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Abstract 

The quasi-constrained dynamics is composed of 
motions not only onto the constraint space but also onto the 
unconstraint or the “freedom” space, which may occur when 
the system escapes or slips away from its constraint manifold 
during high-speed motion. Traditionally, slippage 
phenomenon, which has been an issue in the automobile 
industry, is usually ignored because of its high frequency and 
strong nonlinear features. Conventional Frobenius theorem is 
focused on the holonomic dynamics, which are integrable on 
the freedom space. On the other hand, a complementary 
Frobenius theorem (CFT) is proposed to release conventional 
constraints from “hard” to “soft’ models. In this paper, we 
derive a geometric formulation instead of its algebraic 
counterpart for acatastatically nonholonomic systems in the 
viewpoint of topology. Besides, we propose a mixed fuzzy 
controller (MFC) for the nonholonomic system with escaping 
motions, which includes a traditional controller for the hard 
subsystem and a non-tradtional controller with fuzzy rules for 
another soft subsystem on the constraint manifold. The closed- 
loop stability of‘the nonholonomic system with an MFC 
scheme will be proved under admissible condtions. Finally, th 
proposed algorithm is applied to a wheeled vehicle with an 
anti-lock braking system (ABS) under the assumption of 
Coulomb’s viscous friction. Computer simulation is used to 
jus* the results. 

Keywords: Topology, Manifold, Creep, Nonholonomy and 
ABS. 

I. Introduction 

Nonholonomic systems most commonly arise from 
mechanical systems where some of the constraints are not 
integrable. Physical models of versatile nonholonomic 
constraints have been significant topics because few of them 
can be classified under the existing theories in literature. Since 
1890’s, Ferrers, Korteweg, Bloch, MaCclamroch et al. 
[1,2,7,10,11,12,18] have devoted to the formulation of 
nonholonomic systems by means of Lagrange equation and 
Gaussian theorem in terms of algebraic viewpoint. They 

constructed equations of motion by reducing degrees of 
freedom from constraints and simulated the dynamics by 
prescribing addhonal given constraints. Traditionally, such an 
algebraic approach may successfully analyze nonholonomic 
systems for discrete points in state space. However, the 
coordinate transformation is so time-consuming that the real- 
time computation is hard to be realized if high-speed driving 
input is desired. The infinitesimal displacements of 
constrained systems on the tangent space of the geometric 
manifold are allowed to move under the satisfaction of 
modified Frobenius theorem (MFT) [5,8,9]. Those hard 
constraints are soften in the real world, such as compliance or 
deformations from the viscous friction on ABS (anti-braking 
system) and TCS (traclung control system). Some literatures 
handled the system with ABS in terms of sensor-based models 
[16,17]. The violation of flexible displacement on the 
constraint is in the pseudo sense, which includes the normal 
space and the tangent space of the manifold. In 1996, Huang 
and Wang [4,5,8] proposed the scheme of complementary 
distribution. Under the assumption of MFT, the nonsingular 
neighborhood instead of discrete points is formulated as the 
driving flow of constraint submamfolds. 
This paper is organized as follows. In the next section, we will 
discuss the integrability of the Pfaffian forms on the geometric 
space. Besides, the admissible conditions of the reachability 
and the escaping dynamics on the annihilated space for 
dissipative mechanical systems with Pfaffian-one form 
constraints will be illustrated by different Frobenius theorems. 
In section three, Nonholonomically constrained systems will 
be decoupled into the constraint space and the unconstraint 
space. Meanwhile, the Lagrange equation with nonholonomic 
constraints will also be mapped from “normal form” to the 
annihilated space or the normal space of the constraint 
manifold. In section four, the well-known A B S  is introduced 
by incorporating with Coulomb friction. In section five, we 
propose a mixed fuzzy controller (MFC), which includes a 
fuzzy controller for the escaping motion and a linearized 
controller for the “hard’ constraint motion. In section six, the 
computer simulation of the creeping motion and linearized 
tracking will be illustrated. Finally, conclusion is followed. 

II. Nonholonomic Dynamics on the Geometric Space 
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Consider the L a g a g e  equation with nonholonomic 
constraints using two control inputs f ( ~ , ~ , ~ )  = [B(q)z ~ ( Q , ~ , ~ ) ] ~ .  

