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ABSTRACT 

We test the idea of visualizing economic statistics 
data on self-organization [1][2] related maps, which are 
the LLE[3], ISOMAF'[4] and GTM[5] maps. We report 
initial results of this work. These three maps all have 
distinguished theoretical foundations. The statistic data 
usually span high-dimensional space, sometimes more 
than 10 dimensions. To perceive these data as a whole and 
to foresee future trends, perspective visualization 
assistance is an important issue. We use economic 
statistics[6] for the United States over the past 25 years 
(1977 to 2001) and apply them on the maps. The results 
from these three maps display historic events along with 
their trends and significance. 

1. INTRODUCTION 

It is hard to perceive the economic state of a nation 
as a whole based on large amounts of multivariate 
economic statistics. In Fig.1, we plot economic statistics 
for the United States over the past 25 five years. Such a 
chart may not help us to perceive intricate econclmic 
situations. One may wonder wether if the data cart be 
represented on a 2-D surface [2] rather than in a lligh 
dimensional form, one will be able to see it clearly. 'This 
issue involves the fundamental problem of dimensionality 
reduction: how to discover compact representation:; of 
high-dimensional data. The manifold concept is 
introduced to obtain such a representation. By assunling 
that the statistic data are intrinsically low dimensional, 
one can apply the manifold methods, such as LLE, 
I S O W  and GTM, to reduce the dimension of the data 
from high to low. In the following section, we briefly 
review these three methods and apply them to visualize 
these economic data. 

,, 

2. METHOD 

We show in the following how to process raw 
statistics, and we briefly review the three manifold 
methods. 

2.1. Data preparation 

We used economic data[6] for the United States 
over the past 25 years (1977 to 2001) in all our 
simulations, which included eleven statistics: the averaged 
gross national product (GNP), consumer price index (CPI) 
growth rate, unemployment rate, foreign currency reserve, 
foreign exchange rate, prime rate, export growth rate, 
import growth rate, economic growth rate, balance of 
international payments and money supply growth rate. 

Some of these data were in the percentage format, 
and some of them were in the numerical format spread 
over various large ranges. We normalized each range so 
that each statistic made an equal contribution. Three 
processing steps, as listed below, were used to construct 
2-D maps of the economic data: 

1. Normalize each statistic data range to 1. 
2. Feed these normalized data into the dimensionality 

reduction algorithms LLE, ISOMAP and GTM. 
3. Retrieve 2-D results and plot them on the plane. 

2.2. Locally Linear Embedding (LLE) 

According to the paper by Lawrence K. Saul and 
Sam T. Roweis [3], one may use LLE to apply 
dimensionality reduction to these economic data. The LLE 
algorithm is based on geometric intuition. It regards each 
input vector (which can be seen as a point in high 
dimensional space) as being rounded by K neighbors. K is 
a neighborhood factor that affects the result of this 
algorithm. Then it is possible to find a locally linear 
reconstruction to reconstruct a data point from its 
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Fig. 1: U.S. economic statistics plotted in a 
cumulative manner. (a)unemployment rate, (b)CPI 
growth rate, (c)money supply growth rate, (dlprime 
rate, (e)import rate, flexport rate, (g)economic 
growth rate. 

neighbors. Reconstruction errors are measured by means 
of the cost function: 

where Xi is the central point, Xj is Xi’s neighbors and the 
weight W, summarizes the contribution of the jth data 
point to ith data center point in the reconstruction. By 
minimizing the cost function, we obtain the weights Wij . 
According to the design, the reconstruction weights W, 
reflect intrinsic geometric properties of the data that are 
invariant to exactly such transformations. The final step of 
the LLE algorithm is mapping each high dimensional 

observation into low dimensional vector Yi , which is 

represented by global coordinates on the manifold. This 
can be accomplished by choosing d-dimensional (d was 
set to 2 in all our simulations.) coordinates Yi to 
minimize the embedding cost function: 

- 

- 

The only free parameter is the number of neighbors 
per data point, K. In our case, the statistic data had 
dimensionality 1 1. If we want to avoid the problem where 
the least square [3] in finding the weights does not have a 
unique solution, then K should be set less than 11. After 
setting K, we did not obtain satisfactory results. After 
several tries, we found that K=17 gave a better result. The 
result is shown in Fig.2, where each dot denotes one year. 

