
Joint Recognition of Multiple Concurrent Activities
using Factorial Conditional Random Fields

Tsu-yu Wu and Chia-chun Lian and Jane Yung-jen Hsu
Department of Computer Science and Information Engineering

National Taiwan University
yjhsu@csie.ntu.edu.tw

Abstract

Recognizing patterns of human activities is an important
enabling technology for building intelligent home environ-
ments. Existing approaches to activity recognition often fo-
cus on mutually exclusive activities only. In reality, peo-
ple routinely carry out multiple concurrent activities. It is
therefore necessary to model the co-temporal relationships
among activities. In this paper, we propose using Factorial
Conditional Random Fields (FCRFs) for recognition of mul-
tiple concurrent activities. We designed experiments to com-
pare our FCRFs model with Linear Chain Condition Random
Fields (LCRFs) in learning and performing inference with the
MIT House n data set, which contains annotated data col-
lected from multiple sensors in a real living environment.
The experimental results show that FCRFs can effectively im-
prove the recognition accuracy up to 10% in the presence of
multiple concurrent activities.

1. Introduction
Recognizing patterns of human activities is an essential
building block for providing context-aware services in an
intelligent environment, either at home or in the work place.
Take as an example, the application of elder care in a home
setting, activity recognition enables the intelligent environ-
ment to monitor an elder’s activities of daily living and to
offer just-in-time assistance, playing the role of a responsi-
ble care giver.

Automatic activity recognition presents difficult techni-
cal challenges. To tackle the problem, one often makes the
simplifying assumption by focusing on mutually exclusive
activities only. In other words, most existing approaches
do not take into account the co-temporal relationship among
multiple activities. Such solutions are not accurate enough
in practice as people routinely carry out multiple activities
concurrently in their daily living.

House n is an ongoing project by the Department of Ar-
chitecture at Massachusetts Institute of Technology (Intille
et al. 2006) that offers a living laboratory for the study
of ubiquitous technologies in home settings. Hundreds of
sensing components are installed in nearly every part of the
home, which is a one-bedroom condominium. The living lab
is being occupied by volunteer subjects who agree to live in
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the home for varying lengths of time. Sensor data are col-
lected as the occupants interact with digital information in
this naturalistic living environment. As a result, the House n
data set is potentially a good benchmark for research on ac-
tivity recognition.

Our analysis of the House n data set reveals a significant
observation. That is, in a real-home environment, people of-
ten do multiple activities concurrently. For example, the par-
ticipant would throw the clothes into the washing machine
and then went to the kitchen doing some meal preparation.
As another example, the participant had the habit of using
the phone and the computer at the same time. As is shown
in figure 1, there are many cases in the House n data set
in which people would perform multiple activities concur-
rently.

Figure 1: Annotated activities in the House n data set from
10 AM to 1 PM.

Traditionally, research on activity recognition has focused
on dealing with mutually exclusive activities. In other
words, they assumed that there is at most one activity oc-
curring at every time point. For any given time point, the
primary concern is to label with the most probable activity.
Given that multiple concurrent activities do exist, we should
no longer make the assumption of mutually exclusive activ-
ities. In addition, we should not ignore the fact that multiple
activities interact with each other, as it could be of great help
to take such relationship into account.

Conditional Random Fields (CRFs) (Lafferty, McCallum,
& Pereira 2001) provide a powerful probabilistic frame-



work for labelling and segmenting structured data. By
defining a conditional probability distribution over label se-
quences given a particular observation sequence, CRFs relax
the Markov independence assumption required by Hidden
Markov Models (HMMs). The CRF model has been ap-
plied to learning patterns of human behavior (Chieu, Lee, &
Kaelbling 2006; Sminchisescu, Kanaujia, & Metaxas 2006;
Liao, Fox, & Kautz 2007). Nevertheless, as mentioned
above, previous research ignored the possible interactions
between multiple concurrent activities.

To address this problem, we advocate using a factorial
conditional random fields (FCRFs) (Sutton & McCallum
2004) model to conduct inference and learning from patterns
of multiple activities . Compared with basic CRFs, FCRFs
utilize a structure of distributed states to avoid the exponen-
tial complexity problem. In addition, the FCRF model ac-
commodates the relationship among multiple concurrent ac-
tivities and can effectively label their states.

This paper is organized as follows. In section 2, we intro-
duce the CRFs model. Section 3 presents FCRFs for mul-
tiple concurrent activities recognition including the model
definition, the inference algorithm, and the learning method.
Our experiment for performance evaluation of this model is
described in section 4, followed by the conclusion and future
work.

