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Abstract 

Molerular bzndzng, zmporlant an drug deszgn, 
explorcs thc  accvratc bzndang structures between 
molecules Thzs exploratzon can be formulated as an 
ylobd opfzmizntzon prob lem Howerrc r, t h f  problem 
an molecular bandang is that t h e  search space as very 
large and t h t  coinputatzontzl (os1 zntrmses trerncn- 
dous ly  with the growth of t h e  tlryrees offreedom In 
this p a p e r .  w e  utz1ize a new alqorzthm callcd the  an- 
nealanq genetic algorithm to  solve the y l o h a l  optamaza- 
tzon problem i n  niolrcular bandznq U s i i t g  an protcan 
wzth threr iintt-cancer drugs zi i  our model, our algo- 
rithm can find n bandzng strucfiirc uuth a complicated 
energy coniputatzon wathan a couple of hours and the 
erperarnerital results Indicate that the sohtzons are rea- 
sonablc 

1 Introduction 

Owing to t,he rapid evolut,ion of the pharmaceutical 
industry in recent years, thousands of kinds of drugs 
against divrarse diseases have b w n  discovered. Tradi- 
tionally, the discovery of these drugs depended largely 
011 skilled choicc and  empiricism. R.ecently, the de- 
vcloprrient,al procedures of drug dmigii have evolved 
systeiiiatically. Research indicates that by exploiting 
certain physicochemical propert.ies of cornpounds arid 
associat,irrg these propertit,s wit ti the hiological activ- 
it,ies of binding bet.ween compounds at  a molecular 
level, t tie design of JWW drugs can be guided. One of 
t h e  associat,ioris is t,liat the basis of biological nctiv- 
i l y  of riiariy drug molecules is the interact,ion of the 
lrug niol(~crilcs with a specific receptor site on a pro- 

t , r i n  inolrculc. Based upon t,hai. observation, the pro- 
ccdure of drug design can he viewed its whether the 
drug ~r io lecul (~  c m  hirid wit.h its receptor. Such an  

approach that hititi.$ 1 1 .  
tor sit,e on a macrcli 
called the macroi: 

,Irrig rnolecule i nb  a recr'p- 
, I ~ T I I I ~  .I protein for itist.ance. is 

1 s  wlar-fif I ''6 approach [ I ] .  

With respect, t I  it^ hiological c t  t,ivity of  intcmtctiori 
1wtwt.cn nioleculr:~, t,he correspuiiwng physicochrwii- 
cal property c m  described as an energy rii inirniza- 
tion problem wliic,h actually minimizes the binding 
energy between molecules. However, the intcract,ion 
between molecules is so complicated t.liat, the rtrini- 
mization problem is very difficult to solve. Iri thc past., 
marly researchers have developed various opt.irnizat,ion 
techniques to solvt, t,hr problem [2][Ll]. In ['t] the Ellip- 
soid algorithm is used t.0 solve the optitniza.tion prob-  
lem. In [4]. a st,ochast,ic optimization technique called 
simulated annealing is used. No mai,tser what, algo- 
rithms are applirtl, they are either too t,imc consiliii- 
ing or can only solve a small scale problern. Instead of 
applying algorit hriis to solve the energy miriiriiization 
problem, other researchers designed systems tjo allow 
experienced users i o  interactively search for t,lie bind- 
ing position of drug molecule on its receptor [3][15]. 
These systems focused on improving the perceptioii 
of human users via the assistance of the visualization 
of 3D molecular struct,iirr: and used simplified energy 
calculat,ioii to siiiiulate the binding proccss tiynarni- 
cally. Through tlie aids of visual cues, wit.11 t,tw force 
field display and forcc feedback provided by t,lir:sc sys- 
tems, humaii users had  new understanding about how 
and why t>he driig rriolecxle binds w i t h  its receptor 
[3]. However, thesc systems need real experts siich as 
biochemist,s designiiig drugs t,o guide the warcli,  and 
even so, binding a n  unknown drug moleculr in t .0  t>h r  
receptor site is not a t,rivial job. 

