The Handling of Don't Care Attributes

Hahn-Ming Lee and Ching-Chi Hsu*

Department of Computer Science and Information Engineering
National Taiwan University, Taipei, Taiwan
Tel: 886-2-3917406, Fax: 886-2-3628167
E-mail: cchsu%twntuccl.bitnet@cunyvm.cuny.edu

ABSTRACT

A critical factor that affects the performance of neural network training algorithms and
generalization of trained networks is the training instances. The troublesome problem occurs in
specifying training instances in which some attributes are irrelevant to the decision. These
irrelevant attributes are always set to zero indicating don't care. Although it is possible to train a
neural network model to recognize the training instances specified in this way, the final network
might be inconsistent with original information implied by these generalized instances with don't
care attributes. The primary concern of this study is to handle the don't care attributes in training

instances. Several approaches are discussed and their experimental results are also demonstrated.

* Please send all correspondences to this author.

CH 3065-0/91/0000-1085 $1.00 © IEEE

— e

1. Introduction

In the past few years, neural networks have gain great attention. Researchers think it is
helpful to solve machine intelligent problems and computationally intensive problems through the
collective behavior of a large number of simple processing units. The training algorithm has been
assumed to be an important feature to achieve the properties of intelligent information processing.
A critical factor that affects the performance of training algorithms and generalization of trained
networks is the training set [8]. Therefore, how to specify training instances is important for many
applications. The troublesome problem occurs in specifying training instances in which some
attributes are irrelevant to the decision. These irrelevant attributes are always set to zero indicating
don't care [1,2]. Although it is possible to train a neural network to recognize the training
instances specified in this way, the final network might not realize the information implied by don't
care attributes.

For clarity, we use.an example describe in [1] to illustrate the problem. That is, a node with
a weight vector W and a threshold T is used to recognize two instances (1,1,D) and (-1,1,1),
where D indicates don't care. If W * I - T > 0, then the input instance I is the desired instance. In
this way, the possible weight vector W and threshold T can be W=(0,1,1) and T=0 if D is encoded
as 0. Although this node with W=(0,1,1) and T=0 can recognize instances (1,1,0) and (-1,1,1),1it
cannot recognize (1,1,-1). Therefore, other approaches to handle don't care attributes must be
discussed.

2. The Sample Problem and the Training Algorithm

The sample problem, Knowledge Base Evaluator 1 (KBE1), was used as an example to
detail each approach that handles don't care attributes. The KBE1 is an expert system to evaluate
expert system applications. It is a modification of the Knowledge Base Evaluator [3]. The output
of KBEI is Suitability, which can take the value: POOR (0) or GOOD (1), indicating that the
application of the expert system on a domain is poor or good, respectively. The value of
Suitability is determined by the attributes: worth, employee acceptance, solution available, easier
solution, teachability, and risk. The possible attributes values and corresponding encoded values
used are shown below: (The attributes values can be arbitrarily coded into numerical values)

worth: {HIGH, MODERATE, LOW, NEGATIVE} encoded as {2, 1, -1, -2},
employee acceptance: {POSITIVE, NEUTRAL, NEGATIVE]} encoded as {2, 1, -1},
solution available: { ADEQUATE, PARTIAL, NONE} encoded as {2, 1, -1},

easier solution: { COMPLETE, PARTIAL, NONE} encoded as {2, 1, -1},
teachability: {FREQUENT, POSSIBLE, DIFFICULT]} encoded as {2, 1, -1},

risk: {HIGH, MODERATE, LOW} encoded as {2, 1, -1}.

1086

There are eighteen instances for Suitability [3] shown in Table 1. In the second and the third
instances, the don't care attributes can be any values. These generalized instances must be
transformed well so that the translated training instances are consistent with original ones. Since
both of the generalized instances in Table 1 are negative instances, some other instances sets must
be generated in order to investigate the behavior of each approach that handles don't care attributes.
Thus, instances set in Table 1 is termed IS1, and two other instances sets, termed IS7 and IS3, are
generated. IS is generated from IS by (1) removing the two negative generalized instances; 2)
adding in two positive generalized instances; and (3) deleting conflict instances and redundant
ones. It is shown in Table 2. On the other hand, IS3 is set up by adding to IS7 the two negative
generalized instances in IS1. In other words, IS] only consists of negative generalized instances,
IS, is generated to own positive generalized instances only, and IS3 is set up to have both of the
negative generalized instances and the positive ones.

In order to test whether the trained network based on the transformed instances is consistent
with original instances or not, test instances sets, termed T-SET, T-SET?, and T-SET3, are
formed by generating all the possible values for each don't care attribute. For instance, the second
instance in IS1 is translated into 35 training instances, and the third instance in IS is transformed
into 34 training instances. Therefore, T-SET] contains 340 training instances translated from the
original 18 instances in IS1. Then each instance in T-SET] is tested on the trained network and the
number of misclassified instances, termed test-set error, is counted. Similarly, T-SET7 and
T-SET3 are generated and tested in the same way. As a result, T-SET contains 332 instances,
and T-SET3 consists of 656 instances.

