
IEEE Region 10 Conference on Computer and Communication Systems. September 1990, Hong Kong

Task Assignment Scheduling by Simulated Annealing

Feng-Tse Lin and Ching-Chi Hsu

Dept. of Computer Science and Information Engineering
National Taiwan University

Taipei , Taiwan

Abstract : The stochastic, heuristic search algorithm called
simulated annealing is considered for the problem of static task
assignment scheduling in distributed computing systems. The
purposes of task assignment scheduling are to assign modules
of programs over a set of interconnected processors in order to
reduce the job turnaround time as well as to obtain the best
system performance. In this paper, we show that the approach
of simulated annealing, with a properly designed annealing
schedule and a good move generation strategy, can be used to
solve this problem in an efficient way.

1. Introduction

Distributed computing systems are made up of a set of
processors that can be formed a loosely-coupled style
multiprocessor. The task assignment scheduling is one of the
fundamental aspects of distributed processing environments
such that it deals with the question of optimally assigning
modules to processors so as to minimize the cost of running a
program. There is a problem of 'saturation effect' [3] caused
by excessive interprocessor communications degrades the
throughput of the system seriously. Consequently, the goals
of task assignment scheduling are to minimize interprocessor
communication cost and to maximize utilization of processors.

Unfortunately, there is always a conflict between the
desire to minimize total execution cost and the desire to achieve
load balancing which is to utilize the concurrency offered by
the multiprocessor system. The general task assignment
scheduling problem with a set of constraints, such as memory
capacity, and processor capability, is found to be NP-hard[6].
Thus, a good algorithm for its optimal solution in polynomial
time is very unlikely exist. For this reason, many researchers
focus on development of suboptimal solutions of its general
problems or optimal solutions of its special problems. Several

approaches to the task assignment problems with various
constraints to obtain optimal or near-optimal solutions have
been suggested over the past ten years. They can be roughly
classified into five categories, namely, graph theoretic [2,13],
mathematical programming [3,7], heuristics [l l] , solution
space enumeration and search [lo] and dynamic probabilistic
methods [12].

In this paper, we present another approximate approach

for task assignment scheduling by simulated annealing. Over
the past six years, theoretical studies of simulated annealing
based on the equilibrium theory of Markov chains have shown
that a global optimum state can be reached with probability one
after an infinite number of transitions [6,8], and its
applications to a broad class of combinatorial optimization
problems in diverse areas are increased significantly [1,5].
Many researchers are quite agree that simulated annealing to be
considered a powerful optimization tool is in particularly of no
such efficient tailored algorithms are available for those
NP-hard problems [5].

However, the main drawback of this approach is its long
computation time required to converge to the globally optimal
solution. Instead of finding the optimal solution, a
straightforward approach to speed up the algorithm within
acceptable computation time is to design of an efficient or
parallel annealing schedule for finding a near-optimal solution.
In this paper, we design an efficient annealing schedule for
finding good approximate solution for task assignment
scheduling in a significantly huge reduction of move iterations.

2. Task Assignment Scheduling Problem

Assuming that there are M modules ml,m2 ..., m, in a
given task and N processors p1,p2 ...,pn in the system. An
assignment of tasks to processors can be described formally as
a function that maps the set of modules M to the set of
processors P on which modules may be executed. A task
assignment vector A is a function of A : M + P, where A(i) =

j if module mi is assigned to processor pj, 1 I i I m, 1 < j I n.

2.1. The total cost of an assienment

{l) Execution cost
Let E be an m*n matrix representing the execution cost

of a task in the system, where execution cost eij depends on
the work to be performed by module mi as well as on the
attributes of processor pj. The total execution cost of an
assignment A is given by

m

COSTl(A) = ei,A(i) .
i= 1

12) Communication cost
Let C be an m*m matrix representing the

communication cost between modules in a task, where cij = k,
if module mi communicates with module mj for some cost k
and A(i) # AO). That is, any two modules that communicate
during their execution incur a penalty if they are executed on
different processors. The total communication cost of a given
assignment A is given by

m m

COST2(A) = c CA(~),A(;) for A(i) f A(j).
i=l j=i+l

tpij = 1 , if processor pi and pj are connected each other;
0 , otherwise.

2.4. The obiective function
The total cost of an assignment in the system is equal to

the maximum workload of the critical processor. Now, all we
want to do are looking for an optimal assignment A which has
the minimum cost in all of the possible assignments, i.e.
Minimize CRITICAL(A) for all possible A,
Subject to the constraints with memory capacities, real-time
deadlines and the system topology.