As ment.ioned above, no matter what approach is 
applied, the corrcctness of the solution is either obtaiii- 
able only in small problems or heavily dependrmt, on 
the domain knowledge of the human users. 'rherefore, 
in our research, wr try to both extend the dirntmsiori 
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of the problem to be solved and avoid the man-in- 
the-loop situation as much as possible. After a lot 
of experimentation, we believe that a new framework 
called the annealing genetic algorithm can be used to 
meet our objectives if parameters of the framework are 
tuned properly. 

The rest of this paper is organized as following. Sec- 
tion 2 gives details of the definition of molecular bind- 
ing and describes the scale of the problem that we will 
solve. Section 3 shows the spirit of our framework, the 
annealing genetic algorithm, and the outlines of the 
tuning process. Experimental results of the algorithm 
are listed in section 4. Some interesting phenomena 
observed in our experiments are included in this sec- 
tion too. The filial section contains our conclusion and 
the directions of our future work. 

2 Problem definition 

In essence, the macromolecular-fitting approach ap- 
plies the techniques of computer graphics to display 
the detailed conformations of the drug and its receptor 
molecules and then uses some numerical optimization 
methods, such as the steepest descent- algorithm, to 
determine the best position and oriental ion of binding 
between these molecules. When we say 1 hat the posi- 
tion and orientation of a drug molecule with respect to 
receptor molecules is better fit than before, it means 
that the extent of the fitness (geometric fit, electro- 
static fit, hydrogen-bond fit, etc.) between molecules 
is more compact. In physics, the extent of the fit- 
ness can be described approximately by the poten- 
tial energy between binding molecule pairs. The lower 
the potential energy, the better the binding configura- 
tion. Hence , when the potential energy is lower than 
some predefined threshold, the macromolecular-fitting 
approach will be able to predict whether the drug 
molecule possesses desired properties with a great 
probability. These properties are related to a drug 
being able to inhibit a specific disease that we want to 
cure. 

However, how can we describe the fitness quanti- 
tatively? In [5], a complicated model is presented. 
The potential energy consists at least of four kinds 
of forces, including van der Waals forces, electrostatic 
forces and hydrogen-bond forces, molecular dynam- 
ics(bond stretching, bond angle bending, and torsion 
angle twisting), and hydrophobic forces(in aqueous 
Lolvent). Based upon the above model, the fitness of 
binding can be formulated quantitatively. But, expe- 
rience indicates that in applying this empirical model 
t,o describe the [)roblem, it becomes too complicated 

to solve directly. Therefore, we first try to solve a sim- 
plified problem. This simplified model considers the 
first two kind of forces mentioned above. When we 
consider that the binding energy approximately con- 
sists of electrostatic and van der Waals forces, it can 
be defined by the Lennard-Jones 6-12 pot,cvitial func- 
tion [15]: 

Kot(r,  d )  = 
3 3 2 q d q r  A r d  - 5 &I(& - 2 d ) l  -k 2 I(& - Z d ) I 1 ’  

B r d  5 I(& - g d ) l 6  

where KOt  is the total energy of binding, q,. and Qd 

are the charges of t b  ato? in the receptor and the 
drug respectively, IR, - Rdl is the distance between 
the receptor and the drug, & , A , . d ,  Brd are the dielec- 
tric and non-bond constants. In this function, the 
first summation simulates the electrostatic interaction 
between each pair of atoms, the second and third sum- 
mation simulate the repulsive and attractive term in 
van der Waals interaction energy. Using this function, 
we can consider the molecular binding problem to be 
an energy minimization problem. 

Unfortunately, when we try to solve the minimiza- 
tion problem formulated above, the true global mini- 
mum is very hard to find. Since the receptor protein 
molecules have hundreds to thousands of atoms and 
the drug molecules have at least 6 degrees of freedom 
for translation and rotation and dozens of single bonds 
that can be twisted, the local minima abound. 

