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Abstract : The stochastic, heuristic search algorithm called 
simulated annealing is considered for the problem of static task 
assignment scheduling in distributed computing systems. The 
purposes of task assignment scheduling are to assign modules 
of programs over a set of interconnected processors in order to 
reduce the job turnaround time as well as to obtain the best 
system performance. In this paper, we show that the approach 
of simulated annealing, with a properly designed annealing 
schedule and a good move generation strategy, can be used to 
solve this problem in an efficient way. 

1. Introduction 

Distributed computing systems are made up of a set of 
processors that can be formed a loosely-coupled style 
multiprocessor. The task assignment scheduling is one of the 
fundamental aspects of distributed processing environments 
such that it deals with the question of optimally assigning 
modules to processors so as to minimize the cost of running a 
program. There is a problem of 'saturation effect' [3] caused 
by excessive interprocessor communications degrades the 
throughput of the system seriously. Consequently, the goals 
of task assignment scheduling are to minimize interprocessor 
communication cost and to maximize utilization of processors. 

Unfortunately, there is always a conflict between the 
desire to minimize total execution cost and the desire to achieve 
load balancing which is to utilize the concurrency offered by 
the multiprocessor system. The general task assignment 
scheduling problem with a set of constraints, such as memory 
capacity, and processor capability, is found to be NP-hard[6]. 
Thus, a good algorithm for its optimal solution in polynomial 
time is very unlikely exist. For this reason, many researchers 
focus on development of suboptimal solutions of its general 
problems or optimal solutions of its special problems. Several 

approaches to the task assignment problems with various 
constraints to obtain optimal or near-optimal solutions have 
been suggested over the past ten years. They can be roughly 
classified into five categories, namely, graph theoretic [2,13], 
mathematical programming [3,7], heuristics [ l l ] ,  solution 
space enumeration and search [lo] and dynamic probabilistic 
methods [12]. 

In this paper, we present another approximate approach 

for task assignment scheduling by simulated annealing. Over 
the past six years, theoretical studies of simulated annealing 
based on the equilibrium theory of Markov chains have shown 
that a global optimum state can be reached with probability one 
after an infinite number of transitions [6,8], and its 
applications to a broad class of combinatorial optimization 
problems in diverse areas are increased significantly [1,5]. 
Many researchers are quite agree that simulated annealing to be 
considered a powerful optimization tool is in particularly of no 
such efficient tailored algorithms are available for those 
NP-hard problems [5].  

However, the main drawback of this approach is its long 
computation time required to converge to the globally optimal 
solution. Instead of finding the optimal solution, a 
straightforward approach to speed up the algorithm within 
acceptable computation time is to design of an efficient or 
parallel annealing schedule for finding a near-optimal solution. 
In this paper, we design an efficient annealing schedule for 
finding good approximate solution for task assignment 
scheduling in a significantly huge reduction of move iterations. 

2. Task Assignment Scheduling Problem 

Assuming that there are M modules ml,m2 ..., m, in a 
given task and N processors p1,p2 ...,pn in the system. An 
assignment of tasks to processors can be described formally as 
a function that maps the set of modules M to the set of 
processors P on which modules may be executed. A task 
assignment vector A is a function of A : M + P, where A(i) = 

j if module mi is assigned to processor pj, 1 I i I m, 1 < j I n. 

2.1. The total cost of an assienment 

{l) Execution cost 
Let E be an m*n matrix representing the execution cost 

of a task in the system, where execution cost eij depends on 
the work to be performed by module mi as well as on the 
attributes of processor pj. The total execution cost of an 
assignment A is given by 

m 

COSTl(A) = ei,A(i) . 
i= 1 



12) Communication cost 
Let C be an m*m matrix representing the 

communication cost between modules in a task, where cij = k, 
if module mi communicates with module mj for some cost k 
and A(i) # AO). That is, any two modules that communicate 
during their execution incur a penalty if they are executed on 
different processors. The total communication cost of a given 
assignment A is given by 

m m  

COST2(A) = c CA(~),A(;) for A(i) f A(j). 
i=l j=i+l 

tpij = 1 , if processor pi and pj are connected each other; 
0 ,  otherwise. 

