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ABSTRACT such as cellular phones and personal digital assistants. For 

Power consumption is an important design issue of current 
embedded systems. It has been shown that the instruction 
cache accounts for a sienificant nortion of the nower dissi- 

a multimedia-enabled embedded system, reducing power re- 
quirement while meeting the performance demand is the 
most 

I 

pation of the whole chip. Several studies propose to  add 
a cache (LO cache) that is very small relative to  the con- 
ventional L1 cache on chip for power optimization since a 
smaller cache has lower load capacitance. However, energy 
savings often come at the cost of performance degradation. 
In this paper, we propose a novel instruction cache axchi- 
tecture, the HotSpot cache, that  achieves energy savings 
without sacrificing performance. The HotSpot cache identi- 
fies frequently accessed instructions dynamically and stores 
them in the LO cache. Other instructions are placed only 
in the L1 cache. A steering mechanism is employed to  di- 
rect an instruction to its allocated cache in the instruction 
fetch stage. The simulation results show that the HotSpot 
cache can achieve 52% instruction cache energy reduction 
on the average for a set of multimedia applications without 
performance degradation. 

Categories and Subject Descriptors 
B.3.2 [Memory  Structures]: Design Styles - Cache Mem- 
ories 

General Terms 
Performance, Design, Experimentation 

Keywords 
Instruction Cache, Embedded Systems, Low Power Design 

1. INTRODUCTION 
There has been an increasing demand for running multi- 

media applications on battery-operated embedded systems 
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Figure  1: (a)  Filter cache (b) HotSpot cache 

It has been reported that the instruction cache consumes 
a significant portion of the total processor power. For ex- 
ample, 27% of processor power is dissipated in the L1 iu- 
struction cache in StrongARM 110 [13]. Cache partitioning 
is commonly used to  reduce the dynamic energy dissipa- 
tion of caches since a smaller cache has a lower load ca- 
pacitance. Block buffering [14] proposes to buffer the last 
accessed cache line. If the data in the same cache line is 
accessed an the ncxt request, only the buffer needs to  be 
accessed. A two-phase cache access scheme can be used to 
avoid performance degradation [7]. The Filter cache [9] adds 
a bigger buffer (i.e., the LO cache) to cache recently accessed 
cache blocks as shown in Figure l (a) .  On each access, the LO 
cache is first zcessed. The L1 cache is only accessed when 
a n  LO miss occurs. This approach can achieve more energy 
reduction compared with the block buffering mechanism, 
however, it could cause significant performance degradation 
if an aodication's workina set cannot be caDtured in the .. I 

small LO cache. Studies show that the performance degra- 
dation could be more than 20%. In this paper, we propose 
a novel instruction cache architecture, the HotSpot cache as 
shown in Figure l(b). Unlike the Filter cache where the LO 
and L1 cache are accessed sequentially, a dynamic steering 
mechanism is employed to direct a request to &her the LO 
or the ~1 cache, ~h~ ~1 cache is augmented with a block 
buffer. The design goal is to achieve cnergy savings compa- 
rable to  the Filter cache without sacrificing performance. 
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The energy advantage of the Filter cache comes from refer- 
ences that hit in the LO cache. The LO cache hits are results 
of temporal locality of frequently accessed basic blocks (i.e., 
hot basic blocks) and spatial locality within a cache line. 
Therefore, in the proposed HotSpot cache scheme, hot basic 
blocks are identified dynamically and stored in the LO cache, 
while others are placed only in the L1 cache. The L1 cache 
is augmented with a block buffer to exploit the spatial locd- 
ity of non-hot basic blocks for additional energy savings. To 
prevent performance degradation, we limit the size of basic 
blocks allocated to  the LO cache, and a steering mechanism 
is employed to direct an instruction to its allocated cache in 
the instruction fetch stage. 

One key factor that  determines the energy efficiency of 
the proposed HotSpot cache is the LO cache utilization. It 
has been shown that program execution is often composed 
of distinct phases which contain different sets of hot basic 
blocks [12]. Multimedia applications also present the sim- 
ilar program behavior. Figure 2 plots frequently accessed 
branches running a jpeg encoder. Each data point reprc  
sents a branch that is executed at least 1000 times per Sam- 
ple duration (10,000 branches). We can see that the jpeg 
encoder execution is composed of 3 phases and each phase 
contains different hot basic blocks. To fully utilize the LO 
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Figure  2: EYequently accessed branch  dis t r ibut ion of 
jpeg encoder 