Thus, the total cost of an assignment A is
COST(A) = COSTI(A) + COST2(A).

3. Simulated Annealing

2.2. Bottleneck in the svste m
In case of considering the processor with the heaviest

loads that causes the bottleneck in the system, we need to find
out the workload of each processor. The workload of the
processor k is defined as COST(A), with

COSTl(A)k =

m

ei,A(i) for each A(i) = k.
i= 1

m m

COST2(A)k = c C A (~) , A (~) for each A(i) = k and A(j) # k .
i=l j=i+l

Then, the bottleneck in the system is the critical processor
which has the maximum total cost. That is,

CRITICAL(A) = maximize COST(& for 1 I k I n.

2.3. The Constraints
(1) Memory capacities
The limited memory capacities in the system are

2 bi I qj for each A(i) = j,

represented as

i=l

where bi denotes the minimum amount of memory storage
needed for module mi, and q, in vector Q represents the
maximum memory capacity at processor pj.

(2) Real-time deadlines
The real-time deadlines in a given task are represented as

2 di I lj for each A(i) = j,
i= 1

where di denotes the minimum processing time required by
module mi, and lj in vector L denotes the time limit for
processing the modules that executed on processor p, for a
given task. It states that the length of time required to process
the modules assigned to a single processor must not exceed the
required real-time deadline for that processor in application
environments.

(3) TODO~OW of the svstem
Let Tp be an nxn matrix representing the connection of

processors in the system, where

As early as 1953, Metropolis et al. proposed an
algorithm for the efficient simulation of the evolution of a solid
to thermal equilibrium. Kirkpamck, Gelatt and Vecchi [4]
realized that there exists a profound analogy between
minimizing the cost function of a combinatorial optimization
problem with many variables and the slow cooling of a solid
until it reaches its low energy ground state. At each
temperature T, the solid is allowed to reach thermal
equilibrium, characterized by a probability of being in a state
with energy E given by the B o l t z " distribution [l] of

where Z(T) is the partition function and Kb is the Boltzmann
constant. As the temperature decreases, the Boltzmann
distribution concentrates on the states with lower energy states
and finally, when the temperature approaches zero, only the
minimum energy states have a non-zero probability of
occurrence. The application of this method to a specific
optimization problem requires careful design of the following
ingredients.
(1) defining a formal description of the states of the system.
(2) formulating the cost function and /or the constraints of the

(3) designing a good move generation strategy to migrate a

(4) defining a good annealing schedule including,

system.

state to another.

(a) the initial value of all parameters,
(b) a rule for changing the current value of the control

parameter into next one,
(c) the number of repetitions at each value of the control

parameter,
(d) the condition of thermal equilibrium, and
(e) the stopping criteria.

3.1. Confieuration of the svstem
(1) Innut data structures
A matrix E(l:m, 1:n) where eij denotes the execution

cost of module mi executed on processor pj. A matrix C(l:m,

280

1:m) where cij denotes the communication cost between
module mi and m, while executed on different processors. A
matrix T(l:n,l:n) where tij denotes the connection information
about processors pi and p,. A vector B(1:m) where bi denotes
the minimum storage needed for module mi as well as a vector
Q(1:n) where q, denotes the maximum capacity of local
memory in processor pj. A vector D(1:m) where di denotes the
minimum processing time required by module mi as well as a
vector L(1:n) where lj denotes the real-time deadline for
processor p, in a given task.

(2) OutDut data structure
An assignment vector A(l :m) where A(i) denotes which

processors currently being assigned to module i.

3.2. Cost function
The objective function is to minimize (CRITICAL(A) +

P(A)],. for all possible assignments of A. P(A) is a penalty
function, P(A) f 0, if an assignment A violates the constraint
of memory capacities or real-time deadlines, otherwise P(A) =

0. CRITICAL(A) is the workload of the critical processor in
the system as defined in section 2. We define the cost function
of an assignment A is F(A) = (CRITICAL(A) f P(A)].

3.3. Move generation strategies
Consider the system with m modules and n processors,

there are nm possible states (assignments). For each state i, the
neighbors of i is defined as generating from i by one step
transition or by a small pertubation. Assuming that the
neighborhood structure of the system is well-defined, for any
node i the probability of to be visiting is bounded below by a
small positive fraction, say Pk, at temperature Tk. Then, the
probability of not visiting is bounded above by 1 - Pk. In the
course of the annealing processes, it is easily to prove that
each state in a well-defined neighborhood structure of the
system after an infinity number of transitions is recurrent (i.e.
visiting infinity often in time).