The more formal description of this energy min- 
imization problem is given as follows. Given two 
molecules which consist of a number of atoms defined 
by their three dimensional coordinates, one defines the 
drug molecule, the other defines the receptor molecule. 
Essentially, each molecule viewed as a rigid body can 
be maintained as a graph in which the vertex are the 
atoms and the edges are chemical bonds between two 
atoms. Differing from a pure rigid body, the molecule 
has certain deformable single bonds. We mark each 
such edge in the graph explicitly. Based on these el- 
ementary data sets, the energy minimization process 
between these two molecules becomes: 
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Fix the location of the receptor molecule. Search 
for optimal solutions of the drug molecule in the 
binding. Intuitively, the search space is around 
and inside the receptor molecule. 

Repeatedly adjust different configurations, in- 
cluding translating and rotating the drug 



molecule and twisting single bonds inside the drug 
molecule, to  fit the receptor. 

3. Find the best configuration with the lowest bind- 
ing energy from these configurations. 

Gene 
stc 

Evolve by genetic operator 

1 

Intuitively, the adjustment of the configurations ac- 
tually selects a feasible combination from the possible 
degrees of freedom about the molecules. In the case 
described above, the degrees of freedom include x, y, 
z translation and rotation about the drug molecule 
and single bond twisting inside the drug molecule be- 
cause these operations will alter the relative position of 
molecules and change the binding energy. Obviously, 
it is a combinatorial optimization problem. There are 
over sixteen variables ( 6 basic degrees of freedom 
about rotation and translation and ten single bonds 
inside the drug molecule). Even while the given prob- 
lem is just a simplified case, the global optimal solu- 
tion is still very difficult to  obtain. 

tic 
ge 

3 The algorithm 

Because of the complexity of the problem, optimiza- 
tion algorithms such as gradient-based i rhniques are 
virtually impossible for the molecular I binding prob- 
lem. In the literature, there are two kinds of proba- 
bilistic techniques, simulated annealing [9] [Illand ge- 
netic algorithms [7] [8], which can efficiently approxi- 
mate the global minimum of the combinatorial opti- 
mization problems. 

Simulated annealing is based on thermodynamics 
and can be viewed as an algorithm that generates a 
sequence of Markov chains controlled by gradually de- 
creasing temperature of the system. However, as con- 
trol of the parameter called system temperature is not 
a trivial job, the efficient annealing schedule is hard 
to design. 

Genetic algorithms(GAs) which are based on nat- 
ural selection try to inherit the genes with good fit- 
ness from generation to  generation. Using reproduc- 
tion plans to  exhibit the selection pressure and ap- 
plying genetic operators to populations to explore di- 
verse search space, the genetic algorithm borrows the 
power of the natural selection to solve optimization 
problems. 

Since these two techniques suffer from some draw- 
backs, Lin et. a1 [12], try to  combine the concepts 
of the SA and GA to produce a new stochastic ap- 
proach called annealing genetic algorithm(AG). The 
annealing genetic algorithm incorporates the genetic 
algorithm with simulated annealing. Empirical studies 

Population of current generation 

I 
I 1 . v  I I Search via annealing mschaniw I I 

8 Quasi-population 

Figure 1: The concept of the annealing genetic algo- 
r i thm. 

on several combinatorial optimization problems which 
are in the class of NP indicate that the performance 
of the AG algorithm is promising. The concept of the 
annealing genetic algorithm is shown as follow: 

In Figure 1,  the AG consists of a two-stage cycle, 
the annealing stage and the genetic stage. The popu- 
lations of the current generation first search for better 
candidates for further evolution via the Markov chain 
generation process of the annealing stage. These bet- 
ter candidates served as quasi-populations providing 
the sources of evolution to  which genetic operators can 
be applied. After applying the genetic operators, indi- 
viduals of the next generation are produced. This new 
generation will become a feedback to  the first stage un- 
til the whole population of the generation converges 
to some extent. In summary, AG can be viewed as ei- 
ther a simulated annealing algorithm with population- 
based state transition or a genetic algorithm with the 
Boltzmann-type selection operator. 