Before proceeding into the methods that handle don't care attributes, we would like to
describe the training algorithm used to characterize the behaviors of the transformed instances. The
back-propagation algorithm [7], termed bp, based on a two-layer perceptron [5] was used to
recognize transformed instances. The network contains one output node, and the number of
hidden nodes was set as attributes number d * 2. Since there are some parameters that will affect
the performance of bp, we tried the better one that has previously been used [6]. The learning rate
is set to be 0.5 in an attempt to make it converge more quickly. Training terminates when the
network correctly classifies all the transformed training instances, and the entire simulation is
implemented on SUN-3/60.

3. Approaches to Handle Don't Care Attributes

In this section we describe several approaches to handle don't care attributes, and then
discuss their problems.

1087

Table 1. The instances set IS for KBE1

instance attributes
i i Suitability
employee solution casier . .
number | Worth acceptance available solution teachability risk
1 2 2 -1

L
——ND s
NN

e it I\ DN PN i D bt D\ s |

T S T S T e S e e . 9
L}

bdb—iNo—NHHPI—NHNm’-‘N
n—-o—-Nn—-v-M-lN.-‘WN-‘;-u—
)

COINA PRI I O\OCO NN LRI
[

OO O= O = O O~ OO0

Pt et ppd ot ok
b—ib—n—db—\do—l(\)(\)'—ﬂ—“—‘t\)—‘r—‘(\)

1]
s I M= b T

* D: don't care

Table 2. The instances set IS for KBE1

instance attributes Suitil
: ; @l
sumber | worin mplovee soluion casier cacnapiy_risk| ST
1 T T 2 2 -1 2 0
A 3 3 4 5 ¢
4 -1 2 -1 2 -1 1 0
g | ! 1 1 KO }
7 1 2 2 -1 -1 2 0
8 1] D | B3 i
10 1 D D D D -1 1

* D: don't care
Approach 1: Replace don't care attributes with a fixed value

The first transformation method is to encode a new value for don't care attributes. For
example, we encode don't care as 0. This approach was used in many applications [1,2]. In this
way, each generalized instance is transformed into one training instance. The bp algorithm is then
used to train the transformed instances. Next, the test sets T-SETj, T-SET7, and T-SET3 are
recognized by their corresponding trained networks. For example, IS is transformed using this
approach and trained by bp, then T-SET] is recognized by the trained network and the number of
misclassified instances is 3. Similarly, IS and 1S3 are both processed in the same way, and the
numbers of test-set error are 84 and 88, respectively. The result is shown in Figure 1. A
conclusion derived from this result is that although the trained networks can recognize the
translated instances well, they are inconsistent with the information implied by don't care
attributes. For instance, if the input instance (worth=NEGATIVE, employee
acceptance=POSITIVE, solution available=NONE, easier solution=NONE, teachability=
FREQUENT, risk=LOW) is recognized by the trained network based on the translated instances of
IS1, the response value for Suitability is GOOD. This violates the second instance in IS since the
attribute, i.e. worth=NEGATIVE, is dominated by other attributes.

1088

300
test-set error i T-SETl
(in number) —t T-SET2
casnnsnsiZipanasans T-SET3
200 -
100 A
0
o v e 1
0 4 5

Approaches to handle don't care attributes
Figure 1. The test-set errors of various approaches that handle don't care attributes

In our experiments, it was found that this approach is not suitable, especially when positive
generalized instances are encoded. It seems important to specify typical positive instances
completely when bp is used. The above remark leads us to derive the following summary. That
is, although this approach was used in many applications, the information implied by don't care

attributes cannot be realized well.

Approach 2: Replace don't care attributes with their maximum or minimum

encoded values

Before proceeding further, we first define several variables. MAX; indicates the maximum
encoded value of ith attribute, MIN; means the minimum encoded value of ith attribute, DECIDE
denotes the output of the system, and Fj is the value of ith attribute. Another proposed translation
method is to replace don't care attribute Fj with MAX; or MIN; depending on the relationship
between Fj and DECIDE. If Fj excites DECIDE, then the don't care attribute Fj is replaced with
MIN;j; otherwise Fj is set to be MAX;. The strategy used here is to encode these don't care
attributes in "worst" situation, i.e. try to let specified attributes dominate don't care attributes in
generalized instances. This idea comes from the failure of Approach 1. In this way, the attributes
of the second instance in 1S are transformed into (-2,2,-1,-1,2,-1) and those of the third instance
in IS are translated into (-1,2,-1,-1,2,2). Other instances in IS are unchanged. These
transformed instances are then trained and test set T-SET is recognized by the trained network.
The number of this test-set error is 2. Similarly, IS7 and 1S3 are processed in the same way, and
the numbers of corresponding test-set error are 125 and 239. The experimental result is also
shown in Figure 1. By this, we have to admit that this approach still cannot work well, especially
when positive generalized instances are encoded. Besides, the conclusion we can give from the
result is that bp does not directly make use of the relationship between attributes and DECIDE.