The system dynamics are given as 

where M(q)ER=n is the inertia matrix; c ( 4 , q ) E  R""" is the 
nonlinear damping terms; 4, is the component of an m- 
Qmensional constraint matrix or the normal matrix in q(r )  E R" 

space; A ( t )  E R m  is the Lagrange multiplier or the constraint 
force. The term A ( ~ , ~ , ~ )  is the control input of the soft part of 
the system, which comes from the contact force of four 
pneumatic tires. While z(t) E RP is the control input form the 
hard part of the system and B ( q )  E R ~ X P  is the hard gain matrix. 
The m < n nonholonomically independent constraints in 
Pfaffian-one form q(q), I =I,. is described as 

(2) 
m, (s) = Z N v  W q ,  + No, (4) 

J - 1  

where N,, E R" means "creep" or acatastatic terms [ 10,11,12]. 
Define 

dh,(q)=a,(q)=L,h,(q)=Vb,(q).g(q) (3) 
= N ,  (M3, = N,l (q)dq, + '.. + N," (44, = 0 

J - 1  

Equation (1) is called holonomic or integrable if it can be 
reduced by differentiation of function h , ( q ) ,  and 
h,(q) = c, = const 1s called exact. Otherwise, equation (1) is 
called nonholonomic or nonintegrable. Let = im1. be 
in the normal space of the constraint mamfold M =M,,  where 
M , € R ~  is an n-Qmensional geometric space. There exists a 
dlstribution (q) E and A ~ - ~ ( ~ )  = QL(~) .  The vector 
v(q)E9,(q), r=m+l ,  .,)l in the tangent space of the constraint 
manifold is defined in the direction of a vector function 

(4) 

where T J ( q ) E R ( n - m ) m  is the tangent component of the constraint 

manifold. Using the Kronecker symbol s,, = 0, # k , we 
have 

g, (9)  E An.- (4)  as 

Y ( 9 )  = f: T,(q)Ol@, 
,-I 

(5 )  
m , ( p ) . V , ( q ) = ~ : N v ( p ) ~ , ( q ) = 6 , ,  = o  

I - 1  

The so-called "hard" constraints can be softened when the 
equality in Eq.(5) no longer holds. 

Theorem I :  Modified Frobenius Theorem Wfl)  [4,5] 

m-dimensional topological space, where R ~ Q )  = k < m s . 
There exists the involutive closure with the Lie bracket 
[g,,g,]  in A,(q)  and g , ( q ) E R m  in the topological space 

Given a di&htion A1(q) = span[g,(q),...,g,_,(q)] in an 

A E R " ~ .  Then, A = A ~ ~ A ~ = ~ ~ ~ ~ [ ~ , , . . . , ~ , ~  is nonsingular and 

0 
involutive if, and if [g,,g, J = (Vg,)g, -(Vg,)g, E A .  

MFT gives the sufficient and necessary conditions to 
the nonholonomic system such that the diffeomorphsm of 
different submanifolds may hold on the tangent space. 
Theorem 2: Complementary Frobenius theorem ( C m )  [4,5,8] 

Suppose that E~ c ,  = + 1 ,.._, represents an m- 
dimensional complementary vector of m,(q ) ,  i = ,,,_, m ,  where 
M c c M , ,  and xm(q) is the complementary distribution of the 
syetem. The terms g;(q),g;(g)E K ~ ( ~ )  are the complementary 

exists if, and only if the complementary distribution pm ( q )  is 
in the involutive closure. 

vectros of g,(q), g,(q). Then, the Lie bracket [g:(q) ,g;(q)]€Km(q)  

0 
The Merence between the constraint mamfold 

A4 ER"' and the complementary manifold M C  is the natural 
field and artificial field of the environment. 

IIL Acatastatic or "Creep" Nonholonomic Problems 

Neglecting the higher order infinitesimal terms of the 
Pfaffian one-form equation, the acatastatically nonholonomic 
constraints with escaping motion can be described as 

(6) 

where " 6 " is the notation of the exterior derivative. 

