
4.1

HotSpot Cache: Joint Tern tial LoeaIiUy
Exploitation for I-Cach uetion

Chia-Lin Yang Chien-Hao Lee
Department of Computer Science and

National Taiwan University
Taipei 106, Taiwan

yangc Q csie.ntu.edu. tw r910170csie.ntu.edu.tw

Department of Computer Science and

National Taiwan University
Taipei 106, Taiwan

Information Engineering Information Engineering

ABSTRACT such as cellular phones and personal digital assistants. For

Power consumption is an important design issue of current
embedded systems. It has been shown that the instruction
cache accounts for a sienificant nortion of the nower dissi-

a multimedia-enabled embedded system, reducing power re-
quirement while meeting the performance demand is the
most

I

pation of the whole chip. Several studies propose to add
a cache (LO cache) that is very small relative to the con-
ventional L1 cache on chip for power optimization since a
smaller cache has lower load capacitance. However, energy
savings often come at the cost of performance degradation.
In this paper, we propose a novel instruction cache axchi-
tecture, the HotSpot cache, that achieves energy savings
without sacrificing performance. The HotSpot cache identi-
fies frequently accessed instructions dynamically and stores
them in the LO cache. Other instructions are placed only
in the L1 cache. A steering mechanism is employed to di-
rect an instruction to its allocated cache in the instruction
fetch stage. The simulation results show that the HotSpot
cache can achieve 52% instruction cache energy reduction
on the average for a set of multimedia applications without
performance degradation.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles - Cache Mem-
ories

General Terms
Performance, Design, Experimentation

Keywords
Instruction Cache, Embedded Systems, Low Power Design

1. INTRODUCTION
There has been an increasing demand for running multi-

media applications on battery-operated embedded systems

L1 Cache 1 L1 Cache 1
,b,

Figure 1: (a) Filter cache (b) HotSpot cache

It has been reported that the instruction cache consumes
a significant portion of the total processor power. For ex-
ample, 27% of processor power is dissipated in the L1 iu-
struction cache in StrongARM 110 [13]. Cache partitioning
is commonly used to reduce the dynamic energy dissipa-
tion of caches since a smaller cache has a lower load ca-
pacitance. Block buffering [14] proposes to buffer the last
accessed cache line. If the data in the same cache line is
accessed an the ncxt request, only the buffer needs to be
accessed. A two-phase cache access scheme can be used to
avoid performance degradation [7]. The Filter cache [9] adds
a bigger buffer (i.e., the LO cache) to cache recently accessed
cache blocks as shown in Figure l (a) . On each access, the LO
cache is first zcessed. The L1 cache is only accessed when
a n LO miss occurs. This approach can achieve more energy
reduction compared with the block buffering mechanism,
however, it could cause significant performance degradation
if an aodication's workina set cannot be caDtured in the .. I

small LO cache. Studies show that the performance degra-
dation could be more than 20%. In this paper, we propose
a novel instruction cache architecture, the HotSpot cache as
shown in Figure l(b). Unlike the Filter cache where the LO
and L1 cache are accessed sequentially, a dynamic steering
mechanism is employed to direct a request to &her the LO
or the ~1 cache, ~h~ ~1 cache is augmented with a block
buffer. The design goal is to achieve cnergy savings compa-
rable to the Filter cache without sacrificing performance.

Permission CO make digital or hard copies of all or of this work for
personal or ~lassr~orn use is granted withaul fee provided that copies are
not made or distributed for p.mfit or commercial advantage and that copies
I& this notice and the full Citation on the first page.'To copy otherwise. to
republish. to past on sewers or to redistribute to lists. requires prior specific
permission and/or a fee.
ISLJ'ED'O4, August 9-1 1,2004, Newpon Beach, California, USA.
Copyright 2004 ACM 1-581 13-929-2/04/0008 ... $5.M).

114

http://csie.ntu.edu

The energy advantage of the Filter cache comes from refer-
ences that hit in the LO cache. The LO cache hits are results
of temporal locality of frequently accessed basic blocks (i.e.,
hot basic blocks) and spatial locality within a cache line.
Therefore, in the proposed HotSpot cache scheme, hot basic
blocks are identified dynamically and stored in the LO cache,
while others are placed only in the L1 cache. The L1 cache
is augmented with a block buffer to exploit the spatial locd-
ity of non-hot basic blocks for additional energy savings. To
prevent performance degradation, we limit the size of basic
blocks allocated to the LO cache, and a steering mechanism
is employed to direct an instruction to its allocated cache in
the instruction fetch stage.