1089

Approach 3: Replace don't care attributes with their maximum and minimum
encoded values

Since instances transformed via the methods stated above are inconsistent with original
information implied by don't care attributes, another approach was tried. Another strategy used is
to replace don't care attribute F; with MAX; and MIN;. Unlike one-to-one mapping as Approaches
1 and 2 stated above, this approach transforms one generalized instance into 2k training instances,
where k is the number of don't care attributes in this generalized instance. Using this approach,
the original 18 instances in IS} are transformed into 64 training instances. Similarly, IS is
translated into 56 instances, and IS3 is transformed into 104 instances. Also, the experimental
result is shown in Figure 1. This result shows that bp can train, using this approach to handle
don't care attributes, a neural network which is consistent with original instances.

Approach 4: Replace don't care attributes with all their possible encoded values

It is without saying that the trained network is consistent with original instances when the
generalized instances are transformed using this approach. That is, the trained network will learn
to ignore these don't care attributes and the transformed instances sets are T-SETj , T-SET?7, and
T-SET3. This, however, expands the training set. If there are many possible values for a
particular attribute, the training set expands even more.

Based on the discussion thus far, a conclusion can be drawn,; that is, although replacing don't
care attributes with their maximum and minimum values will expand instances sets, it is a feasible
way to deal with don't care attributes. It can reduce a lot of transformed instances and training time
» as compared with Approach 4, especially when there are many possible values for a particular
attribute. The result is shown in Figure 2.

4. Discussion and Conclusion

The handling of don't care attributes is of primary concern in this paper. Although
transforming don't care attributes into a fixed value was used in many cases and the trained
network can recognize all of the transformed instances, it must be admitted that this trained
network might be inconsistent with original information implied by don't care attributes.
Replacing don't care attribute Fj with MAX; and MIN; seems to be a feasible solution when bpis
used to distinguish these transformed instances. It has been demonstrated that this approach can
work well when bp is used to train networks. However, not every algorithm can train, using
Approach 3 to handle don't care attributes, a network which is consistent with original instances.
For example, if the algorithm bu [4], described later, is used to train networks using the instances
transformed by Approach 3, the numbers of test-set error for T-SETj, T-SET», and T-SET3 are 2,
1, and 1, respectively. Of course, if Approach 4 is used, any training algorithms can be utilized to

distinguish the transformed instances well. The instances set, however, expands even more.

Fortunately, bu can work well even for a large training set. It is a neural network training
algorithm, in which the network topology does not have to be specified before training, to handle
the classification problem with multi-valued inputs and binary output. The network topology is
automatically generated in a finite number of time by incremental or non-incremental training with
instances which define any arbitrarily complex decision regions. The operation of this algorithm
can be written down as follows. The training process first selects one positive instance associated
with all negative instances to form a convex region which covers this positive instance and none of
the negative instances. Then another positive instance, which is not covered by the generated
convex regions, is chosen to construct another convex region in the same way. The above process
is repeated until all of the positive instances are covered by the generated convex regions.
Consequently, the union of these constructed convex regions can be used to represent the training
instances set.

Since bu can separate training instances into several modules and then train them
individually, it is a good way to recognize the expanded training set. Even though the don't care
attributes are replaced with all their possible values, bu can soon train a network to recognize all
the transformed instances. The encouraging result is demonstrated in Figure 2.

1000000 -

100000 -

training time 10000
(in 1/60 seconds) 9
1000 -

bu, Approach 3
bu, Approach 4
bp, Approach 3
bp, Approach 4

NEEN

100

10

IS, IS

instances sets
Figure 2. The training time of bu and bp when Approaches 3 and 4 are used to handle don't care
attributes in instances sets IS1, ISp, and 1S3.

References

(1] H.Drucker," Implementation of Minimum Error Expert System,” JJCNN-90-San Diego, vol. 3, 1990, pp 137-142.

[2] S..Gallant," Connectionist Expert Systems," Comm. of the ACM, vol. 31, no. 2, pp 152-169, Feb. 1988.

[31 R.Keller, Expert System - Development & Approach, Prentice-Hall, Inc., 1987.

[4] H.M.Lee and C.C.Hsu," Training of a Neural Network with Topology Generation for the Classification Problem,"
Proceedings of International Neural Network Conference, THOMSON-CSF/INNS/IEEE, Paris, July 1990.

[5]1 R.P.Lippmann,” An Introduction to Computing with Neural Nets," /EEE ASSP magazine, pp 4-22, April 1987.

[6] R.Mooney, J.Shavlik, G.Towell, and A.Gove," An Empirical Comparison of Symbolic and Connectionist
Leamning Algorithms,” IJCAI 89, 1989, pp 775-780.

[7] D.E.Rumelhart, G.E.Hinton, and R.J.Williams," Learning Internal Representations by Error Propagation,” in
FParallel Distributed Processing: Explorations in the Microstructure of Cognition. Vol 1: Foundations, edited by
D.E.Rumelhart and J.L.McClelland, The MIT Press, Cambridge, MA., 1986.

[8] M.Wann, T.Hediger, and N.N.Greenbaun," The Influence of Training Sets on Generalization in Feed-Forward
Neural Networks," IJCNN-90-San Diego, 1990, vol. 3, pp 137-142.

1091