Our algorithm essentially follows the spirit of the 
AG proposed in [12]. Problems studied in [12] are 
all represented by the traditional binary string en- 
coding scheme used in genetic algorithms. Based on 
the characteristics of our problem, however, using real 
numbers to encode each parameter is a natural way 
to represent the solution space. Therefore, we ap- 
ply the concept of the real-coded genetic algorithm 
[6][18] into AG. Moreover, we adopt a set of opera- 
tors that have been used in real-coded GA to improve 
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the performance, like linear crossover [18] and blend- 
ing crossover(B1x-0.5) [6]. These operators work well 
when the coding scheme uses real number and indeed 
serve as an important role in our algorithm. We use 
the simulated annealing algorithm as a mutation oper- 
ator in our algorithm. Under the control of the system 
temperature, simulated annealing has a good feature 
in that the diversity of exploration is guaranteed when 
the temperature is high enough, and the guidance of 
better solutions is provided as the temperature de- 
creases gradually. A similar concept appeared in [16]. 
Differing from previous approach, we control the tem- 
perature more carefully and we elitism between gener- 
ations. In the following, we will summarize the differ- 
ent features compared with the original AG and our 
AG algorithm. 

3.1 Different features in AG 

During the implementation of AG, we have found 
alternatives that will be able to make the AG more 
efficient. There are two parts: the generation of 
quasi-population and the reasonable initial tempera- 
ture. These issues are described as follow: 

1. The generation of quasi-populatioii : The quasi- 
population plays an important role in the evo- 
lutionary stage of the AG. They are the sources 
of further evolution in the search for better solu- 
tions. In the original AG, individuals of the quasi- 
population are selected from several piecewise 
Markov chains, which are generated by the move 
generation strategy that satisfies the Metropolis 
criterion from each individual of the current gen- 
eration. Since the system temperature is so high 
that the Metropolis criterion is satisfied easily in 
the first few generations, the quasi-population is 
dominated by the Markov chains generated by 
only i i  few individuals of these generations. This 
will decrease the diversity of population and re- 
sult in premature convergence. In order to avoid 
this situation, we modify the generation of quasi- 
population so that we choose the best point in 
every Markov chain generated by each individual 
of current generation to become the candidates 
of the quasi-population. In this case, the popula- 
tion diversity is preserved hopefully. Experiments 
show that our modification produces the expected 
effect and largely decreases the chance of prema- 
ture convergence. 

pends on the initial temperature and the decreas- 
ing factor of the temperature. Since the body 
of AG includes the simulated annealing, the ef- 
ficiency of AG is also dependent upon the ini- 
tial temperature. In the original AG, there is an 
equation used to determine the reasonable range 
of initial temperature, 

(1) 
T. , - ( c m a x  -Cmin>  

znrt - populat i o n s i z e / 2  

where Cmax and Cmin are largest and lowest cost 
respectively and znit is the initial temperature. 
It will generate a very large initial temperature 
when applying the equation to our problem. This 
is because that the range of the function value 
in our problem spreads from over lo1' to low2.  
Therefore we adopt an alternative strategy to de- 
termine the initial temperature. The strategy is 
defined as follow. The original AG algorithm de- 
fines the acceptance probability of a detrimen- 
tal move to be 0.6. From Metropolis criterion 
Prob(AC)  = e x P T ,  we obtain T = 2 = 
2 * A C  where A C  is determined by the largest 
detrimental move of current generation. Since our 
version cd AG generates piecewise Markov chains 
from each individual of current generation which 
may locate on very different hills, we can not de- 
termine the largest detrimental move as the two 
points with highest and lowest costs. These two 
points belong to two hills with a great chance. 
The probability of moving from one of them to 
the other is much lower than 0.6. When this prob- 
ability is much lower than 0.6, the equation (1) is 
inadequate to determine a reasonable initial tem- 
perature and the whole schedule of AG will be 
inefficient. Therefore, we modify the determina- 
tion of the initial temperature as: 

-AC 

where Ckax and Ckin are the largest and lowest 
cost of ith sequence of Markov chain generated 
by the ith individual of the first generation. We 
take the maximal difference of the individuals as 
A C  to determine the initial temperature. Exper- 
imental results demonstrate that by using equa- 
tion (2), the efficiency of the AG is improved. 