cache, one should identify hot basic blocks in each program 
phase instead of the entire program lifetime. Bellas et al. [Z] 
propose a static approach, L-Cache, that selects basic blocks 
to be mapped to the LO cache based on profile information 
from the entire program execution. This approach may un- 
derutilize the LO cachc in program phases where identified 
hot basic blocks are not active. Therefore, we design a run- 
time mechanism that dynamically detects phase change and 
selects active hot basic blocks early in each program phase. 
To make such a hardware-based technique useful for low en- 
ergy, we build the detection mechanism around the Branch 
Target Buffer. The simulation results show that for applica- 
tions with multiple phases, the HotSpot cache can achieve 
up to  2x higher LO cache utilization than the L-Cache. With- 
out the cost of performance degradation, the HotSpot cache 
achieves equal or more energy savings than the Filter cache 
for all applications tested in the paper. The energy reduc- 
tion provided by the HotSpot cache is 52% on the average. 

The rest of the paper is organized as follows. Section 2 
discusses related work. Section 3 presents the HotSpot cache 
mechanism. Section 4 describes our experimental method- 

ology and Section 5 shows the results. Section 6 concludes 
this paper. 

2. RELATED WORK 
Several studies have proposed to use a smaller cache for re- 

ducing the energy dissipation of instruction cache[l4][1][ll]. 
The Filter cache 191 adds a smaller cache between the procec 
sor and L1 cache to store recently accessed cache blocks. As 
mentioned in the previous section, energy reduction is oftcn 
achieved at the cost of longer average memory access time. 
Tang et al. 1151 use a next address prediction scheme which 
dynamically predicts where the next instruction exists (LO 
or L1) to reduce the performance impact of the conventional 
filter cache design. Bellas et al. [2] propose a profile-guided 
compiler to map frequently accessed instructions to the LO 
cache. Later, they suggest to dynamically manage the LO 
cache utilizing the branch predictor and the confidence cs- 
timation mechanism [lG]. Basic blocks associated with high 
confidence branches are selected for placement in the LO 
cache. Their scheme depends on the prediction accuracy of 
the underlying branch predictor. In this paper, we provide a 
more accurate approach for hot basic block selection. There 
are other studies proposing to dynamically detect frequently 
accessed instructions as well, but they have different opti- 
mization objectives from this work. Merten et al. [12] focus 
on runtime optimization, and Hu et  al. [6] target at reducing 
I-cache leakage consumption. 

3. HOTSPOT CACHE ARCHITECTURE 

3.1 Main Idea 

Promoted Besic Blocks >= LO Size 

Profiling Ldonitoring G 3  Phase Change 

Figure  3: Hot-block selection and phase detect ion 

The proposed system is composed of two stages as shown 
in Figure 3. In the profiling stage, the system gathers access 
frequencies of executed branches and determines which basic 
blocks should be promoted to  the LO cachc. The promoting 
policy is straightforward: a basic block is promoted to the 
LO cache once the corresponding branch reaches a predefined 
threshold (candidate threshold). To prevent performance 
degradation from excessive LO cache misses, we limit the 
size of promoted basic blocks. Once the LO cache is filled 
up, we stop profiling and enter the monitoring stage. 

During the monitoring stage, the system tracks branch 
execution to  ensure that hot branches should account for at 
least half of the total branches executed. If they are less 
than half, it indicates that either the program enters a new 
phase or true hot basic blocks have not yet been correctly 
identified. The system should go back to the profiling stage 
to detect new sets of hot blocks. 

Merten et al. [12] also use a branch counting mechanism 
for run-time hot basic block detection. However, our scheme 
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has essentially different design considerations from theirs. 
The objective of the work done by Merten et al. [12] is to  
perform run-time optimizations on identified basic blocks. 
Since run-time optimizations incur time overhead, they are 
more conservative in declaring a hot branch. Branches with 
access frequencies greater than the candidate threshold are 
observed for a period of time before they are declared as hot 
branches. In contrast, we promote a basic block to the LO 
cache as soon as its access frequency reaches the candidate 
threshold. We adopt the cager promotion policy because 
we want to utilize the LO cache as often as possible. Pro- 
moting spurious hot basic blocks to  the LO cache does not 
incur much overhead as long as true hot basic blocks can 
he identified eventually. This is ensured by the monitoring 
scheme described above. Another design issue particular to 
this study is false phase change. Since we limit the size of ha- 
sic blocks promoted to the LO cache, if hot basic blocks have 
large static footprints, the hot branch execution percentage 
could be lower than 50% even though hot basic blocks have 
been correctly identified. If this situation occurs, the system 
would switch between the profiling and monitoring stages 
constantly. The false phase change phenomenon could PO- 
tentially degrade the effectiveness of the proposed scheme if 
the LO cache can not be utilized during the profiling stage. 
In the next section, we detail the implementations to  rcalize 
the proposed scheme and our solution for the false phase 
change problem. 

