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ABSTRACT relations or high-order constraints exist in most data sets. There 

exist several promising methods in the area of neural networks to 

solve this problem such as the backpropagation models [SI and 

self-organization feature maps [3].  

In this work we present a new learning theory to study the 

learning behavior of a neural network which is formed by inter- 

connecting neurons. This learning theory is a new approach for the 

Boltzmann machine. The central idea presented in this work based 

on minimizing one of the two crossentmpy-like criteria. The twin 

criteria are the crossentropy and the reversed crossentropy, the 

latter is used in deriving the Boltzmann machine by Ackley et al. 

The results derived by our new approach are closely related to those 

by Ackley et al. with several significant modifications in the 

alprithm. A detailed discussions of the new algorithm is presented. 

It is shown that the new algorithm is a probability weighted version 

of the algorithm by Ackley et al. 

Ackley et al. [ 11 devised the Boltzmann machine. They build 

a Hopfield network and the network operates with the principle 

of thermal dynamics. The network can from the internal representa- 

tion of an environmental data set by using the random samples from 

the set. They obtain an algorithm by minimizing a ‘reversed cross 

entropy’ (RCE) [4] objective function to achieve the internal 

representations of the environmental data set. We will call their 
algorithm the ‘Reversed CrossEntropy’ (RCE) algorithm. This object 

function has a powerful twin, the ‘crossentropy ((3)’ [6]. These 

two object functions between two probability functions {P’(Va) 

and P(va ) }are given as follows 

I. Introduction P(V 1 
RCE: GRCE (P, P’) = P ( V a )  In 

P ’ W a )  ’ 

There are a large number of applications in which it is necessary 

to forming the internal representation of an environmental data set 

and 

giving random samples of the set. The simplest approach is to induce 

some linear relations from the samples Unfortunately, forming the 

linear relations cannot be applied to most cases Severe nonlinear 
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The roles of the two probability functions are reversed in the above 

formulas Both CE and RCE are used as the principles for probabilistic 

inferences 

In the next section we will use the CE as the objective function 

and derive a new algorithm We will call this new algorithm the CE 

algorithm The CE algorithm is then compared with the RCE 

algorithm The same notations and procedures as in [ I ]  are adopted 

to facilitate the reading. A detailed algorithm of the new approach 

and some discussions are presented in the last section. 

IL Derivation of the CrossEntropy Algorithm 

In this section we will briefly review the derivations by Ackiey 

et  al. and derive the CE algorithm. The same notations and the model 

of the network as in [ 1 ] are also adopted in this work. 

IL 1. Review the Network Model 

The configuration of the network is that it has an arbitrary 

number N of neurons and weights{wi, = wji, wu = 0; 1 f i, j < N }  

where wij is the strength of the interconnection between the i* 

neuron and the jth neuron. All neurons are bistate neurons with 

state 6i = 0 or 6i = 1. The transition rule for the state changes of 

each neuron is that the state 6 k  of the kth neuron, where 1 < k < N, 

is set to 6k = 1 with the probability 

where A &  is the incoming excitation energy and T is the pseudo- 

temperature. The transitions of states of the neurons is asynchronous 

Defming the total energy Eg of the network as, 

where 6: denotes the neuron in a global States g Of the network. 

When the network reach “thermal equilibrium” the relative pro- 

bability of two global states g l  and g2 of the network will follow the 

Boltzmann distribution: 

The neurons are further divided into two parts, one is called 

visible neurons and the other is called hidden neurons Accordingly, 

we divide the neuron’s index set into two subsets, { 1, 2, . . . , N}= 

{ U I U E visible neurons, 1 < U f N, } U (0 I 0 E hidden neurons, 

Nv + 1 < 0 < N } ,  where N - N, = Nh, N, is the total number of 

visible neurons, Nh is the total number of hidden neurons. To 

facilitate the analY%S, let vu denotes the vector states of the all 

N, visible neurons, H,,- denotes the vector states of the all Nh hidden 

neurons, and Vu A H, denotes the global states of the all N neurons 

in the network. The main idea of the Boltzmann machine is to devise 

an algorithm which takes full advantage of the mechanism of the 

network. In their work the internal representation of the network 

is achieved by minimizing the distance between the network’s own 

probability function P’(V,) over the visible neurons and the envim 

mental probability function P (Vu) over the visible neurons. The 

distance employed by Ackley et al. is the RCE. In the following 

subsection we will review their derivations briefly to facilitate some 

useful derivations 

JI. 2. Review the RCE Approach 

The distance they employed is the RCE, 

where P(Vu) is the probability of the vector state of the visible 

neurons when their states are determined by the environment, and 

€“(Vu) is the corresponding probability when the network is running 

freely with no environmentai input. We want to adjust the wi, to 

reduce the distance GRCE. TO achieve the minimum distance we 

need to follow the negative direction of the gradient s a n d  
amij  

62. fmd a practical method to obtain an estimated gradient- . 
We now briefly review the derivations of-in order to facilitate 

some useful derivations According to Boltzmann distribution: 

awij 
~ G R C E  

a m i j  
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(7) 
1 - = - -  r Pi] - P'i] I 

where Q is the pseudoenergy of the system in a global state Va A 

H,,. The following two formulas given m [ 11 are useful for obtaining 

a GRCE 
awij 

the gradient of the distance (1). 