2 sNf , (q ldq ,  ~ 

is called the virtual constraint for the 

escaping motion. Assume that N(q)t[I, , q q ) l E ~ m x n  and 
g(t) E rqC and the full rank matrix T , ( f ) E R n x ( n - m )  is defined 
as the normal form mapping, the original system is 
decomposed into the constrained subsystem q c ( t )  E ~ m  and the 
unconstrained subsystem g(r) E p - m  as 

m ; ( q ' ) = C N ; ( q ) d & ,  + J N ; ( q ) d s ,  = o  
1-1  

J = l  

(7) 
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T:(r)CI. i (4)T,( I ) [ -q(fo+~+T,(t)B(t)+i;(f)~(t) l  86 86 (11) 
+7 

+ c ( Q q ) - " W )  =r ( t ) [B(&O)  f,(q>qAl' 

Let Q r )  = WarM ( q ) T , l - ' B ( q )  and A r ) = [ ~ ~ ( q ~ T ' ~ ( q , q , t ) - C ( ~ ~ t ) l  be 
control inputs. Then, we have 

?(t)  = F(q",q",r) +G(q",q")q"(r) (12) 
B"(t) E q r )  

where ?=(!) E Zm , ~(q',q",t)~[~O(q.t~)ooool~ and 
G ( q c ,  q u  ~ ,Nq, )00001~ . While Q ( ~ )  E RP is the inertial force in the 
unconstrained space. The constraint forces can also be 
described as the Lagrange multipliers / Z ( t ) E R m r  which can be 
found by substituting the generalized forces into the system 

at) = [N(q)N7(q)l-lN(q){M(q)il(t) + C ( B 9 )  

- rB(9)m L (4, q, ')I' > 
(13) 

By defining a nonsingular matrix T2( t )  E R ~ J J J ~ * ~ ,  the normal 
form is transformed into a quasi-linear equation, i.e., SSEL 
equation 

Substituting the Lagrange equation into the normal form 
mapping, the generalized coordinates are similarly 
transformed into SSEL space. Note that the variable z(t) is 
decoupled into the "hard" subset and the "soft" subset as 

(15) 

where A, is the state matrix and B, is the control gain of 
the 2m-dimensional hard-constrained subsystem z H ( q  E ~ h .  

While Z , ( t ) E  R 2 m - h  is the escaping coordinate with soft 
constrained subsystem. Then, the internal dynamics *q,q-,t) is 
formulated as. 

(16) 
The reachability and the stability of the controller can not be 
assured if the inverse mapping ~ , - l ( t )  does not exist. The 
nonlinearity of the internal dynamics will be assumed to be 
"zero dynamics", i.e., L;h(qC)+L L"-~h(q~)7(t)=0. Namely, it can 
be settled down in the steady state. 

z ( t )  = T Z ( W 0 )  (14) 

z x  ( t )  = A x z x ( t ) +  B , v ( q ' , q ' , t )  

z s ( t )  = L , ( z , z , t ) +  L 2 ( t ) R ( Z , Z , t )  
z ( t )  = { 

v ( q c , q c . t )  = L ; h ( q ' ) +  LIY;'h(q')+ B , r ( q ' , q ' . f )  

8 1  

fi <qe.4,t) =L;h(4)+44'h(4)+B,.)= BHz(t) (17) 

In the next section, an ABS algorithm is introduced 
under the assumption of "soft" constraints, which allows 
escaping motion from the Coulomb's viscous friction. 

The tires are the only part of a vehicle in contact with 
the road. When a car is in the process of braking or 
accelerating, longitudinal forces occur between the tire and the 
road. During a cornering maneuver, those forces are lateral 
counterparts. Both the longitudinal and the lateral forces lead 
to tire deformation and escaping motions over its entire 
circumstance [16,17], which is illustrated in Fig.1. Suppose 
that the Coulomb's viscous braking forces in the lateral and 
the transverse directions are 

X ( t )  = 4,~".4(t) = - ~ R [ V I ( ~ ) -  r'32(f)1 (18) 
where I;(Q and b, represent the friction force and the 
friction coefficient in the radial directions, respectively. The 
term vA( t ) ,  ,,,(t) are the ground velocity and the axle velocity 
of the wheel, respectively. Similarly, the term r and wZ( t )  are 
radius and the angular speed of the wheel, respectively. 
Meanwhile, 

(19) 

where f 2 ( t )  and b, are the friction force and the friction 
coefficient in the transverse direction, respectively. On the 
other hand, ABS control inputs ~ f ( ~ , ~ , ! )  of the controller 
given by the numerical results of the pedal command from the 
car driver are in form of Fourier's series. The model of ABS 
commanded by ways of Fourier series is an approximate but 
effective method in comparison to the sensor-based model. It 
is illustrated as 

f2 0) = -4% 0) 

(20) 
E(4.q.t)- f , ( n T . ) =  2 a " C O S ( w " T " ) + b " s m ( o . T )  

".I 

where a , ,  b, are maptudes or coefficients of the Fourier 
series, is the ABS braking frequency and Tn is the real- 
time braking period of the ABS, as given in Fig. 1. 