2.4. The obiective function 
The total cost of an assignment in the system is equal to 

the maximum workload of the critical processor. Now, all we 
want to do are looking for an optimal assignment A which has 
the minimum cost in all of the possible assignments, i.e. 
Minimize CRITICAL(A) for all possible A, 
Subject to the constraints with memory capacities, real-time 
deadlines and the system topology. 

Thus, the total cost of an assignment A is 
COST(A) = COSTI(A) + COST2(A). 

3. Simulated Annealing 

2.2. Bottleneck in the svste m 
In case of considering the processor with the heaviest 

loads that causes the bottleneck in the system, we need to find 
out the workload of each processor. The workload of the 
processor k is defined as COST(A), with 

COSTl(A)k = 

m 

ei,A(i) for each A(i) = k. 
i= 1 

m m  

COST2(A)k = c C A ( ~ ) , A ( ~ )  for each A(i) = k and A(j) # k . 
i=l j=i+l 

Then, the bottleneck in the system is the critical processor 
which has the maximum total cost. That is, 

CRITICAL(A) = maximize COST(& for 1 I k I n. 

2.3. The Constraints 
(1) Memory capacities 
The limited memory capacities in the system are 

2 bi I qj for each A(i) = j, 

represented as 

i=l 

where bi denotes the minimum amount of memory storage 
needed for module mi, and q, in vector Q represents the 
maximum memory capacity at processor pj. 

(2) Real-time deadlines 
The real-time deadlines in a given task are represented as 

2 di I lj for each A(i) = j, 
i= 1 

where di denotes the minimum processing time required by 
module mi, and lj in vector L denotes the time limit for 
processing the modules that executed on processor p, for a 
given task. It states that the length of time required to process 
the modules assigned to a single processor must not exceed the 
required real-time deadline for that processor in application 
environments. 

(3) TODO~OW of the svstem 
Let Tp be an nxn matrix representing the connection of 

processors in the system, where 

As early as 1953, Metropolis et al. proposed an 
algorithm for the efficient simulation of the evolution of a solid 
to thermal equilibrium. Kirkpamck, Gelatt and Vecchi [4] 
realized that there exists a profound analogy between 
minimizing the cost function of a combinatorial optimization 
problem with many variables and the slow cooling of a solid 
until it reaches its low energy ground state. At each 
temperature T, the solid is allowed to reach thermal 
equilibrium, characterized by a probability of being in a state 
with energy E given by the B o l t z "  distribution [l] of 

where Z(T) is the partition function and Kb is the Boltzmann 
constant. As the temperature decreases, the Boltzmann 
distribution concentrates on the states with lower energy states 
and finally, when the temperature approaches zero, only the 
minimum energy states have a non-zero probability of 
occurrence. The application of this method to a specific 
optimization problem requires careful design of the following 
ingredients. 
(1) defining a formal description of the states of the system. 
(2) formulating the cost function and /or the constraints of the 

(3) designing a good move generation strategy to migrate a 

(4) defining a good annealing schedule including, 

system. 

state to another. 

(a) the initial value of all parameters, 
(b) a rule for changing the current value of the control 

parameter into next one, 
(c) the number of repetitions at each value of the control 

parameter, 
(d) the condition of thermal equilibrium, and 
(e) the stopping criteria. 

3.1. Confieuration of the svstem 
(1) Innut data structures 
A matrix E(l:m, 1:n) where eij denotes the execution 

cost of module mi executed on processor pj. A matrix C(l:m, 
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1:m) where cij denotes the communication cost between 
module mi and m, while executed on different processors. A 
matrix T(l:n,l:n) where tij denotes the connection information 
about processors pi and p,. A vector B(1:m) where bi denotes 
the minimum storage needed for module mi as well as a vector 
Q(1:n) where q, denotes the maximum capacity of local 
memory in processor pj. A vector D(1:m) where di denotes the 
minimum processing time required by module mi as well as a 
vector L(1:n) where lj denotes the real-time deadline for 
processor p, in a given task. 

(2) OutDut data structure 
An assignment vector A(l :m) where A(i) denotes which 

processors currently being assigned to module i. 