3.2 Implementations 

Figure 4: Block diagram of HotSpot cache 

To achieve energy saving, the mechanism should not in- 
cur significant hardware overhead. Therefore, we design 
the hot spot and phase detection mechanisms around the 
Branch Target Buffer (BTB), which is commonly used in a 
modern microprocessor to  resolve branch target addresses in 
the instruction fetch stage. The block diagram of the prc- 
posed scheme is illustrated in Figure 4. Each entry of the 
BTB is augmented with a valid bit, an execution counter, 
a hot-block flag, and a prcv-hot flag. The valid bit indi- 
cates whether the corresponding branch is a predicted taken 
branch or a predicted non-taken branch. In the conventional 
BTB design, a branch is removed from the BTB once it is 
predicted non-taken. In our design, a branch is still kept in 
the BTB even it is predicted non-taken such that  we do no 
lose the access frequency of the target basic block. There- 
fore, a valid bit is set to  zero (one) for a predicted non-taken 
branch (predicted taken branch). The associated execution 
counter is updated when a branch is resolved. We only keep 

track of the access froquency of a taken-branch. When the 
execution counter reaches its maximum value (i.e., candidate 
threshold), a potential hot block is detected. Therefore, the 
hot-block flag is set and the corresponding basic block of 
this branch is promoted to  the LO cache. 

An up/down counter called the monitor counter (8 bits) 
is used to  track the hot branch execution percentage. The 
monitor counter is initially set to 128. I t  decrements by one 
when a hot branch is executed and increments by one when 
a non-hot branch is executed. When the counter overflows, 
hot-block flags are cleared and execution counters are reset. 
The system goes back to the profiling stage to detect new 
sets of hot basic blocks since identified hot branches are not 
active for a period of time. As mentioned before, if a pro- 
gram exhibits the false phase change behavior, the system 
would stay in the profiling stage most of time. Therefore, it 
is important to allow the LO cache to  be accessed during the 
profiling stage. We koep the hot branch information of the 
last phase in the prev-hot flag column until the system sta- 
bilizes (i.e., entering the monitoring stage). On each access, 
if either one of the hot-block and prev-hot flags is set, the 
access is directed to  the LO cache. Once the system enters 
the monitoring stage, all prev-hot flags are cleared. 

The last component in the proposed mechanism is the 
mode controller which controls whether the LO or L1 cache 
should be accessed during the instruction fetch (IF) stage. 
There are three fetch modes: 

o LO mode: Fetch an instruction from the LO cache 

o L1 mode: Fetch an instruction from the L1 cache 

o Promoting mode: Fetch an instruction from the L1 
cache and copy it to  the LO cache. 

Table 1 summaries transition events for each fetch mode. 
If an instruction hits in the BTB and the associated valid bit 
is 1, the LO mode is set if either the hot-block or prev-hot flag 
is 1. If both the hot-block and prev-hot flags arc zeros and 
the execution counter equals to the candidate threshold, the 
Promoting mode is set and the hot-block flag is set to one. If 
none of the above two cases is true, the L1 mode is set. For a 
BTB miss or a BTB hit with the associated valid bit equal 
to zero, we do not change the fetch mode. The rationale 
is as follows. In this scenario, an instruction could be (1) 
a non-branch instruction, (2)  a predicted non-taken branch 
or (3) a mis-predicted taken branch. The first case should 
not incur mode transition. As for the second scenario, we 
found that the access frequency of a non-taken branch is 
usually close to that of the last taken branch. Therefore, 
we do not keep track of the access frequency of a non-taken 
branch and simply let a non-taken branch inherit the fetch 
mode of the last taken branch. As for the third scenario, it 
is hard to predict the status of a mis-predicted branch (hot 
or non-hot), therefore, we do not change the fetch mode. 

The last event causing mode transition is an LO cache 
miss. Whenever a fetch misses in the LO cache, the L1 mode 
is activated. This is based on the observation that if an 
instruction misses in the LO cache, it is very likely that the 
remaining instructions in the same basic block also miss in 
the LO cache. Therefore, we should fetch instructions from 
the L1 cache directly to  avoid increasing the L1 cache access 
latency. Note that we switch the fetch mode to  the L1 mode 
instead of Promoting for performance consideration. An 
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Table 1: Fetch mode transi t ion events  

voice, image and video). 
study are summarized in Table 3. 