The Nonlinear term of the escaping dynamics is 
reformulated by incorporating of the parameters of versatile 
creeping coefficient a,, pR and y R .  In order to simpllfy 
formulations derived above, we rearrange creep equations of 
motion in forms of dimensionless algorithm by appending a 
subscript notation ",,". Namely, 

(21) 
where z , o ( t )  is the dmensional state of the ,-fh degree of 
freedom in the longitudinal or the lateral direction on wheels. 
On the other hand the rotational creeping dynamics 0 , ~ ~ )  is 
described as the dimensional form by imposing on coefficients 

z;, + (1 - y , ) z i0  + z,, = w,,z; ,  + Y R W D 0  

a,' PR and Y R  as 
(') + ( P R  + Y,)% (t) + '20 ('1 = YRz:O ( t )  (22) 

where a,, pR are tire-escaping coefficients on the ground 
and YR is the proportional coefficient of the tire escaping 
motion. Assume that both the speed vao and vio at the 
contact point are specified as 
a) vA0 =O and =o, or 
b) constant value vAo = const and vIo = const, Or 

c) proportional to or 
d) 

Fig. 1. 

fiictions. 

Modeling of the ABS. (a) modeling of the 
pneumatic tire. (b) modeling of Coulomb's viscous 

IV. Anti-braking Systems with Coulomb's Friction v A o  = const and v,,, =const plus linear ol0 terms. 
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The related parameters for the optimal procedure can be 
obtained by a series of multistage decision-making criterion. 

The Algorithm of the Mixed Fuzzy Controller (MFC) 

MFC is basically a composite nonholonomic 
controller, which is composed of a state space exact 
linearization (SSEL) controller and a non-traditional fuzzy 
controller. The former is designed along an admissible 
trajectory on the “hard” constraint. The latter is designed to 
regulate the Coulomb friction force as “soft” constraints from 
the tires of versatile vehicle. The decisions of the fuzzy logic 
are based on inputs in the form of linguistic variables derived 
from membership functions. To perform the computational 
rules of various inferences, the response of each rule is 
weighted according to the confidence or degree of 
membership of its inputs. The algorithm consists of 
knowledge base, inference engine, data base, fuzzification and 
defuzzification. 

A) The knowledge base of the “soft” controller 
A set of the database and a set of the rule base 

constitute the knowledge base of the “soft” controller. The 
database of the knowledge base consists of three subsets, 
which are small (S), medium (M) and large (L). According to 
the empirical data from the Ford motor company and the 
international journal of automobile 116,171, the membership 
function can be classified as different levels, as shown in Fig.2 

Level 
Level 
Level 
Level 
Level 
Level 
Level 
Level 

#1: 
#2: 
#3 : 
#4 : 
#5 : 
#6 : 
#7 : 
#8 

Detect forces 
-50N < Detect forces 
-40N < Detect forces 
-30N < Detectforces 

ON < Detect forces 
30N < Detect forces 
40N < Detectforces 

Detect forces 

< 
< 
< 
< 
< 
< 
< 
< 

-50N 
-40N 
-3 ON 
ON 

30N 
40N 
50N 
50N 

f R ( 4  
NL NM NS F PS PM p~ 

P 
-SON 40N -3ON 0 30N 40N JON 

Ddnd lXie(ion f o m r  

Fig. 2 Membership function of the friction force 

B) Inference Engine 
The inference engine of the “soft” controller is a 

forward datadriven inference. Suppose that there exists a 
multi-input and multi-output W O )  system with the 
following linguistic formulas 

where the i-th fuzzy logic rule is 
R=(RLLuo, RL40, R L O )  (23) 

The general rule can be decomposed into a series of multi- 
input and single input (MISO) rules. For instance, 

“IF the trajectory is no bias and the anti-lock braking system is 
forward slip, then brake ABS button starts.’’ 

C) State Space Exact Linearization for the “hard” controller 

constraint space 

Whlle the control law k ( t )  is defined as 

where ”*” represents the convolution of two analytical 
functions. In designing the SSEL controller, we propose a 
well-known proportional-integral-derivative (PID) algorithm 
to tune different kinds of dominant poles and zeros [14]. 
Defining e,(t)=yi(t)-y,(t) as the error or the difference of 
the hard-constraint space between desired outputs and the 
system outputs 

where k,, k ,  and k, are the proportional constant, the 
integral constant and the derivative constant, respectively. 
They will be properly design according to various 
circumstances of the escaping motion. 