2.3. Isometric Feature Mapping (ISOMAP) 

An approach that combines the major algorithmic 
features of PCA and h4DS [7] is called I S O W  [4]. The 
ISOMAP algorithm takes the distances dx(ij) between all 
pairs Xj xi among N data points in the high-dimensional 
input space X, measured either in the standard Euclidean 
metric or in some domain-specific metric. The output 
vectors Yi in a d-dimensional Euclidean space Y represent 
the intrinsic geometry of the data. Three steps in this 
algorithm are listed below: 

1. Construct a neighborhood graph. 
2. Compute the shortest paths. 
3. Construct a d-dimensional embedding. 
The only free parameter, K, which is the 

neighborhood factor, appears in the first step. In our study, 
K was set to 3, and the result is shown in Fig.3. 

2.4. Generative Topographic Mapping (GTM) 

The GTM algorithm, developed by Christopher M. 
Bishop, Markus Svensen and Christopher K.I. Williams 
[5], provides a principled alternative to the widely used 
‘self-organizing map’ (SOM) algorithm [l]. The GTM 
consists of a constrained mixture of Gaussians, in which 
the modal parameters are determined based on maximum 
likelihood using the EM algorithm. 

We generated the components of the statistical data’s 
GTM using a 2-D latent space. The number of basis 
functions was set to 36, and the width of the basis 
fimctions was set to 4, a size comparable to the distance 
between two neighboring basis function centers. The 
weight regularization factor was set to off. The result is 
shown in Fig.4. 

3. RESULTS 

We summarize significant features on the maps. 
Comparing the results shown in Figs.2,3, and 4, we find 
historic events and list them in Table 1. We point out 
several indications on the maps. All events are more or 
less emphasized on the maps. When economic conditions 
deteriorate, the states in the figure sway outward from the 
cluster center to the edges or make a large jump, such as 
for the 1997 Asian Economic Storm indicated in Fig. 3, 
the 1987 New York Stock Market Crash indicated in Figs. 
4 and 2, and the 2001 economic deterioration indicated in 
Figs. 2 and 4. We observe that the years close to the 
cluster center have very stable economic states, and that 
the years on the edges or corners have bad economic 
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states. The years that move toward the cluster centers 
show how effective the economic policies were. By means 
of these maps, we can perceive economic states and 
foresee their trends. 

In Fig.2, the years from 1978 to 1982, swaying near 
the edges, reflect the Second Oil Crisis. Tracing the dots 
to 1986, we see that they lead to a big jump to 1987, 
reflecting the October 1987 New York Stock Market 
Crash. In the next year (1988), in the same figure, the dots 
approach the edge and retum in 1989. Years smoothly 
approach the cluster center during 1990-1993 but fall to 
the edge during 1994-1995. The years 1994-1995 have 
heavy inflation. From 1998 to 2001, the dots sway near 
the edge and have big jumps, indicating economic 
deterioration. 

The LLE map reveals many significant economic 
features as described above. We next show how ISOMAP 
works. In Fig.3, the dots for the years 1977 to 1982 
approach the edge corner, reflecting the Second Oil Crisis. 
From 1987 to 1988, the dots jump to the edge, reflecting 
the New York Stock Market Crash. The dots return for 
1989, but fall outward again for 1990, which was the year 
of the Gulf War. Following on to 1997-1998, the dots 
make a huge jump to another edge, showing ecorlomic 
deterioration due to the Asian Economic Storm. 

In Fig.4, the dot for 1986 at the bottom-right jumps 
to the upper-left in 1987, indicating a dangerous situation, 
the New York Stock Market crash in October 1987. We 
may presume that big jumps in GTM mean dangerous 
situations. Following the dots to 1989, another jump 
occurs from 1989 to 1990. The Gulf War happened in 
1998. From 2000 to 2001, there is a big .jump, 
corresponding to economic deterioration in 2001. Indeed, 
the Nasdaq index dropped to a low level in 200 1. 

These three methods (LLE, ISOMAP and GTM) 
produce results that display different economic features. 
Each method is sensitive to certain events. In Fig.3, 
ISOMAF' is most sensitive to the Asian Economic Storm. 
GTM (Fig.4) is very sensitive to the stock marker:, and 
LLE (Fig.2) is sensitive to the all events except the Asian 
Economic Storm. 

2001 
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Fig 2: U.S. economic statistics embedded from 11-D to 2-D using the LLE method. 

Each dot denotes one year, and solid dots are years that appear in Table.1. 
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Fig 3: U.S. economic statistic embedded from 11-D to 2-D using ISOMAP. 

Each dot denotes one year, and solid dots are years that appear in Table. 1. 
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Fig. 4: U.S. economic statistic embedded from 11-D to 2-D using the GTM method. 

Each dot denotes a year, and solid dots are years that appear in Table. 1. 
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