The applications tested in the 

5. EXPERIMENTAL RESULTS 
In this section, we evaluate if the HotSpot cache success- 

fully achieves the optimization goal: achieving energy sav- 
Table 2:  Cache energy consumption per access 

~~ 

ings comparable to  the Filter cache without performance 
degradation. We first show that the overhead incurred from 
accessing various counters is negligible. We then compare 
the LO cache utilization of the HotSpot cache with that of 
the static amroach - L-cache 121. Finallv. we comuare the 

Lame /Mad i ~ ~ 3 o -  
Mpeg2 encoder/decoder I Video 

.. L .  " .  
energy and performance of the HotSpot cache with those of 
the Filter cache. 

5.1 Overhead Analysis 
Table 3: Benchmark  summar ies  The main overhead imposed by the proposed scheme is 

from accessinc the execution counter (4 bits) associated with 
each BTB enGy and the monitor counter (8hits). We model LO cache miss indicates that the corresponding hot basic 

block is very likely conflicting with other hot basic blocks, a counter as a register in Wattch The energy per ac- 

Therefore, to minimize the Lo cache miss rate, once a cache cess is roughly 0.18pJ and 0.34pJ for 4-bit and 8 - m  regis- 
ters, respectively. Our siniulation results indicate that for 
the benchmarks tested in this paper, there are 0.02/0.13 bit 
transition per cycle on the averaae for the executionlmonitor 

line is replaced from the LO cache, we do not bring it into 
the LO cache again to eliminate conflicts among promoted 
L - L  L.-..:- L 1 - A . -  
L L V L  U_LL "LVChD 

counters. Note- that the frequency of bit transitions of the 

4. EXPERIMENTAL METHODOLOGY 
We use the Wattch toolset 131 developed at Princeton Uni- 

versity to conduct our experiments. Wattch generates both 
the performance and energy data through execution-driven 
simulation. We modified Wattch to  simulate the HotSpot 
cache. Our baseline machine is ii single-issue in-order pro- 
cessor. The processor contains a 512B, direct-mapped LO 
instruction cache and a 16KB direct-mapped L1 instruc- 
tion cache. The line size of both the LO and L1 cache is 
32 bytes. The BTB has 64 sets and the associativity is 4. 
We implemented a 2-level branch predictor with a total of 
2048 entries. All the caches are single-ported. We evaluate 
energy consumption assuming 0.35nm process technology. 
Table 2 shows the energy consumption per access for var- 
ious instruction cache components examined in this paper. 
Only the dynamic energy consumption is considered in this 
study. Note that the HotSpot cache is orthogonal t o  other 
techniques for reducing the instruction leakage power, such 
as the Drowsy cache 141. The candidate threshold value is 
set to 16. We performed analysis on several threshold val- 
ues (8 to 1024) and found that 16 works well for all the 
applications tested in this paper. 

Since we focus on the multimedia applications in this p* 
per, we use applications in the Mediabench [lo] and Mibench 
[5] to evaluate our scheme. But. the proposed scheme can 
also be applied to other classes of applications. We choose 
6 sets of encoder/decoder for different media types (data, 

monitor counter is larger than the execution counter be- 
cause an application stays in the monitoring stagc much 
longer than the profiling stage. On the average, the en- 
ergy consumed from counter accesses is 0.048 pJ per cycle. 
It is roughly 5 orders of magnitude lower than the energy 
consumed per I-cache access (1.9nJ). Therefore, the counter 
overhead is negligible. 

5.2 LO Cache Utilization 
One key factor that determines the effectiveness of the 

HotSpot cache is the LO cache utilization. We claim that the 
LO cache utilization of the HotSpot cache should be higher 
than that of the static approach - L-cache 121 since phase in- 
formation is considered. We use the percentage of dynamic 
instructions accessing the LO cache as the metric to  quantify 
the LO cache utilization. To obtain the LO cache utilization 
for the L-cache, we sort basic blocks according to their access 
frequencies and add the frequencies of most frequently exe- 
cuted basic blocks until their accumulated code size reaches 
the size of the LO Cache. This can be considered as the op- 
timal LO cache utilization achievable by a static mechanism 
similar to  the Lcache since it assumes no conflicts among 
frequently executed basic blocks. 