2. Conditional Random Fields
CRFs are undirected graphical models conditioned on ob-
servation sequences which have been successfully applied
to sequence labelling problems such as bioinfomatics (Sato
& Y. 2005; Liu et al. 2005), natural language processing
(Lafferty, McCallum, & Pereira 2001; Sha & Pereira 2003;
Sutton & McCallum 2004; Sarawagi & Cohen 2005) and
computer vision (Sminchisescu, Kanaujia, & Metaxas 2006;
Vishwanathan et al. 2006).

Unlike generative models such as Dynamic Bayesian Net-
works (DBNs) and HMMs, CRFs are conditional models
that relax the independence assumption of observations and
avoid enumerating all possible observation sequences. Max-
imum Entropy Markov Models (MEMMs) are an alternative
conditional models, but they suffer from the label bias prob-
lem (Lafferty, McCallum, & Pereira 2001) due to per-state
normalization. In contrast, CRFs are undirected structures
and globally normalized, thereby solving the label bias prob-
lem.

Let G be an undirected graph consisting of two vertex
sets X and Y , where X represents the set of observed ran-
dom variables and Y represents the set of hidden random
variables conditioned on X . Given graph G, let C be the set
of maximum cliques, where each clique includes vertices
Xc ∈ X and Yc ∈ Y . For a given observation sequence
Y , CRFs define the conditional probability by the potential
function Φ(Xc, Yc) such that

P (Y |X) =
1

Z(X)

∏
c∈C

Φ(Xc, Yc)

where Z(X) is the normalization constant.

Figure 2: An LCRF example for activity recognition.

Figure 2 shows an example of applying linear chain CRFs
(LCRFs) to activity recognition. We can represent the states
of activities as a time sequence. Thus, we have a set
of hidden variable nodes Y = {Y 1, Y 2, Y 3 . . .} standing
for the activity sequence. Given the observation sequence
X , the dependency can be defined by the feature func-
tions upon the cliques. Several researchers have applied
CRFs to activity recognition (Chieu, Lee, & Kaelbling 2006;
Sminchisescu, Kanaujia, & Metaxas 2006; Liao, Fox, &
Kautz 2007) , but they did not address the issue of multi-
ple concurrent activities.

3. Factorial CRFs Model
As was discussed in the previous section, recognition of mu-
tually exclusive activities can be modelled with CRFs. To
recognize multiple concurrent activities, it is possible to con-
struct a unique model for each individual activity. However,
this approach ignores the relationship between different ac-
tivities. For example, the House n data set (Intille et al.
2006) shows that the participant often used the phone and
the computer concurrently in the experiment. In addition,
a person typically cannot sleep and watch TV at the same
time.

To take the co-temporal relationship between multiple ac-
tivities into account, we may treat each combination of mul-
tiple activities as a new activity. However, the model com-
plexity of this approach grows exponentially with the num-
ber of activities to be recognized. As a result, inference and
learning may become computationally intractable when the
number of activities is large.

Factorial CRFs (FCRFs) (Sutton & McCallum 2004),
which are like Factorial HMMs (FHMMs) (Ghahramani &
Jordan 1997), suggest a structure of distributed states to
avoid the exponential complexity problem. In addition,
FCRFs can model the dependency between multiple concur-
rent activities by introducing co-temporal connections. In
section 3.1, we provide the formal definition of the FCRFs
model. Sections 3.2 and 3.3 introduce the inference and
learning algorithms for FCRFs.

3.1 Model Representation
Let Y t

i be a random variable whose value represents the
state of activity i at time t and Y t = {Y t

1 , Y t
2 . . . Y t

N}
where N is the number of activities to be recognized. In



a total time interval T , let Y = {Y 1, Y 2 . . . Y T } be a se-
quence of vector Y t. We can define the observation se-
quence X = {X1, X2 . . . XT } in the same way. Suppose
that there is a graph G = {V,E}. Let each element in Y t

and Xt be a vertex in G. Edges in G represent the relation-
ships between these random variables.

Figure 3 shows a sample FCRF model for recognition of
three concurrent activities. The FCRF is represented in a
dynamic form by unrolling the structure of two time slices.
There are two sets of edges standing for different relational
meanings. The edge set Ec, which includes pairs of activity
variables in the same time slice, represents the co-temporal
relationship; the edge set Et, which includes pairs of ac-
tivity variables across time slices, represents the temporal
relationship.