3.2. Cost function 
The objective function is to minimize (CRITICAL(A) + 

P(A)],. for all possible assignments of A. P(A) is a penalty 
function, P(A) f 0, if an assignment A violates the constraint 
of memory capacities or real-time deadlines, otherwise P(A) = 

0. CRITICAL(A) is the workload of the critical processor in 
the system as defined in section 2. We define the cost function 
of an assignment A is F(A) = (CRITICAL(A) f P(A)]. 

3.3. Move generation strategies 
Consider the system with m modules and n processors, 

there are nm possible states (assignments). For each state i, the 
neighbors of i is defined as generating from i by one step 
transition or by a small pertubation. Assuming that the 
neighborhood structure of the system is well-defined, for any 
node i the probability of to be visiting is bounded below by a 
small positive fraction, say Pk, at temperature Tk. Then, the 
probability of not visiting is bounded above by 1 - Pk. In the 
course of the annealing processes, it is easily to prove that 
each state in a well-defined neighborhood structure of the 
system after an infinity number of transitions is recurrent (i.e. 
visiting infinity often in time). 

The simulated annealing process can be formulated as a 
sequence of homogenerous Markov chains, each chain is 
consisting of a sequence of states where the transition 
probability is defined. We have three strategies to use for 
generating the next state of the system. In short, we start with 
strategy 1 in an attempt to decrease the objective function. If it 
is not in this case, stategy 2 is attempted. Strategy 2 involves 
an exchange the roles of two objects such that we wish to 

decrease the cost of the system depend on the minimization of 
the objective function. The detrimental swaps are accepted 
according to the Metropolis's acceptance criterion. Strategy 3 
is keeping the algorithm from getting trapped at a locally 
optimal by permitting an unexpected state with a higher cost. 

An illustrative example is shown in Fig. 1. Assuming 
that we have eight modules and six processors in the system 
with the current assignment A = (1, 4, 3, 1, 5 ,  6, 2, 4). That 
is, modules 1 and 4 are assigned to p1. modules 7 is assigned 
to pz, module 3 is assigned to p3, module 2 and 8 are assigned 
to p4, module 5 is assigned to p5, and module 6 is assigned to 

p6. By strategy 1, module 4 is selected and reassigned to p6. 
By startegy 2, modules 2 and 5 are selected and to interchange 
their assignments. Finally, by strategy 3, module 5 is assigned 

to P4. 
N I ,  4, 3, 1, 5,  6 ,  2,  4) 

strategy 1 

strategy 2 

strategy 3 

A(1, 5,  3, 1, 4, 6,  2, 4) 

A(1, 4, 3, 1, 4, 6,  2, 4) A(1, 4, 3, 1,  5, 6, 2, 4) 

Fig. 1. Move generation strategies. 

3.4. Annealing schedule 
(1, Initial value of temperature (TI) 
The most straight way to consider a reasonable initial 

value of temperature TI is to be satisfied with niin(1, exp(-AC 
/ TI))  = 1, for each possible AC in a given number of 
iterations. It is called the hot enough condition. From our 
considerations, the initial value of temperature should depend 
on the acceptable range of costs. Assuming that the acceptable 
costs over a large number of iterations is Gaussian distribution 
with mean p and standard deviation (T. By using the central 
limit theorem and the law of large numbers, one can shown 
that the expected cost (p) and the expected square cost (6)  can 
be approximated by the average of the cost function F(A) and 
the average of the square of the cost function F2(A), 
respectively, which are all sampled over R iterations. That is, 

- 

R 

k = f_ c F(A), and 
1= 1 

R 

i= 1 

Such that, one can easily obtain the approximation of (T as 

(T= J 6 - p 2  
Let the maximum cost and the minimum cost accepted over R 
iterations be denoted by C,, and Cmin, respectively. The hot 

enough condition is the inequality of 

p-20 2 Cmi, < c,, 5 p+20 . 

We start with TI  = max ci, + max eij for each element cij in 
matrix C and each element eij in matrix E, and follow by 
performing a number of moves. If the current value of Tl  is 
not satisfied with the inequality we try to double it up. 

