature points for the i th character. sh is 
the 5-dimensional vector for the nth feature point 
in this feature set. Basically, the 5 elements in 
each vector represent geometrically a bended ellipse 
which is maximally fitted into a local printed area of 
a pattern. This bended ellipse is used to  represent 
the receptive field of a visual neuron. Two methods 
have been devised to generate these bended ellipses. 

The widely used classification methods fall into 
the various categories of correlation matching [2]. 
Correlation matching measures the distance be- 
tween a handprinted pattern and every standard 
pattern. The distance is defined on the fitness of 
alignment across the two sets of the feature points 
for the two patterns. Alignment is obtained by 
applying an elastic matching across these two fea- 
ture sets. Many one-dimensional elastic matching 
methods have been devised to  accomplish this align- 
ment [5, 6, 71. Recently, several methods have been 
devised to match two-dimensional images and in- 
clude such as the self-organizing map 81, backprop- 
agation network [9], elastic beads [ lo  \ etc. So far, 
few methods include topological relations in the 
matching. In this work, a devised self-organization 
network is used to perform elastic matching. 

2 Bended-Ellipse Receptive 
Fields 

We will present two methods to generate bended- 
ellipse receptive fields. All the characters used in 
this work must be normalized in advance. This nor- 
malization task is accomplished by shifting and scal- 
ing the characters. Let the features of an unknown 
handprinted pattern be represented by a set of fea- 
ture vectors H = {h,(1 5 m 5 M } ,  where M is the 
total number of feature vectors of the handprinted 
pattern. The feature vector h, can be considered 
as a receptive field filling a local printed area of 
the handprinted pattern. Each field represents the 
structure information of that area. In the following 
two subsections, we will describe the methods. 
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character pattern. p a  is usually obtained by uni- 
formly sampling the skeleton. We define a line sec- 
tion, A i ,  for each seed p i ,  where A i  is almost per- 
pendicular to the local skeleton and passes p i .  This 
line can be built by growing circles from p i  using the 
Voronoi method until the outermost circle reaches 
the outer boundary of the local stroke. Since this 
seed is on the skeleton, the outermost circle reaches 
the outer boundary at two points simultaneously. 
These two points are on opposite sides of p k .  Let 
these two points be q1 and 92. A; is defined as glqa 
as depicted in Fig. l(a).  We define a set of line seg- 
ments BA,, for each p i .  connects seed p i  and 
another pixel k on the skeleton, i.e., = pftk. 
BA,k can not pass the blank(unprinted) area of the 
character pattern, i.e., BA,k c Ui, where Ui is the 
set of all pixels in the printed area. We let the ori- 
entation of BA,, be 8 i , k  and the length of BA,k be 

For each seed pf,  we calculate two different 
average orientations for the two opposite sides of 
A i .  Let the set of all skeleton pixels which satisfy 
Bk,k, C Ui be denoted by KA. Let the orientation 
of Af be denoted by 8:; K$ can be divided into two 
different subsets IC;’ and KA” as follows: 

- 

KA’ = {klO 5 6 h , k  - 6 ;  < T , k  E KA} 

the two arms be tl and t 2 .  Let be the an- 
gle between the two arms pz,fl and 5, where 

0 5 4; 5 7r .  Let @, = *. Let (xCg,yJ) be a unit 
vector which extends from pk and equally divides 
the angle 4;. Let uf = (r;L‘ + rt1”)/2. We define 

sk = [xf ,y; ,uf ,4;~,4: ,y;]  . These element pa- 
rameters are depicted in Fig. l (a) .  Fig. l (b )  and 
(c) show the representation for the character ’a’. 

We will use the ellipses which satisfy 10.8 5 
TA’/“’’ 5 1.2) and {r;’ > r*,r;” > T * } ,  where 
r* is a predetermined small positive constant. This 
means that we discard the deformity ellipses and 
ellipses with small T;’ or ~ a ” .  Including the vari- 
ous deformity ellipses will increase the system com- 
plexity in the recognition process. We may sam- 
ple enough seeds to obtain acceptably representa- 
tive ellipses. Using few large ellipses to reduce the 
number of features is not feasible in our method. 
The seeds are sampled uniformly from the skele- 
ton pixels. The same process is also applied to the 
unknown handprinted pattern to obtain the mth 
feature vector h, = [x, , y,, U,, &zk, 
The elements of h, are defined in a way similar to 
that for the elements of sf, where the subscript n 
is replaced by m. 