Figure 3: An FCRF example of three concurrent activities.

We define pair-wise potential functions Φc(Y t
i , Y t

j ) for
each edge (Y t

i , Y t
j ) in Ec and Φt(Y t

i , Y t+1
i ) for each edge

(Y t
i , Y t+1

i ) in Et. And we define the local potential function
Ψ(Y t

i ) for each vertex Y t
i in G. The FCRFs will be deter-

mined as

p(Y |X) =
1

Z(X)

 T∏
t=1

N∏
i,j

Φc(Y t
i , Y t

j )


(

T−1∏
t=1

N∏
i

Φt(Y t
i , Y t+1

i )

)(
T∏

t=1

N∏
i

Ψt(Y t
i )

)
where Z(X) is the normalization constant.

Z(X) =
∑
Y

 T∏
t=1

N∏
i,j

Φc(Y t
i , Y t

j )


(

T−1∏
t=1

N∏
i

Φt(Y t
i , Y t+1

i )

)(
T∏

t=1

N∏
i

Ψt(Y t
i )

)
The potential functions Φc, Φt and Ψ are then defined

by a set of feature functions f = {f1, f2 . . . fK} and their

corresponding weights λ = {λ1, λ2 . . . λK} such that

Φc(Y t
i , Y t

j ) = exp

(∑
k

λkfk(Y t
i , Y t

j , X)

)

Φt(Y t
i , Y t+1

i ) = exp

(∑
k

λkfk(Y t
i , Y t+1

i , X)

)

Ψ(Y t
i ) = exp

(∑
k

λkfk(Y t
i , Y t

i , X)

)
Now, we have formally defined the FCRFs.

3.2 Inference Algorithm
Given any observation sequence O, there are two kinds of
inference tasks of concern. One task is to compute the
marginal probability of each node pair. The marginal prob-
ability is needed in the learning algorithm to be introduced
later. The other task is performing MAP inference to infer
the most possible sequence of activities states.

There are many inference algorithms for CRFs, including
forward-backward algorithm, mean field free energy, junc-
tion tree, and loopy belief propagation (LBP). LBP is one of
the most popular methods for performing inference in CRFs.
Even though it can only approximate the probabilities and
does not guarantee convergence for graphs with loops, LBP
has been shown to be effective (Sutton & McCallum 2004;
Vishwanathan et al. 2006; Liao, Fox, & Kautz 2007).

3.2.1 Sum-Product Algorithm To compute the marginal
probability, the LBP sum-product algorithm is adopted. We
introduce a “message” mij(Aj) for each pair of neighbor-
ing nodes Ai and Aj , which is a distribution sent from node
Ai to node Aj about which state variable Aj should be in.
All messages mij(Aj) are initialized as uniform distribu-
tions over Aj . The message mij(Aj) sent from node Ai to
its neighbor Aj is updated based on all the messages to Ai

received from its neighbors An except Aj .

mij(Aj) = κ
∑

i

Ψ(Ai)Φ(Ai, Aj)
∏

k 6=i,j

mki(Ai)


where Ψ(Ai) is the local potential, Φ(Ai, Aj) is the pair-
wise potential, and κ is the normalization constant.

The messages propagate through the CRF graph until they
converge, when every message varies for less than a thresh-
old. Given that LBP does not guarantee convergence, we set
a limit on the maximum number of iterations. Although the
update order of messages may affect the convergent speed,
empirical study (Sutton & McCallum 2004) showed that a
random schedule is sufficient.

After LBP converges, the marginal probability of nodes
Ai and Aj is then determined as

P (Ai, Aj) = κ′Θ(Ai, Aj)
∏

k 6=i,j

mki(Ai)
∏

l 6=i,j

mlj(Aj)

where
Θ(Ai, Aj) = Ψ(Ai)Ψ(Aj)Φ(Ai, Aj)

k enumerates over all neighbors of Ai, l enumerates over all
neighbors of Aj and κ′ is the normalization constant.



3.2.2 MAP Inference To do MAP inference, the summa-
tion part of the message update rule in sum-product algo-
rithm is replaced by maximization.

mij(Aj) = κ max
i

Ψ(Ai)Φ(Ai, Aj)
∏

k 6=i,j

mki(Ai)


where κ is the normalization constant.

