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Abstract 

This paper describes a fully parallel real-time Mandarin dictation 
machine which recognizes Mandarin speech with almost unlimited 
texts and very large vocabulary for the input of Chinese characters 
to  computers. Isolated syllables including the tones are first rec- 
ognized using specially trained hidden Markov models with special 
feature parameters, the exact characters are then identified from 
the syllables using a Markov Chinese language model, because ev- 
ery syllable can represent many different homonym characters. The 
real-time implementation is in Occam language on a transputer sys- 
tem with 10 T8OO processors operating in parallel. The overall 
correction rate for the final output characters is about 89%. 

1 Introduction 

Today, the input of Chinese characters into computers is still a 
very difficult and unsolved problem. All the currently existing in- 
put methods either are too slow or need special training, therefore 
can't be conveniently used by most people. This is the basic moti- 
vation for the development of a Mandarin dictation machine. We 
defined the scope of this research by the following limitations. The 
input speech is in the form of isolated syllables instead of contin- 
uous speech (the choice of syllables as the dictation unit will be 
discussed in detail later). The machine is speaker dependent. The 
first stage goal of this system is to have about 90% correction only 
for the sentence patterns in the Chinese textbooks of the primary 
schools in Taiwan, Rep. of China, because the errors can be found 
by the user on the screen and corrected from the keyboard very 
easily using convenient software system. Such a performance is 
still much more efficient than any of the currently existing input 
systems. However, on the other hand, the machine has to  be able 
to  recognize Mandarin speech with very large vocabulary (at least 
for sentence structures appearing in primary school text books) be- 
cause we assume the input to  computers can be arbitrary Chinese 
texts[l][2]. Also, the machine has to  work in real-time for computer 
input applications. The above goals were almost achieved in a pre- 
vious research[3]. This paper then presents a successfully imple- 
mented fully parallel version of the previously developed Mandarin 
dictation machine, but with significantly improved performance. 

2 Considerations for Chinese and Overall System Struc-  
t ure 

There are a t  least 60,000 commonly used words in Chinese. There- 
fore the words cannot be used as the dictation units. There are a t  
least 15 thousands of commonly Chinese characters, each character 
is mono-syllabic. A nice feature is that the total number of different 
syllables in Mandarin speech is only about 1300. If we use the 1300 
syllables as the dictation units, all the words or characters will be 
covered. However, the small number of syllables implies another 
difficult problem, that is, many different homonym characters will 

share the same syllable. This problem was then be solved by using a 
specially designed Markov Chinese language model. Based on the 
above observations on the special structure of Chinese language, 
the use of syllable as the dictation unit becomes a very natural 
choice. 

Another very important feature of Mandarin is the lexical tones 
for the syllables. Mandarin Chinese is a tonal language. Every 
character is assigned a tone in general. There are basically five 
different tones. It has been shown that the primary difference for 
the tones is in the pitch contours, and the tones are essentially 
independent of the other acoustic properties of the syllables. If the 
differences among the syllables due to lexical tones are disregarded, 
only 408 syllables are required to  represent all the pronunciations 
for Mandarin Chinese. This means the recognition of the syllables 
can be divided into two parallel procedures, the recognition of the 
tones, and the 408 syllables disregarding the tones 

Based on the considerations described above, the overall system 
structure for the fully parallel Mandarin dictation machine is shown 
in Fig.1. The system is basically divided into two subsystems. The 
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Figure 1: The overall system slructure for the Mandann  dzctalion 
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first is to recognize the syllables, and the second is to transform 
the series of syllables into the characters. For the first subsystem 
of syllable recognition, the corresponding syllable (disregarding the 
tones) and the tone are then recognized independently in parallel. 
Because errors always happen, we therefore have to  provide infor- 
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mation for confusing syllables, and confusing tones. For the second 
subsystem we need to first to obtain all possible character hypoth- 
esis from a stored dictionary and then use the Markov Chinese 
language model to select the most probable (maximum likelihood) 
concatenation of them as the output sentence. All these processes 
will be described in detail in the following. 