One key factor that determines the energy efficiency of
the proposed HotSpot cache is the LO cache utilization. It
has been shown that program execution is often composed
of distinct phases which contain different sets of hot basic
blocks [12]. Multimedia applications also present the sim-
ilar program behavior. Figure 2 plots frequently accessed
branches running a jpeg encoder. Each data point reprc
sents a branch that is executed at least 1000 times per Sam-
ple duration (10,000 branches). We can see that the jpeg
encoder execution is composed of 3 phases and each phase
contains different hot basic blocks. To fully utilize the LO

"ol.D1ll a,,mt1/

I>rnODO

~ ll2DDOQ

1 1 , D m Y o

: I2loOnO

**am00

4 1 4 m o

1 1 1 ~ 0 0 0
50 100 150 so0 23s PO0

IxI.yII.. Ynl,

Figure 2: EYequently accessed branch dis t r ibut ion of
jpeg encoder

cache, one should identify hot basic blocks in each program
phase instead of the entire program lifetime. Bellas et al. [Z]
propose a static approach, L-Cache, that selects basic blocks
to be mapped to the LO cache based on profile information
from the entire program execution. This approach may un-
derutilize the LO cachc in program phases where identified
hot basic blocks are not active. Therefore, we design a run-
time mechanism that dynamically detects phase change and
selects active hot basic blocks early in each program phase.
To make such a hardware-based technique useful for low en-
ergy, we build the detection mechanism around the Branch
Target Buffer. The simulation results show that for applica-
tions with multiple phases, the HotSpot cache can achieve
up to 2x higher LO cache utilization than the L-Cache. With-
out the cost of performance degradation, the HotSpot cache
achieves equal or more energy savings than the Filter cache
for all applications tested in the paper. The energy reduc-
tion provided by the HotSpot cache is 52% on the average.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 presents the HotSpot cache
mechanism. Section 4 describes our experimental method-

ology and Section 5 shows the results. Section 6 concludes
this paper.

2. RELATED WORK
Several studies have proposed to use a smaller cache for re-

ducing the energy dissipation of instruction cache[l4][1][ll].
The Filter cache 191 adds a smaller cache between the procec
sor and L1 cache to store recently accessed cache blocks. As
mentioned in the previous section, energy reduction is oftcn
achieved at the cost of longer average memory access time.
Tang et al. 1151 use a next address prediction scheme which
dynamically predicts where the next instruction exists (LO
or L1) to reduce the performance impact of the conventional
filter cache design. Bellas et al. [2] propose a profile-guided
compiler to map frequently accessed instructions to the LO
cache. Later, they suggest to dynamically manage the LO
cache utilizing the branch predictor and the confidence cs-
timation mechanism [lG]. Basic blocks associated with high
confidence branches are selected for placement in the LO
cache. Their scheme depends on the prediction accuracy of
the underlying branch predictor. In this paper, we provide a
more accurate approach for hot basic block selection. There
are other studies proposing to dynamically detect frequently
accessed instructions as well, but they have different opti-
mization objectives from this work. Merten et al. [12] focus
on runtime optimization, and Hu et al. [6] target at reducing
I-cache leakage consumption.

3. HOTSPOT CACHE ARCHITECTURE

3.1 Main Idea

Promoted Besic Blocks >= LO Size

Profiling Ldonitoring G 3 Phase Change

Figure 3: Hot-block selection and phase detect ion

The proposed system is composed of two stages as shown
in Figure 3. In the profiling stage, the system gathers access
frequencies of executed branches and determines which basic
blocks should be promoted to the LO cachc. The promoting
policy is straightforward: a basic block is promoted to the
LO cache once the corresponding branch reaches a predefined
threshold (candidate threshold). To prevent performance
degradation from excessive LO cache misses, we limit the
size of promoted basic blocks. Once the LO cache is filled
up, we stop profiling and enter the monitoring stage.

During the monitoring stage, the system tracks branch
execution to ensure that hot branches should account for at
least half of the total branches executed. If they are less
than half, it indicates that either the program enters a new
phase or true hot basic blocks have not yet been correctly
identified. The system should go back to the profiling stage
to detect new sets of hot blocks.