3.2 Outlines of the algorithm 

2. Reasonable initial temperature: The execution 
time of the simulated annealing algorithm de- 

Our version of the annealing genetic algorithm(AG) 
can be described as below: 
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1. First, we generate an initial population randomly. 

2. Annealing process is applied to the current gener- 
ation to generate the quasi-population. The ini- 
tial temperature from the initial population is de- 
termined using Equation (2). 

3. Genetic stage is applied to quasi-population. 
Here we use the ranking algorithm [7] to do re- 
production because the range of the fitness value 
in our problem is so large that proportional re- 
production dependent upon fitness value is un- 
suitable. As presented in [17], ranking can not 
only prevent GA from premature convergence but 
also provide a direct control on selective pressure 
that can affect the search speed. We adopt the 
dynamic ranking procedure which is adaptively 
changing the selective bias from generation to 
generation. The dynamic ranking procedure is 
more powerful than the static approach that fixes 
ranking bias during evolution. Because the popu- 
lation diversity is maintained during first few gen- 
erations when the bias is low, the selective pres- 
sure increases at  only last few generations. In 
our algorithm, we use 1.2 as initial bias and mul- 
tiply the bias by 1.005 in each gelit ration. This 
parameter settings find the best re-ults. We use 
one-point-crossover at  parameter level and blend 
crossover Blx-0.5 [18] [SI. We use an annealing-like 
mutation operator to evolve the population from 
generation to generation. These genetic operators 
perform according to the following steps. At first, 
the parents are selected from quasi-population 
randomly. The one-point-crossover and crossover 
Blx-0.5 are applied randomly with the crossover 
rate of 0.5 respectively. After that, two offsprings 
are produced. The offsprings survive only when 
the costs of these two offsprings are both less than 
average cost of the old generation. Otherwise, 
they give up the offsprings and continue to apply 
the mutation operator to the parents. The muta- 
tion rate of the annealing-like mutation operator, 
which is applied to parents, is based on the cur- 
rent system temperature. Finally, the mutated 
parents are copied into the next generation. 

4. We check whether the frozen condition is satis- 
fied or not. If it is satisfied the AG is terminated, 
otherwise repeating step 3 and 4 until system is 
frozen. Following [12], the frozen condition is sig- 
naled when 80% of the population in a certain 
generation has an error rate less than 0.1% rela- 
tive to the Iwst point of the current generation. 

Drug I Time I Iteration I Evaluation I Energy 
128 I 80928 I -79.63 MTX I 20873 I 

91 I 19566 I 118 I 74970 I -35.70 
309 I 10792 I 101 I 50333 I -58.55 

Table 1: The results evaluated b y  AG. Inhzbifor MTX 
and 91 both have 10 szngle bonds and 309 hone lust 
6 szngle bonds. Time represents the total executzon 
tzme an seconds. Iteration as the total generation eval- 
uated b y  AG. Evaluation means the count of evalu- 
atzon about Lennard-Jones Equation. Energy zs the 
manzmum found b y  AG. 

4 Results 

In order to verify that the modified version of AG is 
viable for solving the molecular binding problem, we 
use a real receptor molecule, dihydrofolate reductase 
enzyme(DHFR), three drug molecules, methotrex- 
ate(MTX), and two analogues(inhibitor 91 and in- 
hibitor 309) of trimethoprim in our simulation model. 
Methotrexate is an anti-cancer drug which is used clin- 
ically to cure patients, and trimethoprim is an anti- 
bacterial drug. There has much research which ana- 
lyzes the binding structure of DHFR as containing the 
methotrexate molecule [13][14] or trimethoprim[lO]. 
Techniques of the x-ray crystallography were used to 
obtain the three dimensional binding structure of the 
molecules. We have implemented the annealing ge- 
netic algorithm on the Sun SparcStation 10. The three 
drug molecules are evaluated respectively. The results 
are given in Table 1. 