The simulated annealing process can be formulated as a
sequence of homogenerous Markov chains, each chain is
consisting of a sequence of states where the transition
probability is defined. We have three strategies to use for
generating the next state of the system. In short, we start with
strategy 1 in an attempt to decrease the objective function. If it
is not in this case, stategy 2 is attempted. Strategy 2 involves
an exchange the roles of two objects such that we wish to

decrease the cost of the system depend on the minimization of
the objective function. The detrimental swaps are accepted
according to the Metropolis's acceptance criterion. Strategy 3
is keeping the algorithm from getting trapped at a locally
optimal by permitting an unexpected state with a higher cost.

An illustrative example is shown in Fig. 1. Assuming
that we have eight modules and six processors in the system
with the current assignment A = (1, 4, 3, 1, 5 , 6, 2, 4). That
is, modules 1 and 4 are assigned to p1. modules 7 is assigned
to pz, module 3 is assigned to p3, module 2 and 8 are assigned
to p4, module 5 is assigned to p5, and module 6 is assigned to

p6. By strategy 1, module 4 is selected and reassigned to p6.
By startegy 2, modules 2 and 5 are selected and to interchange
their assignments. Finally, by strategy 3, module 5 is assigned

to P4.
N I , 4, 3, 1, 5, 6 , 2, 4)

strategy 1

strategy 2

strategy 3

A(1, 5, 3, 1, 4, 6, 2, 4)

A(1, 4, 3, 1, 4, 6, 2, 4) A(1, 4, 3, 1, 5, 6, 2, 4)

Fig. 1. Move generation strategies.

3.4. Annealing schedule
(1, Initial value of temperature (TI)
The most straight way to consider a reasonable initial

value of temperature TI is to be satisfied with niin(1, exp(-AC
/ TI)) = 1, for each possible AC in a given number of
iterations. It is called the hot enough condition. From our
considerations, the initial value of temperature should depend
on the acceptable range of costs. Assuming that the acceptable
costs over a large number of iterations is Gaussian distribution
with mean p and standard deviation (T. By using the central
limit theorem and the law of large numbers, one can shown
that the expected cost (p) and the expected square cost (6) can
be approximated by the average of the cost function F(A) and
the average of the square of the cost function F2(A),
respectively, which are all sampled over R iterations. That is,

-

R

k = f_ c F(A), and
1= 1

R

i= 1

Such that, one can easily obtain the approximation of (T as

(T= J 6 - p 2
Let the maximum cost and the minimum cost accepted over R
iterations be denoted by C,, and Cmin, respectively. The hot

enough condition is the inequality of

p-20 2 Cmi, < c,, 5 p+20 .

We start with TI = max ci, + max eij for each element cij in
matrix C and each element eij in matrix E, and follow by
performing a number of moves. If the current value of Tl is
not satisfied with the inequality we try to double it up.

I i E
According to Markov chain theory, every irreducible and

aperiodic Markov chain possesses a unique stationary
distribution. The stationary distribution of a homogeneous
Markov chain is the invariant probability distribution of the
states after an infinite number of moves. However, we can

predict the long-run behavior of the system just over a short
period of time by the characteristics of states in Markov
chains. Let ~i be the invariant probability of being in state i,
and WE be the transition probability for staying in state i. The
mean recurrence time of state i is defined as

1
Pii = 7 9

and the expected number of transitions to leave state i is given

by
1 1

Pij = - 1- wii .
Nevertheless, we can approximately estimate pi, at each
temperature Tk is bounded above by the following equation of

jeN(i)

and it is the expected number of transitions to escape from any
local minimum.

Thus, for each value of Tk, the kth Markov chain is
generated by performing Lk iterations. At the end of each Lk
iterations, we make more ~ i j - Lk iterations if pij - Lk > 0,
otherwise calculate Tk+l and Lk+l the next annealing cycle is
then initiated. Nevertheless, as Tk approaches to zero, the
probability of the transitions being accepted are sharply
decreasing and thus one can notice that Lk becomes very large.
Therefore, for the sake of the efficiency of our algorithm, an
upperbound of Lk is given to avoid extremely long
computation time for low values of Tk.