Merten et al. [12] also use a branch counting mechanism
for run-time hot basic block detection. However, our scheme

115

has essentially different design considerations from theirs.
The objective of the work done by Merten et al. [12] is to
perform run-time optimizations on identified basic blocks.
Since run-time optimizations incur time overhead, they are
more conservative in declaring a hot branch. Branches with
access frequencies greater than the candidate threshold are
observed for a period of time before they are declared as hot
branches. In contrast, we promote a basic block to the LO
cache as soon as its access frequency reaches the candidate
threshold. We adopt the cager promotion policy because
we want to utilize the LO cache as often as possible. Pro-
moting spurious hot basic blocks to the LO cache does not
incur much overhead as long as true hot basic blocks can
he identified eventually. This is ensured by the monitoring
scheme described above. Another design issue particular to
this study is false phase change. Since we limit the size of ha-
sic blocks promoted to the LO cache, if hot basic blocks have
large static footprints, the hot branch execution percentage
could be lower than 50% even though hot basic blocks have
been correctly identified. If this situation occurs, the system
would switch between the profiling and monitoring stages
constantly. The false phase change phenomenon could PO-
tentially degrade the effectiveness of the proposed scheme if
the LO cache can not be utilized during the profiling stage.
In the next section, we detail the implementations to rcalize
the proposed scheme and our solution for the false phase
change problem.

3.2 Implementations

Figure 4: Block diagram of HotSpot cache

To achieve energy saving, the mechanism should not in-
cur significant hardware overhead. Therefore, we design
the hot spot and phase detection mechanisms around the
Branch Target Buffer (BTB), which is commonly used in a
modern microprocessor to resolve branch target addresses in
the instruction fetch stage. The block diagram of the prc-
posed scheme is illustrated in Figure 4. Each entry of the
BTB is augmented with a valid bit, an execution counter,
a hot-block flag, and a prcv-hot flag. The valid bit indi-
cates whether the corresponding branch is a predicted taken
branch or a predicted non-taken branch. In the conventional
BTB design, a branch is removed from the BTB once it is
predicted non-taken. In our design, a branch is still kept in
the BTB even it is predicted non-taken such that we do no
lose the access frequency of the target basic block. There-
fore, a valid bit is set to zero (one) for a predicted non-taken
branch (predicted taken branch). The associated execution
counter is updated when a branch is resolved. We only keep

track of the access froquency of a taken-branch. When the
execution counter reaches its maximum value (i.e., candidate
threshold), a potential hot block is detected. Therefore, the
hot-block flag is set and the corresponding basic block of
this branch is promoted to the LO cache.

An up/down counter called the monitor counter (8 bits)
is used to track the hot branch execution percentage. The
monitor counter is initially set to 128. I t decrements by one
when a hot branch is executed and increments by one when
a non-hot branch is executed. When the counter overflows,
hot-block flags are cleared and execution counters are reset.
The system goes back to the profiling stage to detect new
sets of hot basic blocks since identified hot branches are not
active for a period of time. As mentioned before, if a pro-
gram exhibits the false phase change behavior, the system
would stay in the profiling stage most of time. Therefore, it
is important to allow the LO cache to be accessed during the
profiling stage. We koep the hot branch information of the
last phase in the prev-hot flag column until the system sta-
bilizes (i.e., entering the monitoring stage). On each access,
if either one of the hot-block and prev-hot flags is set, the
access is directed to the LO cache. Once the system enters
the monitoring stage, all prev-hot flags are cleared.

The last component in the proposed mechanism is the
mode controller which controls whether the LO or L1 cache
should be accessed during the instruction fetch (IF) stage.
There are three fetch modes:

o LO mode: Fetch an instruction from the LO cache

o L1 mode: Fetch an instruction from the L1 cache

o Promoting mode: Fetch an instruction from the L1
cache and copy it to the LO cache.

Table 1 summaries transition events for each fetch mode.
If an instruction hits in the BTB and the associated valid bit
is 1, the LO mode is set if either the hot-block or prev-hot flag
is 1. If both the hot-block and prev-hot flags arc zeros and
the execution counter equals to the candidate threshold, the
Promoting mode is set and the hot-block flag is set to one. If
none of the above two cases is true, the L1 mode is set. For a
BTB miss or a BTB hit with the associated valid bit equal
to zero, we do not change the fetch mode. The rationale
is as follows. In this scenario, an instruction could be (1)
a non-branch instruction, (2) a predicted non-taken branch
or (3) a mis-predicted taken branch. The first case should
not incur mode transition. As for the second scenario, we
found that the access frequency of a non-taken branch is
usually close to that of the last taken branch. Therefore,
we do not keep track of the access frequency of a non-taken
branch and simply let a non-taken branch inherit the fetch
mode of the last taken branch. As for the third scenario, it
is hard to predict the status of a mis-predicted branch (hot
or non-hot), therefore, we do not change the fetch mode.