After the LBP converges, the MAP probability of node Ai

is defined as

P (Ai) = Ψ(Ai)
∏
j 6=i

mji(Ai)

where Aj is the neighbor of Ai.
To do the inference, we can label every hidden variable by

choosing the most likely value according to the MAP prob-
ability.

3.3 Learning Algorithm
The purpose of learning is to determine the weight λk for
each feature function fk. We can do this by maximizing the
log-likelihood of the training data. Given the training data
D = {A(1), O(1);A(2), O(2) . . . A(M), O(M)}, the log-
likelihood L(D|λ) is defined as follows.

L(D|λ) =
∑
m

log P (A(m)|O(m))

The partial derivative of the log-likelihood respect to λk is
derived as

∂L(D|λ)
∂λk

=
∑
m

∑
i,j

fk(A(m)i, A(m)j , O(m))

−
∑
m

∑
i,j

p(A(m)i, A(m)j |λ)fk(A(m)i, A(m)j , O(m))

where edge (Ai, Aj) can be either in Ec or Et.
The former part of the partial derivative is easy to com-

pute, while the latter part is more difficult. The marginal
probability for the latter part can be computed by using
loopy belief propagation which we have introduced in the
previous subsection. Since to solve the ∂L(D|λ)/∂λk = 0
does not yield a close form solution of λ, we may use
some optimization techniques such as iterative scaling, gra-
dient descent, conjugate gradient or BFGS (Wallach 2003;
Sha & Pereira 2003) to iteratively update λ in order to find
the weights that maximize the log-likelihood.

Previous research has shown that L-BFGS works well in
such a optimization problem for CRFs learning and many
current CRFs packages implement this method . L-BFGS is
a variant of the Newton method, which is a second order op-
timization method. In Newton method, the computation for
the second order derivative, Hessian matrix, is computation-
ally expensive. BFGS provides an iterative way to approxi-
mate the Hessian matrix by updating the Hessian matrix in
the previous step. L-BFGS implicitly updates the Hessian
matrix by memorizing the update progress and gradient in-
formation in previous m steps. Therefore, L-BFGS reduce
the amount of memory and computation needs.

In practice, L-BFGS requests the partial derivative as well
as the log-likelihood at each iteration. So far, we have ex-
plained how to compute partial derivative. As to the log-
likelihood, computing the normalization constant directly is
infeasible, so we use Bethe free energy (Yedidia, Freeman,
& Weiss 2003) to approximate the normalization constant.

In order to reduce over-fitting, we define a zero mean
Gaussian prior P (λk) = exp(−λ2

k/2σ2) with variance σ2

for each parameter λk so that we maximize the penalized
log-likelihood L(λ|D) = L(D|λ) +

∑
k logP (λk). As a

result, the partial derivative becomes

∂L(λ|D)
∂λk

=
∂L(D|λ)

∂λk
− λk

σ2

4. Experiments
We have introduced the FCRFs model for multiple concur-
rent activities recognition. Let us find out how it works for
the House n datasets. In this section, we describe the ex-
perimental design as well as the experimental result for the
evaluation of our model.

4.1 Experimental Design
We extracted our experimental data from the MIT House n
dataset, which is freely available for academic research.
The dataset was recorded on Friday March 4, 2005 from
9 AM to 1 PM with a volunteer performing a set of com-
mon household activities. The dataset recorded the infor-
mation from a variety of digital sensors such as switch sen-
sors, light sensors, and current sensors, etc. The dataset was
then manually labelled with ground truths of multiple activ-
ities and location information. Unfortunately, with only four
hours of recorded activities in the released dataset, the sen-
sor data were too sparse to be useful for effective training.
As the House n data are still being collected, cleaned, and
labelled, so more comprehensive dataset may be forthcom-
ing. Meanwhile, we decide to utilize the location data as our
primary observations. The location information in the cur-
rent House n dataset is manually annotated and assumed to
be quite accurate. Nevertheless, our system should perform
in the same way should such data come from some (room-
level) indoor location tracking system.

Now, let’s explain the data used in our experiment in more
detail. The annotation data recorded from 9 AM to 10 AM is
a little unorganized, so we decide to use the dataset recorded
from 10 AM to 1 PM. We label the activities every one
second and separate the total 10800-second dataset into 18
parts, 10 minutes for each. To do cross-validation, we ran-
domly select 15 parts from them as the training dataset and 3
parts as the testing dataset. For convenience, we cluster the
original 89 activities into 6 classes of activities, including
cleaning, laundry, dishwashing, meal preparation, personal
and information/leisure. Because the 6 classes of activities
may overlap with each other, the property of multitasking
is suitable for our multiple concurrent activities recognition.
In addition, there are 9 mutually exclusive locations consid-
ered to be observations, including living room, dining area,
kitchen, office, bedroom, hallway, bathroom, powder room
and outside.