13) The rule for decreasing the temperature
Let b,i(Tk) be the acceptance probability from state j to

state i at temperature Tk. By Metropolis criterion, we obtain
the properties of the acceptance probability between states i
and j with their costs F(i) < F(j) are b,i(Tk) = 1 for all Tk,

bij(Tk) t 1 as Tk+ 03, and bij(Tk) J 0 as Tk+ 0. It is
obviously that there must be exist bij(Tk) = p * bji(Tk) and 0 2

p 5 1. The asymptotic convergence of the algorithm needs that
the detailed balance equation will be preserved. That is to say,
in an irreducible Markov chain, for any two adjacent nodes i
and j, the net number of moves from i to j is equal to the net
number of moves from j to i. If the temperature drops too
sharply, the detailed balance equation will not be preserved.
Let fij(Tk) = bi,(Tk) / bji(Tk) be defined as the ratio of the
probability of move from i to j to the probability of move from
j to i at temperature Tk. Since bji(Tk) = 1 for all Tk, it is easily
to prove that fij(Tk) = bij(Tk) = p. 0 5 fij(Tk) 2 1, fji(Tk) = 1 /
bij(Tk) = 1 / p, 1 5 fji(Tk) 5 03, and fij(Tk) * fji(Tk) = 1.
Thus, the decrement ratio of Tk should keep p be
monotonically piecewise decreasing in the interval of [O, 11.

14) The stoppine criterion
The stopping criteria determining the termination of

simulated annealing algorithm. As the value of temperature is
decreased, the likelihood of accepting moves that increases the

cost function diminishes. If no more moves will be accepted in
a given temperature, this tends to approach an optimum cost,
the stopping criterion is then existing. In our considerations,
the annealing curve is used for determining more efficient
stopping criterion.

The annealing curve is a curve of expected cost (p)
versus temperature (T) such that with an efficient annealing
schedule, the expected cost should be decreased in a uniform
manner. The slope of the annealing curve, also known as
specific heat [l], is given by

2
dT .

It is the rate of change of the expected cost with respect to

temperature. When the freezing point is approaching, where
the gross structure of the system are about to be fixed, the very
careful annealing schedule is required. Beyond this freezing
point, one can speeds up the cooling ratio through the low
temperature until no further improvements are obtained. With
the specific heat and critical temperature as the frozen
conditions, we can substantially reduce a large number of
redundant iterations at low temperature regions.

4. Exuerimental Results

In our implementation, we let Lk+l = Lk * 0, where 0 =

1.1, and Lk is ceiled by an upperbound ; the decrement rule is
given by Tk+l = Tk * h, where h = 0.8. The initid number of
iterations and the upperbound of iterations are depending on
the number of modules and the number of processors of the
system which are given by L1 = m*(m+n) and upperbound =

(m+n)*L1, respectively, where m is the number of modules of
a given task and n is the number of processors in the system.
On our experiments, we have four tasks in a six-processor
multiprocessor system with their size and the complexity in
increasing order. That is, tasks 1, 2, 3, and 4 are consist of
six, eight, ten, and twelve modules, respectively. The data of
the topology of the system, the execution costs and the
communication costs of modules, the maximum capacity of
each local memory, the expected processing time of each
module, and the real-time deadlines for each processor are
shown in Table 1.

The experimental results are shown in Table 2, where
tasks 1 and 3 obtain optimal solutions, and tasks 2 and 4
obtain near-optimal solutions by the proposed annealing
schedule. The table show that, for example, the final
assignment of task 1 is (5,5,2,1,2,3) with the critical
processor is PI and the cost is 161 at the total number of 5879
iterations and only 2320 assignments are accepted. We
compare the performance obtained by the proposed annealing
schedule with another conventional annealing schedule which
are shown in Fig. 2 and Fig. 3. The performance are the
quality of solution and the running time required by the
algorithms. The proposed annealing schedule always obtain
optimal or near-optimal solution with the significant huge
reduction of the number of iterations.

282

P4

m l
m2
m3
m A

P1 P2 P3 P4 P5 P6

45 55 60 80 62 51

32 18 26 29 31 24

m l m2 m3 m4 m5 m6 m7 m8 m9m10 m l l m12
0 25 0 35 13 3 10 0 26 19 12 0
25 0 18 0 0 21 0 14 0 35 0 3
0 18 0 35 25 0 2 1 2 0 0 25 0
35 0 35 0 12 34 0 0 0 19 0 0

21 34 19 42 21 34
tologolyofthesystem I 41 23 53 29 42 24 I

1 8 10 11 9 10 3 I
14 20 32 16 15 18 Task 1 : ml -m6
33 48 42 26 36 40

Task 2 : ml - m8 m12 56 43 37 34 32 41

Task 3 : ml - m10

Task 4 : ml - m12
execution costs -- mauix E

I 13 0 25 12 0 6 21 30 27 0 0 4
3 21 0 3 4 6 0 15 0 0 0 11 0
10 0 2 0 2 1 15 0 1 5 0 17 0 0
0 14 12 0 30 0 15 0 0 24 15 0
26 0 0 0 2 7 0 0 0 0 2 8 3 2 5