The last event causing mode transition is an LO cache
miss. Whenever a fetch misses in the LO cache, the L1 mode
is activated. This is based on the observation that if an
instruction misses in the LO cache, it is very likely that the
remaining instructions in the same basic block also miss in
the LO cache. Therefore, we should fetch instructions from
the L1 cache directly to avoid increasing the L1 cache access
latency. Note that we switch the fetch mode to the L1 mode
instead of Promoting for performance consideration. An

116

Table 1: Fetch mode transi t ion events

voice, image and video).
study are summarized in Table 3.

The applications tested in the

5. EXPERIMENTAL RESULTS
In this section, we evaluate if the HotSpot cache success-

fully achieves the optimization goal: achieving energy sav-
Table 2: Cache energy consumption per access

~~

ings comparable to the Filter cache without performance
degradation. We first show that the overhead incurred from
accessing various counters is negligible. We then compare
the LO cache utilization of the HotSpot cache with that of
the static amroach - L-cache 121. Finallv. we comuare the

Lame /Mad i ~ ~ 3 o -
Mpeg2 encoder/decoder I Video

.. L . " .
energy and performance of the HotSpot cache with those of
the Filter cache.

5.1 Overhead Analysis
Table 3: Benchmark summar ies The main overhead imposed by the proposed scheme is

from accessinc the execution counter (4 bits) associated with
each BTB enGy and the monitor counter (8hits). We model LO cache miss indicates that the corresponding hot basic

block is very likely conflicting with other hot basic blocks, a counter as a register in Wattch The energy per ac-

Therefore, to minimize the Lo cache miss rate, once a cache cess is roughly 0.18pJ and 0.34pJ for 4-bit and 8 - m regis-
ters, respectively. Our siniulation results indicate that for
the benchmarks tested in this paper, there are 0.02/0.13 bit
transition per cycle on the averaae for the executionlmonitor

line is replaced from the LO cache, we do not bring it into
the LO cache again to eliminate conflicts among promoted
L - L L.-..:- L 1 - A . -
L L V L U_LL "LVChD

counters. Note- that the frequency of bit transitions of the

4. EXPERIMENTAL METHODOLOGY
We use the Wattch toolset 131 developed at Princeton Uni-

versity to conduct our experiments. Wattch generates both
the performance and energy data through execution-driven
simulation. We modified Wattch to simulate the HotSpot
cache. Our baseline machine is ii single-issue in-order pro-
cessor. The processor contains a 512B, direct-mapped LO
instruction cache and a 16KB direct-mapped L1 instruc-
tion cache. The line size of both the LO and L1 cache is
32 bytes. The BTB has 64 sets and the associativity is 4.
We implemented a 2-level branch predictor with a total of
2048 entries. All the caches are single-ported. We evaluate
energy consumption assuming 0.35nm process technology.
Table 2 shows the energy consumption per access for var-
ious instruction cache components examined in this paper.
Only the dynamic energy consumption is considered in this
study. Note that the HotSpot cache is orthogonal t o other
techniques for reducing the instruction leakage power, such
as the Drowsy cache 141. The candidate threshold value is
set to 16. We performed analysis on several threshold val-
ues (8 to 1024) and found that 16 works well for all the
applications tested in this paper.

Since we focus on the multimedia applications in this p*
per, we use applications in the Mediabench [lo] and Mibench
[5] to evaluate our scheme. But. the proposed scheme can
also be applied to other classes of applications. We choose
6 sets of encoder/decoder for different media types (data,

monitor counter is larger than the execution counter be-
cause an application stays in the monitoring stagc much
longer than the profiling stage. On the average, the en-
ergy consumed from counter accesses is 0.048 pJ per cycle.
It is roughly 5 orders of magnitude lower than the energy
consumed per I-cache access (1.9nJ). Therefore, the counter
overhead is negligible.

5.2 LO Cache Utilization
One key factor that determines the effectiveness of the

HotSpot cache is the LO cache utilization. We claim that the
LO cache utilization of the HotSpot cache should be higher
than that of the static approach - L-cache 121 since phase in-
formation is considered. We use the percentage of dynamic
instructions accessing the LO cache as the metric to quantify
the LO cache utilization. To obtain the LO cache utilization
for the L-cache, we sort basic blocks according to their access
frequencies and add the frequencies of most frequently exe-
cuted basic blocks until their accumulated code size reaches
the size of the LO Cache. This can be considered as the op-
timal LO cache utilization achievable by a static mechanism
similar to the Lcache since it assumes no conflicts among
frequently executed basic blocks.