In Table 1, AG executes 9 times for each drug 
molecule. The population size of AG is 50 and the 
decreasing factor of temperature is 0.9. The preci- 
sion of search space is 0.2 angstrom in translation and 
5 degrees in rotation. The probability of crossover 
and blend crossover are both 0.5, the mutation rate is 
dependent on the success of the crossover operators. 
That means mutation will execute under the condition 
that crossover operators can not improve the individ- 
uals. 

The data listed above are the average of the results 
of 9 runs except the minimal energy which is the re- 
sult of the best run. According to the results listed 
in Table 1, we find that AG converges to a near opti- 
mal solution in about 100 generations for all cases. It 
indicates that AG is steady and powerful. The differ- 
ences are that the execution time of inhibitor 309 is 
shorter and the binding energy of inhibitor 9 1 is much 
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Figure 2: The binding structure of M T X  with DHFR. 

higher than the others. The reason of the former is 
straightforward. I t  is because the degrees of freedom 
of inhibitor 309 is small. As to the later one, because 
there are two primary hydrogen-bonds formed at the 
same position with the others, the configuration is still 
reasonable. In general, the binding energy of a drug 
lower than -4OKcal/mol indicates that the drug is cu- 
rative with a great probability. The results verify the 
medicative of these three drugs. 

Figure 2 and Figure 3 show the schematic illustra- 
tion of the binding structure of two drug molecules 
(MTX and 91) with DHFR, respectively. The brighter 
line segments constitute the drug molecule, the others 
belong to DHFR. In addition to binding energy, the 
existence of hydrogen-bonds is another criterion that 
determine the goodness of fitting between molecules. 
According to the results presented in [13] which have 
shown the binding structure of the MTX with DHFR, 
there is a pocket that exists in DHFR and when the 
interaction between MTX and DHFR tends to be sta- 
ble, MTX will be buried deeply in the pocket. It is 
because of that there are two primary hydrogen-bonds 
formed in the pocket. Undoubtedly, in Figure 2, our 
results show that AG makes the MTX drug molecule 
bounded in this pocket since two hydrogen-bonds are 
found ( The arrow points to the position of the pri- 
mary hydrogen-bonds). In Figure 3, the inhibitor 91 
has the same situation. After careful examination of 
these figures, one can see that the primary hydrogen- 
bonds are attaclil t l  to the same atoms in DHFR. Based 

Figure 3: The binding structure of inhibitor 91 with 
DHFR. 

on the observation, we claim that the results obtained 
by AG method are very significant. 

5 Conclusion 

In this paper, we introduced a new application of 
genetic algorithms to molecular binding problem and 
proposed a framework called the annealing genetic 
algorithm to solve the problem. As previously de- 
scribed, after tuning the framework carefully, we ob- 
tained near-optimal solutions to the molecular bind- 
ing problem. The solutions can aid biochemists in 
the research on drug design. In the research, we ver- 
ify that the genetic algorithms are suitable for solving 
the molecular binding problem. We believe these re- 
sults are very useful for the biotechnology community. 
However, as we use only a simplified model to repre- 
sent the interaction between molecules, the result is 
an approximation of the actual situation. Based upon 
the experience of this research , we plan to extend the 
model to include simulations of molecular dynamics 
into our model. The first problem encountered is the 
efficiency of the computation since the degrees of free- 
dom increase tremendously. Nevertheless, there are 
a lot of methods which can be used to simplify the 
energy calculation (such as 3D tabulation [15]). The 
parallel genetic algorithms will also improve the effi- 
ciency. Previous experiences with AG have shown that 
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the empirical complexity of AG is O ( n 2 )  [12]. There- 
fore, the efficiency problem of applying AG to large 
problem seems quite controllable. We will simplify the 
energy calculation and design a parallel version of AG 
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