I i E  
According to Markov chain theory, every irreducible and 

aperiodic Markov chain possesses a unique stationary 
distribution. The stationary distribution of a homogeneous 
Markov chain is the invariant probability distribution of the 
states after an infinite number of moves. However, we can 



predict the long-run behavior of the system just over a short 
period of time by the characteristics of states in Markov 
chains. Let ~i be the invariant probability of being in state i, 
and WE be the transition probability for staying in state i. The 
mean recurrence time of state i is defined as 

1 
Pii = 7 9 

and the expected number of transitions to leave state i is given 

by 
1 1 

Pij = - 1- wii  . 
Nevertheless, we can approximately estimate pi, at each 
temperature Tk is bounded above by the following equation of 

jeN(i) 

and it is the expected number of transitions to escape from any 
local minimum. 

Thus, for each value of Tk, the kth Markov chain is 
generated by performing Lk iterations. At the end of each Lk 
iterations, we make more ~ i j  - Lk iterations if pij - Lk > 0, 
otherwise calculate Tk+l and Lk+l the next annealing cycle is 
then initiated. Nevertheless, as Tk approaches to zero, the 
probability of the transitions being accepted are sharply 
decreasing and thus one can notice that Lk becomes very large. 
Therefore, for the sake of the efficiency of our algorithm, an 
upperbound of Lk is given to avoid extremely long 
computation time for low values of Tk. 

13) The rule for decreasing the temperature 
Let b,i(Tk) be the acceptance probability from state j to 

state i at temperature Tk. By Metropolis criterion, we obtain 
the properties of the acceptance probability between states i 
and j with their costs F(i) < F(j) are b,i(Tk) = 1 for all Tk, 

bij(Tk) t 1 as Tk+ 03, and bij(Tk) J 0 as Tk+ 0. It is 
obviously that there must be exist bij(Tk) = p * bji(Tk) and 0 2 

p 5 1. The asymptotic convergence of the algorithm needs that 
the detailed balance equation will be preserved. That is to say, 
in an irreducible Markov chain, for any two adjacent nodes i 
and j, the net number of moves from i to j is equal to the net 
number of moves from j to i. If the temperature drops too 
sharply, the detailed balance equation will not be preserved. 
Let fij(Tk) = bi,(Tk) / bji(Tk) be defined as the ratio of the 
probability of move from i to j to the probability of move from 
j to i at temperature Tk. Since bji(Tk) = 1 for all Tk, it is easily 
to prove that fij(Tk) = bij(Tk) = p. 0 5 fij(Tk) 2 1, fji(Tk) = 1 / 
bij(Tk) = 1 / p, 1 5 fji(Tk) 5 03, and fij(Tk) * fji(Tk) = 1. 
Thus, the decrement ratio of Tk should keep p be 
monotonically piecewise decreasing in the interval of [O, 11. 

14) The stoppine criterion 
The stopping criteria determining the termination of 

simulated annealing algorithm. As the value of temperature is 
decreased, the likelihood of accepting moves that increases the 

cost function diminishes. If no more moves will be accepted in 
a given temperature, this tends to approach an optimum cost, 
the stopping criterion is then existing. In our considerations, 
the annealing curve is used for determining more efficient 
stopping criterion. 

The annealing curve is a curve of expected cost (p) 
versus temperature (T) such that with an efficient annealing 
schedule, the expected cost should be decreased in a uniform 
manner. The slope of the annealing curve, also known as 
specific heat [l], is given by 

2 
dT . 

It is the rate of change of the expected cost with respect to 

temperature. When the freezing point is approaching, where 
the gross structure of the system are about to be fixed, the very 
careful annealing schedule is required. Beyond this freezing 
point, one can speeds up the cooling ratio through the low 
temperature until no further improvements are obtained. With 
the specific heat and critical temperature as the frozen 
conditions, we can substantially reduce a large number of 
redundant iterations at low temperature regions. 

4. Exuerimental Results 

In our implementation, we let Lk+l = Lk * 0, where 0 = 

1.1, and Lk is ceiled by an upperbound ; the decrement rule is 
given by Tk+l = Tk * h, where h = 0.8. The initid number of 
iterations and the upperbound of iterations are depending on 
the number of modules and the number of processors of the 
system which are given by L1 = m*(m+n) and upperbound = 

(m+n)*L1, respectively, where m is the number of modules of 
a given task and n is the number of processors in the system. 
On our experiments, we have four tasks in a six-processor 
multiprocessor system with their size and the complexity in 
increasing order. That is, tasks 1, 2, 3, and 4 are consist of 
six, eight, ten, and twelve modules, respectively. The data of 
the topology of the system, the execution costs and the 
communication costs of modules, the maximum capacity of 
each local memory, the expected processing time of each 
module, and the real-time deadlines for each processor are 
shown in Table 1. 