Two program attributes determine how well the HotSpot
cache utilizes the LO cache compared with the L-cache. The
first one is whether promoted cache blocks conflict from one
another in the LO cache. Recall that replaced LO cache lines
are not brought into the LO cache again. This is a trade-

117

off between energy savings and performance. The second
factor is the number of distinct phases in a program. The
proposed scheme should have a more significant advantage
over the L-cache for applications with more phases. From
the results shown in Table 4, we can see that for applica-
tions with more distinct phases', such as unepic. epic, jpeg
encoder, lame, and mpegl decoder/encoder, the HotSpot
cache achieves significantly higher LO cache utilization than
the L-cache. Adpcm encoder/decoder have very small code
sizes, therefore, both the HotSpot cache and L-Cache c a p
ture the whole program in the LO cache. Mad and g721
encoder/decoder are three applications where the HotSpot
cache achieves lower LO utilization than the L-cache. All
three applications have only one phase during program exe-
cution. Mad has significantly lower LO utilization than the
LO cache due to severe conflicts among hot basic blocks in
the LO cache.

We need to point out that the higher LO cache utilization
achieved in the HotSpot cache does not come at the expense
of performance degradation. In Table 4, we list the LO cache
miss rates of both the HotSpot and Filter cache mechanism.
We can see that except for mad, the LO cache miss rates for
all benchmarks are below or close to 1% while the miss rate
of the Filter cache is up to 14%. Mad has severe interferences
among promoted hot basic blocks. However, since we do
not bring replaced hot basic blocks into the LO cache as
described in Section 3.2, conflicts among hot basic blocks
do not incur excessive LO cache misses. In the next section,
we will show that performance degradation caused by LO
misses i n mad is negligible.

5.3 Performance and Energy-Saving of the
HotSpot Cache

In this section, we compare the energy savings and perfor-
mance of the HotSpot cache with the Filter cache. Figure 5
shows the energy consumption normalized to the base con-
figuration (without the LO cache) for the Filter cache, hlock
buffering, HotSpot cache, and HotSpot cache without block
buffering. We can see that block buffering provides com-
parable energy reduction (30% to 40%) for all benchmarks.
This indicates that the spatial locality within a cache line
exists for all applications tested. The Filter cache achieves

'To determine the number of distinct phases, we performed
the same branch behavior analysis of jpeg encoder as shown
in Figure 2.

F igure 5 : Normalized energy consumpt ion of Fil ter
cache, block buffering, HotSpot cache and HotSpot
cache wi thout block buffering

Table 4: LO cache utilization: HotSpot cache V.S. L-cache

118

more energy reduction compared with block buffering for
most applications, however, the advantage diminishes for
applications with high LO miss rates. For lame, the hlock
buffering mechanism even consumes less energy than the
Filter cache. The HotSpot cache is most energy efficient
for all benchmarks. For applications that the Filter cache
can capture almost the entire working sets (e.g.. adpcm en-
coderJdecoder and epic/unepic), the HotSpot cache success-
fully promotes the whole working set to the LO cache thereby
achieving equal amount of energy reduction as the Filter
cache. For applications with large working sets (e.g., g721
encoderJdecoder, jpeg encoderJdecoder, lame and mpeg2
encoder), the HotSpot cache reduces more energy consump
tion than the Filter cache because of the additional energy
savings from block buffering. To show the importance of ex-
ploiting the spatial locality of instructions allocated to the
L1 cache, we also measure the energy consumption of the
HotSpot cache without block buffering. From Figure 5, we
can see that the additional energy savings provided by block
buffering (HotSpot cache vs. HotSpot cache without block
buffering) are significant for applications with low LO cache
utilization.

To show that the HotSpot cache reduces energy reduc-
tion without sacrificing performance, the execution time of
the Filter and HotSpot cache normalized to the base con-

Figure 6: Normalized delay of HotSpot cache and
Filter cache

figuration (without the LO cache) is shown in Figure 6. We
can sec that the normalized execution time of the HotSpot
cache is close to 1 for all benchmarks while the Filter cache
causes up to 15% of performance degradation (e.g., g721
encoder/decoder).