.... I - 
- _ .  - 
* T  

-- - - 

- -  

K;“ = { k l e ; , k  -8; < 0 or 7r _< e L , k  2.2 Method 2 
k E Kk},  (1)  A different method can be used to generate the 

bended-ellipse receptive fields. We sample seeds 
where Ki‘ U Ki“ = KR and K i t  r l  KA” = 0. Let p i ,  1 5 n 5 Ni, of the i th standard character pat- 
1 ~ : ‘ )  and 1~:“l be the numbers of pixels in K:’ and tern as in the above subsection. We then select the 

most significant directions (MSDs) for each seed. 
K:“, respectively. w e  obtain the average orienta- An hlSD is defined as the direction in which 
tions of B f , k  for the sets and Kit’, respectively, length of the line extending from the seed in this di- 

rection is a local maximum. The line must not pass as follows: 
- 1 blank(unprinted) area. All the directions in [0,27r) 
8;‘ = 7 8 k , k r k , k  and are candidates of the MSDs. We may subsample all 

the directions within [0,27r) to decrease the compu- 
tation load without loss of accuracy. Typically, the 

( 2 )  direction is subsampled by every angle z ,  which 
results in a total of 72 directions. We then grow 
lines from the seed along these directions. The lines 

Note that the sets KA, Ki’, and KA” may contain stop growing when they reach the outer boundary 
other seeds. por each pi, we extract two values, rk’ of the local stroke. This is &own in Fig. 2. Let 

Lk(1) denote the line segment growing from pk in 
and rk”, which are the average lengths of %,,for direction 1 and terminating at the outer boundary. 
the two sets K;‘ and K$“, respectively. r;l and r;f/ The MSDs are determined by finding the directions 
are obtained by: which satisfy the following rule: 

lKi I kcKh‘ 
1 _. 

e L , k T ; 7 k .  8;” = ___ 
IKi”l kEK6,‘ 

- 
__ 

- 

Direction 1 is MSD il 1 - 
1 n . - 1 , .  . 71 

- y r4,k 

j = - w  

1 ”  The 5 elements of vector s i  are obtained as fol- 
lows. Let xi and y i  be the coordinates of the 
seed p h .  We define two lines(arms) which extend 
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a) (4 Figure 1: dhe  bended ellipses fitted to the stroke. &i A fitted bended ellipse and its parameters. (b) All 
the bended ellipses in the character 'a'. (c) The feature representations for 'a'. 

f o r o =  l , . . . , O  (4) 

where U is a constant which denotes the window 
size for averaging and 0 is the neighborhood range 
from which the maximum is chosen. ILiI denotes 
the length of the line Lk. Usually, we define 0 = 1. 
In Eq. (4), we calculate the average length of Lk( l )  
by averaging over the lengths within the window. 
To find the local maximum, we compare the average 
length around Lk(Z) to the average lengths around 
its 2 x 0 neighboring directions. The direction 1 
is an MSD if the average length around Lk(1) is a 
local maximum. We call Lb(I) an MSD line if I is an 
MSD. In Fig. 2, the two longest lines are the MSD 
lines. We use ZJ = 1 and 0 = 1 in this work. 

Figure 2: The MSD lines. 

After finding the MSDs of p k ,  the 5 elements of 
the feature vector sh are determined as follows. The 
elements z i  and y i  are the coordinates of p k .  Let 
#(A, 0 5 6; 5 ir, be the angle between the two MSD 

lines. We define @A = e. Let (zk,yt) be a unit 
vector which extends from the seed and equally di- 
vides the angle q!&. Let U ;  be the average length 
of the two MSD lines. As in the previous subsec- 
tion, we discard those deformity ellipses and small 
ellipses. After applying the method to all the seeds 
of the i th standard character pattern, we obtain a 
set of feature vectors, Si = (sk11 5 n 5 Ni}. 

- - 
1 . .  

- 

- 

3 The Devised Self- 
Organization Network 

To classify the feature vectors obtained using the 
methods described in the previous section, we have 
devised a self-organizing network to define the cor- 
respondences between pairs of feature vectors across 
the handprinted pattern and a standard pattern. 
We then measure the similarity between these two 
patterns according to such correspondences. The 
standard character pattern which is most similar to 
the unknown handprinted pattern is selected as the 
classification result. 

The idea of the design is to use the self-organizing 
process efficiently such that an unknown hand- 
printed pattern can evolve into the correct tem- 
plate pattern with control over training parameters. 
Those patterns which do not have the same topol- 
ogy will evolve into different templates. Each char- 
acter may use many template patterns to cope with 
topology differences. These template patterns are 
obtained experimentally from a database'. Note 
that whenever a handprinted pattern cannot prop- 
erly evolve into an existing template, we may in- 
clude that pattern as a new template to save time in 
designing various templates. With this selection for 
templates, the number of templates for each stan- 
dard character is no more than 13. 