35 0 19 0 0 17 24 28 0 0 0
12 0 2 5 0 0 11 0 1 5 5 0 0 14

3 0 0 4 0 0 0 5 0 1 4 0

communication costs -- matrix C

Vector B = (20,40,45,30,15,22,16,25,10,12,32,42)
Vector Q = (85,120,100,110,125,110)
Vector D = (5,4,3,1,2,5,4,6,1,2,3,4)
Vector L = (15,25,20,15,10,12)

Table 1. Data of four tasks for task assignment problems.

Table 2. Tabulation of experimental results of four tasks.

300 250 t
X

'0
X

'0

I optimal solutions
0 obtained by the

efficient annealing
schedule
obtainedbyan
inefficient annealing
schedule

I
Task1 Task2 Task3 Task 4

Fig. 2 Comparison between efficient and inefficient
annealing schdule.

.- B
mrfficiemt -ding schedule /

offklrnf mealulg sshcdulr ii Task 1 Task2 Task3 Task 4

Fig. 3. The reduction of the number of iterations.

5. Conclusions

In this paper, we have presented an approximate
approach by simulated annealing for task assignment
scheduling problem. The perfomiance of simulated annealing
is heavily depends on the problem size as well as the range of
all parameters to be given in the annealing schedule. The
theoretical studies and the empirical rules are both critical to
design a good annealing schedule. However, it is quite a
different approach in comparisons with other proposed
methods for task assignment scheduling problem. This
approach allows other system constraints to be easily
incoporated. With proposed efficient annealing schedule, the
optimal solution or the near-optimal solutions can be obtained
in a reasonable computation time. Further researches can be
directed to parallel or distributed implementation of simulated
annealing algorithm.

References
[l] E. Aarts, J. Korst, Simulated annealing and Boltzmann

machines - A stochastic approach to combinatorial
optimization and neural computing, John Wiley and Sons
publishing, 1989.

[2] S. H. Bokhari, Assignment problems in parallel and
distributed computing, Kluwer Academic Publishers,
1987.

[3] W. W. Chu, L. J. Holloway, M.T. Lan, Kemal
E fe, "Task allocation in distributed data processing",
Computer, vol. 13, Nov. 1980, pp 57-69.

[4] S. Kirkpatrick, C. D. Gelatt Jr., M. P. Vecchi,
"Optimization by simulated annealing", Science, vol. 220,
no, 4598, May 1983, pp 671-680.

[5] Van Laarhoven, P. J. M. Aarts, Simulated annealing
: theory and applications, D. Reidel Publishing Company,
1987.

[6] V. M. Lo, "Heuristic algorithms for task assignment in
distributed systems", IEEE Trans on Computers, vol. 37,
no. 11, 1988, pp 1384-1397.

[7] P. R. Ma, E. Y. S. Lee, M. Tsuchiya, "A task
aliocation model for distributed computing systems", IEEE
Trans on Computers , vol. C-31, Jan. 1982, pp 41-47.

[8] F. Romeo, A. Sangiovanni-Vincentelli, C.
Sechen, "Probabilistic hill climbing algorithms:
Propreties and Applications", Roc. 1985 Chapel Hill
Conference on VLSI, May 1985, pp 393-417.

[9] G. Sasaki, B. Hajek, "The time complexity of
maximum matching by simulated annealing", JACM, vol.
35, no. 2, Apr. 1988, pp 387-403.

[lo] C. C. Shen, W. H. Tsai, "A graph marching approach
to optimal task assignment in distributed computing
systems using a minimax criterion", IEEE Trans.
Computers, vol. C-34, no. 3, Mar 1985, pp 197-203.

[l l] J. B. Sinclair, "Efficient computation of optimal
assignments for distributed tasks", Journal of parallel and
distributed computing, Apr. 1987, pp 342-362.

[12] J. A. Stankovic, "An application of Bayesian decision t
heory to decentralized control of job scheduling", IEEE
Trans. Comput., vol. C-34, no. 2, Feb. 1985, pp

[13] H, S. Stone, "Multiprocessors scheduling with the aid
of network flow algorithms", IEEE Trans. Software Eng.

117-130.

, vol. SE-3, Jan. 1977, pp 85-93.
283