The SSEL equations of motion are on the “hard” 

’ (25) 

v ( t )  = k( t )*  Z H ( f )  (26) 

2” ( t )  = A , z ,  (1) + B,v ( t )  

v(t) = k,e,,(t) +k, Je,,(r)& +k, . [de,@) / dt] (27) 

Theorem 3: The stability of the quasi-constrained system 
Suppose that there exists an mdimensional state 

equation in the complementary space 4(q)E~,  i=m+L.,.p, 

where i ( t )  is SSEL state, w c M ,  and K ( ~ ) = ~ - ~ ~ , .  
Namely, 

(28) A . z,, ( t )  + EV ( t )  

L,(i,z,t)+L,(t)~(i,z,t) 

By prescribing an admissible norm l l z ,  ( t )  - z o  11 < L ,  , the 
outputs of the soft subsystem are bounded for bounded inputs 
lip. ( i, z ,  I ) 11 < . The global system is closed-loop Lyapunov 
stable if, and only if the PID controller is closed-loop stable in 
the hard states and all soft states of the fuzzy controller are 
bounded within the time interval to 5 t I t f  . 

Proof 
A) Necessary condition 

nonholonomic system as 
Consider the state equation of the hard space of the 

i, (t) = A,z ,  ( t )  + B, (t)v(t) = AHz,( t )  + B, ( t )v( t )  

YH ( t )  = c, (t)z,, ( t )  
(29) 

where c ( t )  is the output gain of the hard constrained system. 
Under the assumption of the modified Frobenius theorem, the 
control system of the SSEL plant is nonsingular. Besides, the 
dnft flows are involutive closures and the system is reachable 
within the admissible region and the time interval 5 t,. 

Thus, the PID controller can be defined as 

& , m ~  IF (4 is 4and ... andx, is 4) (24) v ( f )  = k,eH(t) + k, eH( r)dr + k ,  . [de,, ( I ) /  dt] (30) 

By appropriately tuning the PID constants 4, kI and kD, 
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the closed-loop poles can be placed in the left hand side of the 
s-plane, i.e., 

The output of the time-varying plant becomes 
i , ( l ) =  A , z , ( t ) + B v ( t ) =  ( u J - A , ) z , ( t )  (31) 

Y , W  = c . ( t ) ~ : ' ~ ( t , r ) B , ( + ) v ( r ) d r  (32) 

= ~ [ C , ( t ) ~ P ( t , s ) B , ( r ) l v ( r ) d r  = J , Y G H ( t , r ) v ( r ) d r  

where Q ( t , z )  is the state transition matrix and G H ( f , f )  is 
defined as the impulse/ response matrix of the system, i.e., 

Fuzzy Logical Factors DOF 
Parameters (A) (0 

Friction Forces (N) B 2 
Creeping ( d s )  C 3 

ABS N\ D 2 

Besides, all states of the fuzzy controller and the soft plantare 
bounded, which are assumed to be the inputs of the hard plant. 
Then, we conclude that the system is causal and dissipative if 
all eigen modes of the system is negative or ~ , ( t ,  7) < 1. 

B) Sufficient condition 
The normal form of the hard space is mapped into a 

quasi-linear equation with 4~:,i=1 ,,,,, n - m .  Defining a 
nonsingular matrix T, ( t )  in the soft space, we have 

r,(O = [-fl(d 4.J =span r q  (4) "' 6:: (d1 
r,(O = [- R q )  1~1' = span [ f ;  (4) ... rP,; (S)I 

(34) 

Thus, the closed-loop stability of the global escaping system is 
invariant under the assumption of meomorphic mapping. 
Namelv. 