Differentiating (2) y i e h  

where Pij = 2 , ~  P ( v a m ) 6 q e  6fB and = 2 4  P'(vhAH,) 8y 

Si". The pij is the averge probability of two units both being the on 

state when the environment is clamping the states of the visible 

neurons, and p'ij is the corresponding probability when the environ- 

mental input is not present and the network is running freely. 

To minimize GRCE, it is therefore sufficient to  obselve 

(estimated) pij and p'ij during the network is in thermal equiliirium, 

zp e- EaBIT Eh,, e- Sy 6J" and to change each weight by an amount proportional to the dif- 

ference between this two quantities: 
- 

(2- e - E d T ) 2  

- P'(va) 2 P'W,/\fi,,)S? 61"' ] . (3) * 
Note that the relativefrequencies [2], '&j and p'ij, of the went 

{si  = 1 and SI = 1 } at equilibrium is good estimators of pij and By using the above two formulas we get the gradient of (1) 

Piij. 

PWa) ap'(va) -- aGRcE - - 2  -- 
awij a ~'(v,) awij 

1 P(V 1 
T a P'(V,) B 

II. 3. CEApproach 

The only difference between the CE approach and the RCE = - - E L  [ZP'(Va/\HB)6fBSpB 

approach is that we employ CE for the defhition of distance. By 

defmition, CE is 
- P'(V,) 2 P'(Vh/\H,)6? 6j" ] . (4) 

U 

From the defmition of conditional probability 

and the fact 

aGCE 
( 5 )  awij 

We now derive the gradient - as follows 

: obtained by simplifying the above formula 

Substituting the above equality in (4) and using the fact 2,  PW,) = 

1, we get the following gradient equation 

: obtained by substituting (3) in 
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U The two formulas, (10) and (12), show that the CE algorithm is a 

: factorizing P’(V,) fme crossentropy weighted version of the RCE algorithm When 

W(V,) = - P(V,) the CE algorithm is identical to the RCE algorithm 

Comparing the equation (10) and (12) we see that the CE 
1 

= Z [ P’(V,)In- P‘(va) ] - [ Z P’(HB I V,)8pB8qB - p‘ij] 
P(Vu) T B 

algorithm matches the detailed shape of the two probability functions. 

Sine pij and p’ij are also the second order statistics (cross-covariance 
: using definition of conditional probability function 

functions), the RCE algorithm matches only the two probability’s P’(V) 1 

PWa) T 0 second order statistics but not the detailed shape. 
= Z [ P ’ ( V , ) h z ] - [ Z P ( H B  IV,)6qBsq@-p’ij]  

We will further discuss the detailed CE algorithm in the following : using (6) P’(q I V,) = P ( q  t V,) 

section 

awij 

where 

V,) = Z P(HB 
B 

V,) sp@ sq8 

III. Comparison and Discussion 

P’ij 1 (10) 

In comparing the two algorithms frst  we note that the two 

updating formulas (7) and (10). The formula (7) is biophysically 

meaningful and is still within the scope of the assumptions proposed 

by Hebb [ 31. The formula (10) has less physical meaning. It is hard 

to devise a plausible biophysical mechanism to implement the 

is the average conditional probability of two neurons both being 

in the on state when an environmental state vector Vu is clamping 

the states of the visible neurons Let 

The gradietlt formula can be further simplified as 

To minimize GCE, it is therefore sufficient to observe pij (lVu), 

p’ij, and W(V,) when the network is in thermal equilibrium, and to 

change each weight by an amount proportional to the weighted 

difference between these two probabilities: 

~ G R C E  
awi j  To compare the two gradients we revise the formula- 

by substituting the identity (5,6) in (4) and get 

formula (lo), even through the (10) is proved to be a powerful 

algorithm in learning. 

People m&ht wonder that if we can switch the meanings of 

the two probabilities in formulas (1) and (9) and say that (1) is the 

CE and (9) is the RCE. The answer is not easy. This is because their 

are four invariance and consistency axioms behind the crossentropy 

(9). See [ 61 for details 

We now present and discuss the detailed CE algorithm for the 

variant Boltzmann machine. The following algorithm for each learning 

cycle is a modified version of those described in [ I]. 

CE Algorithm for each Learning Cycle: Let n denotes the n* learning 

Cycle. 

Step 1 Estimation of p:j/v,( IV,): Each environment vector in turn 

is clamped over the visible neurons For each environment 

vector, the network is allowed to reach equilibrium twice. 

Statistic about how often pairs of neurons are both on 

together are collected at equilibrium for every different 

environmental clamped vector Vu. The same noisy clamping 
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Step 2 

Step 3 

Step 4 

Step 5 

technique as in [ 11 is also applied to prevent the weights 

from growing too large. 