We construct our FCRFs model in the following way.
First, for each activity class, we build one hidden variable
node which contains a boolean states representing happen-
ing or not-happening. And then we let all the hidden vari-
able nodes in the same time slice to be fully connected,
which means they have co-temporal relationship. To rep-
resent the temporal relationship, we connect the two hidden
variable nodes across two time slices for the same activity
class. In addition, we connect every hidden variable node
with one observed variable node which represents the states
of location.

In our experiments, we use our FCRFs model to do learn-
ing and inference for multiple concurrent activities recog-
nition. To evaluate the importance of co-temporal relation-
ship between activities, we construct 6 linear chain CRFs
(LCRFs) models as a comparison. Each LCRFs model rec-
ognizes only one activity class at a time.

4.2 Performance Evaluation
We want to test if the LCRFs model and the FCRFs model
can correctly predict the activity sequences by using the 3
parts of the testing dataset. There are 6 activities labels at
each time stamp whose values can be either positive or nega-
tive where positive stands for happening and negative stands
for not-happening. In each part of the testing dataset, there
are 600 seconds and total 3600 activities labels. A label is
considered to be True Positive (TP) if the model correctly
predicts the value as positive and True Negative (TN) if the
model correctly predicts the value as negative. On the con-
trary, the label is considered to be False Positive (FP) if the
model wrongly guesses the value as positive and False Neg-
ative (FN) if the model wrongly guesses the value as nega-
tive. To evaluate our performance, we calculate the recall,
precision and accuracy for these two models given each part
of the testing dataset. The recall, precision and accuracy are
defined as follow.

recall = TP/(TP + FN)

precision = TP/(TP + FP )
accuracy = (TP + TN)/(TP + FP + TN + FN)
The results are summarized in Table 1, which compares

the recall, precision and accuracy for the three parts of the
testing data set. Each column is labelled with either DL

i for
LCRFs on the ith part or DF

i for FCRFs on the ith part.

Table 1: Performance Comparison of LCRFs and FCRFs.
Dataset DL

1 DF
1 DL

2 DF
2 DL

3 DF
3

Recall(%) 19.3 45.9 45.6 60.7 95.1 84.8
Precision(%) 39.8 61.8 97.3 94.2 94.5 69.3
Accuracy(%) 60.6 70.4 74.6 80.3 98.1 90.2

As we can see, the FCRFs model outperforms the LCRFs
models in most of the cases. The only exception is the third
part of the testing dataset. Notice that both models achieve
the accuracy higher than 90% and the accuracy of LCRFs
are even higher than 98%. It means that the location infor-
mation itself is almost sufficient to recognize the activities.

Therefore, taking co-temporal connections into account in
this case may reduce the accuracy a little bit.

In other cases, especially in the first one, because the par-
ticipant goes around in the house, the location information
is inadequate for the recognition of activity. Therefore, the
consideration for co-temporal relationship in FCRFs com-
plements this deficiency. As a result, the FCRFs model im-
proves the accuracy up to 10%. This experiment result pro-
vides us the conclusion that it is pretty helpful to utilize the
co-temporal relationship for activity recognition.

5. Conclusion and Future Work
This paper proposes the FCRFs model for joint recognition
of multiple concurrent activities. We designed the experi-
ments based on the MIT House n data set and compared our
FCRFs model with the LCRFs model. The initial experi-
ment showed that using FCRFs, the improvement in accu-
racy of activity recognition varies from 6% to 10%. We may
therefore conclude that FCRFs can be effectively applied to
joint recognition of multiple concurrent activities in daily
living.

The current experiment presents just an initiative step to-
wards concurrent activity recognition. As we mentioned,
using a single sensor such as location may not be sufficient
for disambiguating among the activities. To further improve
the recognition accuracy, data from multiple heterogeneous
sensors must be combined and taken into consideration in
the activity recognition system.

In addition, we may extend our activity model to represent
long-range temporal dependency as well as the relationship
among different activities across time slices. In our current
implementation, both learning and inference are performed
off-line. To deploy activity inference in real-world context-
aware applications, we will need to develop online inference
such as the CRF-filter algorithm proposed in (Limketkai,
Liao, & Fox 2007).
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