Two program attributes determine how well the HotSpot 
cache utilizes the LO cache compared with the L-cache. The 
first one is whether promoted cache blocks conflict from one 
another in the LO cache. Recall that  replaced LO cache lines 
are not brought into the LO cache again. This is a trade- 
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off between energy savings and performance. The second 
factor is the number of distinct phases in a program. The 
proposed scheme should have a more significant advantage 
over the L-cache for applications with more phases. From 
the results shown in Table 4, we can see that for applica- 
tions with more distinct phases', such as unepic. epic, jpeg 
encoder, lame, and mpegl decoder/encoder, the HotSpot 
cache achieves significantly higher LO cache utilization than 
the L-cache. Adpcm encoder/decoder have very small code 
sizes, therefore, both the HotSpot cache and L-Cache c a p  
ture the whole program in the LO cache. Mad and g721 
encoder/decoder are three applications where the HotSpot 
cache achieves lower LO utilization than the L-cache. All 
three applications have only one phase during program exe- 
cution. Mad has significantly lower LO utilization than the 
LO cache due to severe conflicts among hot basic blocks in 
the LO cache. 

We need to point out that the higher LO cache utilization 
achieved in the HotSpot cache does not come at the expense 
of performance degradation. In Table 4, we list the LO cache 
miss rates of both the HotSpot and Filter cache mechanism. 
We can see that except for mad, the LO cache miss rates for 
all benchmarks are below or close to  1% while the miss rate 
of the Filter cache is up to  14%. Mad has severe interferences 
among promoted hot basic blocks. However, since we do 
not bring replaced hot basic blocks into the LO cache as 
described in Section 3.2, conflicts among hot basic blocks 
do not incur excessive LO cache misses. In the next section, 
we will show that performance degradation caused by LO 
misses i n  mad is negligible. 

5.3 Performance and Energy-Saving of the 
HotSpot Cache 

In this section, we compare the energy savings and perfor- 
mance of the HotSpot cache with the Filter cache. Figure 5 
shows the energy consumption normalized to the base con- 
figuration (without the LO cache) for the Filter cache, hlock 
buffering, HotSpot cache, and HotSpot cache without block 
buffering. We can see that block buffering provides com- 
parable energy reduction (30% to 40%) for all benchmarks. 
This indicates that the spatial locality within a cache line 
exists for all applications tested. The Filter cache achieves 

'To determine the number of distinct phases, we performed 
the same branch behavior analysis of jpeg encoder as shown 
in Figure 2. 

F igure  5 :  Normalized energy  consumpt ion  of Fil ter  
cache, block buffering, HotSpot cache and HotSpot 
cache wi thout  block buffering 

Table 4: LO cache utilization: HotSpot cache V.S. L-cache 
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more energy reduction compared with block buffering for 
most applications, however, the advantage diminishes for 
applications with high LO miss rates. For lame, the hlock 
buffering mechanism even consumes less energy than the 
Filter cache. The HotSpot cache is most energy efficient 
for all benchmarks. For applications that the Filter cache 
can capture almost the entire working sets (e.g.. adpcm en- 
coderJdecoder and epic/unepic), the HotSpot cache success- 
fully promotes the whole working set to  the LO cache thereby 
achieving equal amount of energy reduction as the Filter 
cache. For applications with large working sets (e.g., g721 
encoderJdecoder, jpeg encoderJdecoder, lame and mpeg2 
encoder), the HotSpot cache reduces more energy consump 
tion than the Filter cache because of the additional energy 
savings from block buffering. To show the importance of ex- 
ploiting the spatial locality of instructions allocated to  the 
L1 cache, we also measure the energy consumption of the 
HotSpot cache without block buffering. From Figure 5, we 
can see that the additional energy savings provided by block 
buffering (HotSpot cache vs. HotSpot cache without block 
buffering) are significant for applications with low LO cache 
utilization. 

To show that the HotSpot cache reduces energy reduc- 
tion without sacrificing performance, the execution time of 
the Filter and HotSpot cache normalized to  the base con- 



Figure 6: Normalized delay of HotSpot cache and 
Filter cache 

figuration (without the LO cache) is shown in Figure 6. We 
can sec that the normalized execution time of the HotSpot 
cache is close to 1 for all benchmarks while the Filter cache 
causes up to  15% of performance degradation (e.g., g721 
encoder/decoder). 

6. CONCLUSIONS 
In this paper, we propose an architectural approach to dy- 

namically select basic blocks for placement in the LO cache. 
We design a profiling and phase detection nrechanism that 
can successfully identify frequently accessed basic blocks in 
each program phase at runtime. Only basic blocks declared 
as hot blocks are stored in the LO cache. The L1 cache is 
augmented with a block huffer for exploiting spatial locality 
within a cache line for energy savings. A mode controller 
is employed to determine which cachc (LO or L1) should 
he accessed during the instruction fetch stage. The simula- 
tion results show that the proposed mechanism can achieve 
more energy savings than the Filter cache. The energy con- 
sumption of the instruction cache is reduced by 52% on the 
average for a set of multimedia applications without perfor- 
mance degradation. 
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