The neuron support is reduced in the devised net- 
work and is similar in appearance to the template 
character. Usually, a neuron support has the ap- 
pearance as a plane square with neurons on the 
regular grid points. Since the training patterns 
come from a handprinted character, the hierarchi- 
cal topology relations of its features have the same 
structure as the character in a two-dimensional 
plane. The network can deduce the topology or- 
der gradually from the relations that are implicit in 
the training patterns (features). According to [l], 
these features may even be very crude, nonlinear, 

'The database is the NIST Special Database 19. 
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and mutually dependent in high dimensional space. 
In our case, they are in 5-dimensional space. When 
we use a square support, the appearance of the 
matched neurons on the support is similar to that of 
the training character. Figs. 3(a) show these cases. 
We may discard those neurons on the square sup- 
port which are undefined, neglected, or not well 
matched. The remaining neurons can be used to 
configure a new neuron support, which has fewer 
neurons and has the appearance of the training 
character. Fig. 3(b) shows this reduced support. 
We will use this reduced support to replace square 
support in the training process. Those discarded 
neurons will be ignored in the training process. This 
means that the object topological relations are fixed 
in the support. The process will converge for pat- 
terns with similar topology. Each devised support 
is configured only for one specific character tem- 
plate. The training feature vectors will be forced to 
match this devised support. A match can always 
be obtained for training patterns having the same 
topology. Each template can be effectively matched 
using its various handprinted patterns. We expect 
this match to be able to withstand various distor- 
tions which can not be overcome using other meth- 
ods. We will describe the devised process below. 

The neurons in the network are distributed 
among the locations of the seeds of the standard 
template pattern. Each neuron contains 5 synapses 
(weights). This is shown in Fig. 3(b). The 5 
weights constitute a 5-dimensional weight vector. 
The weight vector of the nth neuron is initialized 
with the vector sk. All the neurons constitute the 
neuron support which is the same in appearance as 
the ith standard character. We use wk(t) to de- 
note the weight vector of the nth neuron in the i th 
neuron support a t  iteration time t(or cycle t ) .  We 
set wk(0) = sk. The algorithm consists of two op- 
erations: selecting and updating. For a training 
feature vector h, which is the mth feature vec- 
tor of an unknown handprinted pattern, we select 
a representative neuron in the ith neuron support. 
The similarity between this training vector and the 
weight vector of a neuron is defined,as: 

The representative neuron n is the neuron which is 
closest to the training vector: 

D(hm, wt(t)) = min D(hm, wi(t)) .  (6) 
l_<n<N' 

After selecting the representative neuron, the 
weight vectors of the neighboring neurons of this 
representative neuron are updated using the follow- 
ing amount: 

where Cd is the neighborhood of the representative 
neuron. a(t) is a controlled training constant which 

D(hm,w;(t)) = llhm - w;(t>ll. (5) 

Aw;(t) = a(t)(h, - w:(t)), n E Ch, (7) 

is obtained experimentally for each template char- 
acter. All the training feature vectors are randomly 
presented to the neuron support in a training cycle. 
We update the value of w:(t) once per cycle; i.e., 
the update values obtained in Eq. (7) for all h, are 
accumulated within each cycle and added to  wk(t) 
before the next cycle begins. Note that all the el- 
ements in the vector W;(t) are kept within their 
limits during the training, 0 5 z;, y i ,  U;, @: 5 1. 

The controlled parameter a(t)  decreases linearly 
from 1 to 0 as the number of training cycles in- 
creases. The number of training cycles is exper- 
imentally determined for each character template. 
Any handprinted pattern which has the same topol- 
ogy as does the template can match this template 
within the determined number of cycles. Properly 
setting the maximal number of training cycles will 
guarantee correct convergence of the weight vec- 
tors. See Fig. 4 for an example. A correct con- 
vergence has fewer matching distortions (shown by 
the dashed lines). Usually, the number of cycles is 
within the range 50-100. Our design can restore the 
rotation of a handprinted pattern within (-30,30) 
degrees as shown in the last two patterns in Fig. 4. 

... . .  
: : template . .  
, .. . . 

I 

10 20 30 40 50 

Figure 4: Different handwritten patterns, 'a', 'b', 
'3', and '4', were used as training patterns in the 
network with template support 'a'. The dashed 
lines show the matching distortions. A global rota- 
tion of the dashed vectors can significantly reduce 
the D values for the last two patterns. 