VariationCovariant Contributions 
(S) (V) (100%) 
8.45 2.1 33.33 
2.35 0.5 33.33 
6.14 1.51 33.33 

(35) 

Reviewing the driving flow of the escaping motion, which will 
be bounded in the composition of #z(q)  to 4;:(q) with 
bounded inputs and bounded outputs. Accordmg to the CFT, 
we know that ~ ( z , q o ) / ~ j ,  = 1 ..., are independent and lie in 
the involutive distribution A', of the virtually 
complementary manifold M". Namely, 

(36) 
where ~ ~ z ( f ) - z o ~ ~ < L o  and L, is the admissible norm of the 
system. Thus, we conclude that the local hard system is 
closed-loop stable and the local soft system is bounded if, and 
only if the global system is BIB0 stable witlun the time 
interval to 5 t I tf. 

z(2) = O(2, q o )  = 4:; ( 4 )  0 ... 0 4;: ( 4 )  

U 
V. Examples of Wheeled Vehicles 

A wheeled vehlcle with pneumatic tires on the ground 
er and is depicted with generalized coordinates dt)=[q, q2 

the virtual displacement $f)+, z, z,lr , as shown in Fig. 3. 

Fig.3. Modeling of wheeled vehicle (a) an AGV on 
a prescribed trajectory, (b) modeling of the lumped 
wstem for a fniir-wheeled vehicle 

part I :  The construction of the nonholonomic constraints 

+ 4,) - y cos( lpl + 4,) = 0 
The system can be obtained as 

.tcos(q51 + $b2)+ j s i n ( ( ,  + 
(37) 

where I is the length of the wheel axles and 4,, is the initial 
value. The constraints are not integrable if [g3,g4](q) A .  

Thus, we map the system into normal form using the Lagrange 
equation 

(38) 

The normal form can be derived from the unconstrained 
dynamics 4"(t) E 

- ( I  /sin +,)dl = 0 

1 -sh(4 +4*)  - w 4 ,  + $2) 1 0 

cos(4l + h )  - s 4 4  +h)  0 1 
= [ 
E ~ n - m  and q"t) . = aocj(t) + po, where 

0.89s,, I C , ,  -1.311s,, -2.81c,, -0.02 0 (39) 
-2.54c,, /s,, -0.25/c,, 0 1.021 

I [1.05e,, It , ,  -0.04/s,, -0.75c,,p 

Part 2: Fuzzy controller of the creeping motion 
Define the predictive fuzzy controller as 

r (k+ l )=~Z(k) ; .~ , z (k -m) ,u (k ) , , . . ,u (k -m) l  (40) 
where z,(i>, q i )  are the estimated and the prescribed 
trajectory, respectively. 

Part 3: PID design of the "hard" subsystem 
Let the control law be defined as v ( t )  = k ( t ) * z H ( f ) .  Let 

e,(t)=&t)-,,x(~) be the error or the difference of the hard- 
constraint space between desired outputs and the system 
outputs. Then 

Using the ultimate period method [14], the integral time 
(0 =b%(O +k,Je,(z)dZ+k,. [d%(t)/dl] (41) 

I 1 

5 10 15 

, -,---, 

Fig. 4. Computer simulations (a) tracking mors the 
vehicle, (b) velocities of the wheels, (c) the creeping 
motion for uRo =0.3, (d) the creeping motion uRo = 1.0. 
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constant is assumed as T ,  = 4, , the derivative time constant 
is assumed as T, = 0 and the proportional parameter is 
assumed as k ,  = 0.005 . Tuning k, slightly until the “hard” 
system becomes marginally stable, where k, = (0.55 - 0.62) .  k, ,  

T, = 0 . 9 ~  I wD - 1 .osn i , T~ =0.24as/~, -0.306ri The 
computer simulation for the PID design is given in Fig.4. 

VI. Conclusion 

Observing the simulations in Fig.4, the slippage 
phenomenon of the geometric scheme is damped out by using 
adrmssible parameters. Comparing to the traditionally 
algebraic approach, the advantages of MFC include less 
computational time, more effective controllers, significant 
physical meaning for the dnving flow, higher speed motions, 
and geometric formulations for the tracking or regulating 
problems. Besides, a PC-based instead of a sensor-based 
analysis may be a better choice in the ABS research. It may 
reduce experimental cost in the laboratory. However, the 
tracking approximation of the MFC algorithm does not behave 
excellent if we ignore unmodeled effects by eliminating 
nonlinearity of the escaping motion. In addition, the 
mechanical structure is modeled as lumped subsystems, which 
ignores the complexity of the suspension system and the 
lateral friction of their four tires. The trend to develop better 
mobile systems may be focused on multi-stage controllers, 
which include effects from both the reaction forces of trackmg 
control system (TCS) and the escaping motion of an ABS. By 
applying the structural dynamics, acatastatically escaping 
problems can be considered as a flexible model instead of a 
lumped model, which is a challenging job to research in the 
future. 
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