6. CONCLUSIONS
In this paper, we propose an architectural approach to dy-

namically select basic blocks for placement in the LO cache.
We design a profiling and phase detection nrechanism that
can successfully identify frequently accessed basic blocks in
each program phase at runtime. Only basic blocks declared
as hot blocks are stored in the LO cache. The L1 cache is
augmented with a block huffer for exploiting spatial locality
within a cache line for energy savings. A mode controller
is employed to determine which cachc (LO or L1) should
he accessed during the instruction fetch stage. The simula-
tion results show that the proposed mechanism can achieve
more energy savings than the Filter cache. The energy con-
sumption of the instruction cache is reduced by 52% on the
average for a set of multimedia applications without perfor-
mance degradation.

7. ACKNOWLEDGEMENTS
This work is supported in part by research grants from

ROC National Science Council (NSC-92-2213-E-002-014, NSC-
93-2220-E-002.013) and Microsoft.

8. REFERENCES
[l] R. S. Bajwa, M. H. H. Kojima, D. Gorny. K. Nitta,

A. Shridhar, K. Seki, and K. Sasaki. Instruction
buffering to reduce power in processors for signal
processing. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 5(4), December 1997.

[2] N. E. Bellas, I. N. Hajj, C. D. Polychronopoulos, and
G. Stamoulis. Architectural and compiler techniques
for energy reduction in high-performance
microprocessors. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 8(3), June 2000.

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch A
framework for architectural-level power analysis and
optimizations. In Proceedings of the 27th International
Symposium on Computer Architecture (ISCA).
Vancouver, British Columbia, June 2000

[4] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and
T. Mudge. Drowsy caches: Simple techniques for
reducing leakage power. In Proceedings of the 27th
International Symposium on Computer Architecture
(ISCA), 2002.

[5] M. R. Guthaus, J. S. Ringenberg, D. Emst, T . M.
Austin, T. Mudge, and R. B. Brown. Mibench: A free,
commercially representative embedded benchmark
suite. IEEE 4th Annual Workshop on Workload
Charactenzation, December 2001.

[6] J. S. Hu, A. Nadgir, N. Vijaykrishnan, M. J. Irwin,
and M. Kandemir. Exploiting program hotspots and
code sequentiality for instruction cache leakage
management. In Proc. of the International Symposium
on Low Power Electronics and Design (ISLPED'03j,
Seoul, Korea, August 2003.

[7] M. B. Kamble and K. Ghose. Analytical energy
dissipation models for low power caches. In Proc. of
the International Symposium on Low Power
Electronics and Design, 1997.

[8] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay:
Exploiting generational behavior to reduce cache
leakage power. In Proceedings of the 28th International
Symposium on Computer Architecture (ISCAj,
Goteborg, Sweden, June 2001.

[9] J. Kin, 14. Gupta, and W. H. MangioneSimith. The
filter cache: An energy efficient memory structure. In
Proceedings of 30th Annual International Symposium
on Microarchitecture, December 1997.

Media-bench: A tool for evaluating and synthesizing
multimedia and communications systems. In
Proceedings of the 30th Annual International
Symposium on MicroArchitecure, Decernbcr 1997.

[ll] L. H. Lee, W. Moyer, and J. Arends. Instruction fetch
energy reduction using loop caches for embedded
applications with small tight loops. In Proceedings of
International Symposium on Low Power Design, pages
63-68, August 1999.

Gyllenhaal, and W. W. Hwu. A hardware-driven
profiling scheme for identifying program hot spots to
support runtime optimization. In Proceedings of
International Symposium Computer Architecture,
pages 136-147, May 1999.

[13] J. Montanaro and et al. A 160-mhz, 32-b, 0.5-w cmos
risc microprocessor. IEEE Journal of Solid State
Circuits, 31(11):1703-1714, November 1996.

[14] C:L. Su and A. Despain. Cache design tradeoffs for
power and performance optimization: A case study. In
Proceedings of International Symposium on Low
Power Deszgn, April 1995.

[15] W. Tang, R. Gupta, and A. Nicolau. Design of a
predictive filter cache for energy savings in high
performance processor architectures. In International
Conference on Computer Design(lCCD), Austin,

[lo] C. Lee, M. Potkonjak; and W. H. Mangione-Smith.

[12] M. C. Mcrten, A. R. Trick, C. N. George, J . C.

Texas, USA, 2001.
[16] N. E. Bellas and I. N. Hajj and C. D.

Polychronopoulos. Using Dynamic Cache Management
Techniques to Reduce Energy in General Purpose
Processors. IEEE Transactions on Very Large Scale
Inteqration (VLSI) System, 8(6), December 2000.

119