Estimation of p;: The network is completely unclamped 

and allowed to reach equilibrium at low temperature (by 

annealing). Statistics about how often pairs of neurons 

are both on together are then collected for as many 

annealings as are used to estimate pij/v,( IV,). 

Estimation of P"(V,): The statistics about how often the 

occurrences (relativefrequency) for every different environ- 

mental vector, V,, are collected as an estimation of the 

PO', 1- 

Estimation of P*'(V,): The statistics about how often the 

occurrences for mry different state V, of the visible 

neurons are collected at equilibrium for as many annealings 

as are used to estimate p$ . 
Updating the weight Aw;: The estimated values { PE( IV,), 

pia, P"(V,), P"(V,) } are then substituted in (1 1) to obtain 

the weight changes &wyj. 

Aw; = - - E  5 [ Prj/v,(IVa) - Pi;] (13) 

Renew the weights wr:' = wrj + Awrj. Check if the network is 

convergeyetusingtheformulamax{IAw:jI, 1 < i < j < N } < 6 ,  

where 6 is a predetermined threshold. If it is not converge, then 

renew the weights 

repeat the fwe steps 

= U; + AU;~, start the next cycle, and 

Note the same annealing technique as in 111 can be used in this 

CE algorithm. 

We now discuss the above algorithm. Since in most cases the 

number of visible neurons N, is large and the total visible states of 

the network is 2Nv. All the 2Nv states have none-zero probability 

at any none-zero temperature. And in many cases the total number 

Ne of the environmental state vectors is much smaller than 2 N v .  

SO, the probability P(V,) is zero for many system's states V,. In both 

RCE 

and CE distances this zero probability, P(V,) = 0, will cause the 

distance infmitive large. And the updated weights using the estimated 

gradients tend to mainly match the two probabilities P'(V,) and 

P(V,) at those states V, which have zero or small probability p(v,) 

= 0. This is because this kind matching will of course reduces a large 

distance. This phenomenon also affects some of the weights B~OWS 

very large { if the weight -- < wij < - can have infinitive range} 

to prevent those network's states from happening {or make those 

states have very high energy}. Note that this point is according 

to Boltzmann distribution, a high energy state has small probability. 

In order to remedy this problem Ackley at el. suggest using noisy 

environmental state vectors to smooth the destructive zero-probability 

of some environmental states P(V,) = 0. 

For this problem we devise a strategy to keep the weight w i j  

from growing too larpe. Since infmitive range of the weight -00 < 
wij < - causes the network system has a very wide range of linear 

flexibility. This wide flexibility survives those system's states V, 

with non-zero probabilities when the same environmental states 

V, make no appearance, that is P(V,) = 0 for some of the network's 

own states V,. For this problem, the strategy is to limit the infinitive 

range of the linear weights by using weights with limits and exhaust 

the flexibility of the network system as much as possiik. by the 

environmental states with non-zero probability, that is by the states 

with P(V,) # 0. 

We descnie the method as in the following context. We obtain 

a new weight wij by applying a &mod function to the updated 

weight, wt" = a; + B a r j ,  and obtaining the new weight 

U [ w[y], where U [ X ]  is a sigmoid function and n denotes the number 

of the learning cycle. The simplest sigmoid function which may be 

used is the linear threshhold logic function, 

x ,  i f i x l <  c l ; c l > O ;  

U [XI  = c1 if x > c l  ; 

-cl if x < c1 ; 1 
where c1 is a fvted constant. With properly adjusted c1 the flexibility 

of the whole network could be exhausted by the fmite number 'Ne' 

environmental states. This strategy indirectly keeps the probabilities 

of those states V,, which has a P(V,) = 0, as close to zero as possible. 

According to the above strategy the Step 5 should be replaced 
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by the following Step 5 *. 

step 5* Updating the weight AuYj: The estimated values {pf] ( IV,,), 

p';, P"(V,,), P'"(V,,)} are then substituted in the following three 

formulas to obtain the weight changes A u f j  , 

where 

9 = { P(V,,)  # 0 and P"'(V,) # 0 } 

is the summation domain in which all V,, with Pn(Vu) > 0 and 

P'"(V,) > 0. The following sigmoid function is used. 

x, if 1x1 < c l ;  c1 > 0 ;  

- c  if x < c1 ; 

Check if the network is converge yet; max { IAuyj  I, 1 < i < 

j < N }< 6, where 6 is a predetermined threshold. If it is not 

converge, then renew the weights = ayj + A u 6 ,  start the 

next cycle, and repeat the fNe steps Note that the environmental 

zeroprobability states Vu should not be included in the summation 

in the updating equation (14). 

Further comparing the two updating formulas, (8) and (1 l), 

we see that the updating formula (11) is contriiuted by the 

components of different states V,,. In order to perfectly match the 

states which has high environmental probabilitieS it can be achieved 

purposefully by summing those significant components of states 

V,, which has high environmental probabilities So, the summation 

domain can be further modifiid as 
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where q? and qt are the selected positive constants for the n* cycle. 

The RCE Jorithm can have this kind ability only through the revised 

formula (12). 
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