The experimental results are shown in Table 2, where 
tasks 1 and 3 obtain optimal solutions, and tasks 2 and 4 
obtain near-optimal solutions by the proposed annealing 
schedule. The table show that, for example, the final 
assignment of task 1 is (5,5,2,1,2,3) with the critical 
processor is PI and the cost is 161 at the total number of 5879 
iterations and only 2320 assignments are accepted. We 
compare the performance obtained by the proposed annealing 
schedule with another conventional annealing schedule which 
are shown in Fig. 2 and Fig. 3. The performance are the 
quality of solution and the running time required by the 
algorithms. The proposed annealing schedule always obtain 
optimal or near-optimal solution with the significant huge 
reduction of the number of iterations. 
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P4 

m l  
m2 
m3 
m A  

P1 P2 P3 P4 P5 P6 

45 55 60 80 62 51 

32 18 26 29 31 24 

m l  m2 m3 m4 m5 m6 m7 m8 m9m10 m l l  m12 
0 25 0 35 13 3 10 0 26 19 12 0 
25 0 18 0 0 21 0 14 0 35 0 3 
0 18 0 35 25 0 2 1 2  0 0 25 0 
35 0 35 0 12 34 0 0 0 19 0 0 

21 34 19 42 21 34 
tologolyofthesystem I 41 23 53 29 42 24 I 

1 8 10 11 9 10 3 I 
14 20 32 16 15 18 Task 1 : ml -m6 
33 48 42 26 36 40 

Task 2 : ml - m8 m12 56 43 37 34 32 41 

Task 3 : ml - m10 

Task 4 : ml - m12 
execution costs -- mauix E 

I 13 0 25 12 0 6 21 30 27 0 0 4 
3 21 0 3 4  6 0 15 0 0 0 11 0 
10 0 2 0 2 1  15 0 1 5  0 17 0 0 
0 14 12 0 30 0 15 0 0 24 15 0 
26 0 0 0 2 7  0 0 0 0 2 8 3 2  5 

35 0 19 0 0 17 24 28 0 0 0 
12 0 2 5  0 0 11 0 1 5  5 0 0 14 

3 0 0 4  0 0 0  5 0 1 4 0  

communication costs -- matrix C 

Vector B = (20,40,45,30,15,22,16,25,10,12,32,42) 
Vector Q = (85,120,100,110,125,110) 
Vector D = (5,4,3,1,2,5,4,6,1,2,3,4) 
Vector L = (15,25,20,15,10,12) 

Table 1. Data of four tasks for task assignment problems. 

Table 2. Tabulation of experimental results of four tasks. 

300 250 t 
X 

'0 
X 

'0 

I optimal solutions 
0 obtained by the 

efficient annealing 
schedule 
obtainedbyan 
inefficient annealing 
schedule 

I 
Task1 Task2 Task3 Task 4 

Fig. 2 Comparison between efficient and inefficient 
annealing schdule. 

.- B 
mrfficiemt -ding schedule / 

offklrnf mealulg sshcdulr ii Task 1 Task2 Task3 Task 4 

Fig. 3. The reduction of the number of iterations. 

5. Conclusions 

In this paper, we have presented an approximate 
approach by simulated annealing for task assignment 
scheduling problem. The perfomiance of simulated annealing 
is heavily depends on the problem size as well as the range of 
all parameters to be given in  the annealing schedule. The 
theoretical studies and the empirical rules are both critical to 
design a good annealing schedule. However, it is quite a 
different approach in comparisons with other proposed 
methods for task assignment scheduling problem. This 
approach allows other system constraints to be easily 
incoporated. With proposed efficient annealing schedule, the 
optimal solution or the near-optimal solutions can be obtained 
in a reasonable computation time. Further researches can be 
directed to parallel or distributed implementation of simulated 
annealing algorithm. 
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