After the training time T ends, we select the tem- 
plate which has the minimum dissimilarity with the 
classification result. The dissimilarity is measured 
as follows: 



maximum matched neurons 
\ template 

/ 
undefined or panial matched neuron 

Tia) (b) Figure 3: (a) 
configuration as in the template pattern. 

euron support with neurons on square grid points. (b) Neuron support with the same 

1 
D(H,Si) = 7 (w'i(0) - w'i(T)(, (8) 

where w'i is a 2-D vector which contains the xi 
and y: components of wf.  Remember that the 
neuron support is initialized by the 5-D features 
of the standard template pattern, so w'",O) repre- 
sents the geometric shape of the ith standard tem- 
plate character. After training, the weights of the 
neuron support contain values of matched training 
features. The distance is just the mean difference 
of the neurons' locations before and after elastic 
stretching. 

l < n < N i  

4 Simulation Results 
In this work, we used a set of bended-ellipse re- 
ceptive fields as features to represent character pat- 
terns. We devised a self-organization network to 
classify patterns according to these features. The 
feature vectors for each standard template charac- 
ter can be prepared and stored in advance. To test 
the performance, we carried out simulations using 
the standard 52 English characters and 10 arabic 
digits as 62 template patterns. Each pattern con- 
tained 20-50 feature vectors. Note in this case each 
standard character has a template. 

The feature set Si of the ith standard pattern was 
extracted from a 128 pixel x 128 pixel image using 
method 2 described in section 2. The handprinted 
pattern was obtained by scanning the formatted 
sheet using an optical scanner. The bended-ellipse 
features were also obtained from the handprinted 
pattern. The scanned handprinted pattern had a 
resolution of 128 pixels x 128 pixels. For each stan- 
dard pattern, we sampled 50 different handprinted 
patterns from the database to test the performance 
of the system. 

The simulations were carried out on a personal 
computer. The execution time, rejection rate, and 
recognition rate are listed in Table 1. There is a 
similar method [8], called the spatial topology dis- 
tance in plane space(STD-2D), which does not em- 

ploy the last 3 elements, u:, @*>;, and I&L, in the 
representation. Following that method, we call our 
method in the table the spatial topology distance in 
5-dimensional space(STD-5D). The execution time 
is longer than that of most character recognition 
systems because we test the template sequentially 
for each handprinted pattern. We observe that the 
elastic matching process takes more than 95% of 
total execution time. 

The accumulated deformation vectors after elas- 
tic matching are shown in Fig. 5. All of the 50 hand- 
printed character 'a' patterns were presented sep- 
arately to the neuron supports of the standard 'a' 
and 'b' character patterns. The deformation vectors 
are drawn with line segments and are overlaid to ob- 
tain the figure. Long line segments denote serious 
deformations and will extend across a large area. 
Based on the density of the overlaid deformation 
vectors, we can evaluate the correctness of match- 
ing. A high density area indicates a large number 
of overlaid lines. Fig. 5(a) shows the results when 
the 50 handprinted 'a' patterns were presented to 
the neuron support of standard pattern 'a'. In (b), 
the 50 handprinted characters 'a' were presented to 
the neuron support of standard pattern 'b'. It is 
obvious that the area of high density in (b) is much 
larger than that in (a). This suggests that (b) con- 
tains many long line segments, resulting from very 
bad matching due to incorrect topology. On the 
other hand, the high density area in Fig. 5(a) is lo- 
calized along the contour of neuron support 'a'. In 
this case, the standard character pattern 'a' tends 
to be the best classification choice. 

The correctness of this classification can be fur- 
ther verified by investigating the probability dis- 
tribution of distances measured using Eq. 8 after 
many matchings. The distribution of the measured 
distances is shown in Fig. 6. For each standard char- 
acter pattern, we show the distance distribution for 
both correct and incorrect handprinted patterns. 
Here, a 'correct matching' was obtained by per- 
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Accurate Recognition 
Rate 

Rejection Rate Execution Time 

Table 1: The performance. 

STD-5D 
STD-2D 

(b) Figure Sahhe accumulated deformation vectors. 

forming elastic matching between the handprinted 
and standard patterns of the same class; e.g., hand- 
printed pattern and standard patterns were both 
’A’. On the other hand, ’incorrect matching’ was 
done between patterns of different classes, e.g., ’A’ 
and ’B’. The left column of the line segments for 
each standard pattern depicts the distance distri- 
bution of the correct matchings. The right column 
depicts the distribution of incorrect matchings. The 
length of each horizontal line segment displays the 
probability of the distance. We observe that there 
is a gap in between the maximum of the correct 
matchings and the minimum of the incorrect match- 
ings. The credit threshold is in the middle of this 
gap. The 50 handprinted patterns could always be 
classified. The simulations provide sound support 
for developing of the representations and the net- 
work. 

V(H,S’) 

I 

, I 

92.3 1 1.2 sec 
90.3 2 1.0 sec 

I . . .  . .  

Figure 6: The distance distributions. 
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