3 
The recognition of the 408 Mandarin syllables disregarding the 
tones is very difficult because there exist 38 confusing sets in the 
vocabulary, each of which contains at most 19 very confusing syl- 
lables. Conventionally each Mandarin syllable is decomposed into 
an “initial/final” format, in which “initial” means the initial con- 
sonant of the syllable, while “final” means the vowel or diphthong 
part hut including possible medial or nasal ending. Each confus- 
ing set mentioned above then consist of syllables sharing the same 
final but with different initials. Direct application of standard ap- 
proaches of hidden Markov models (HMM’s)[4] gives recognition 
rates on the order of only 70% - 80% due to the difficulties caused 
by these confusing sets. A revised three-pass training approach for 
HMM’s has been developed by specially considering the character- 
istics of this vocabulary. Because all the syllables in a confusing 
set share the same final, in this approach 38 final HMM’s are first 
trained in the first pass, each for the final of a confusing set US- 
ing the segmented final parts of one set of the training utterances, 
and 99 initial HMM’s are then trained using the segmented initial 
parts in the second pass. These initial and final HMM’s are finally 
smoothly cascaded to form 408 syllable HMM’s by requiring that 
in each syllable HMM the last state of the initial HMM is exactly 
the first state of the final HMM which was trained primarily from 
the transition region of the speech signal. In this way not only the 
initial HMM’s and final HMM’s can be separately trained and the 
short initial parts can be assigned more number of states, but the 
HMAl’s for the syllables in a given confusing set will have exactly 
identical parameters in the last few states, thus the effect of the 
final in the recognition phase can be minimized while differences 
in initials can be emphasized to better distinguish these syllables. 
The 99 initial models are obtained as follows. Considering the fact 
that very often quite a few finals approximately start with some 
common phoneme (for example, [a], [ai], [au], [an], [ang] all start 
with the phoneme /a/), syllables with these finals but the same 
initial(such as [sa], [sail, [sau], [san], [sang]) can in fact share the 
same initial HMM. In this way, the total number of initial HMM’s 
was found to be 99. In fact, only one set of training utterances 
needs to be segmented into initials and finals, and they are used 
to train 38 final HMM’s and 99 initial HMM’s to be cascaded to 
form the 408 syllable HMM’s. These 408 HMM’s are then taken as 
the initial values to go through a third pass training, in which the 
unsegmented training utterances are used in the forward-backward 
algorithm, while the parameters of the initial and final parts of the 
syllable IIMM’s are reestimated separately. Simulation results in- 
dicate that in this way the top 1 recognition rate can be as high as 
91.42% as compared to the results of 70% - 80% for the standard 
HMM ’s. 

Syllable Recognition Disregarding t h e  Tones 

4 

The difficulties in real-time implementation of the syllable recog- 
nition is due primarily to the very large amount of computation: 

Fast  Approaches for Syllable Recognition 

75 frames x 408 syllables x 7 states x [5 mixs x 

11 dims x (1 mult + 1 add) + (1 exp + 
4 subtracts) + (3 mults + 1 add)] 
= 25,275, GOO float mults 

Here one addition is regarded as 1/2 multiplication and one EXP 
is regarded as 30 multiplications according to the floating point 

performance of INMOS transputer T800-20 and the Occam arith- 
metic library supported in INMOS TDS (Transputer Development 
System). I t  takes at  least 16 sec to recognize one syllable using one 
1.5 MFlops/sec processor. Therefore 30 such processors are needed 
to compute it in real time. Several approaches were therefore de- 
veloped to reduce the computation requirements. 

First, since the models representing the syllables with the same 
initial share the same parameters of the first few states and the 
models representing the syllables with the same final share the 
same parameters in the last few states, we can thus combine the 
computation for the shared parameters together. This reduces the 
necessary Computation by a factor of 6. However, more program 
overheads are needed to handle the combination of shared compu- 
tation. Another approach to reduce computation is to evaluate all 
models at first, but delete the less possible models soon. A useful 
method called two-stage search was developed. In the first stage, 
38 syllables with 38 different finals are recognized. In the second 
stage, only those syllable models consisting of the k most possible 
finals found in the first stage are recognized, because the final part 
of Mandarin syllables are very stable and easy to distinguish. This 
approach can speed up the computation by 3 times with a 0.49% 
loss only in recognition rate when k = 3. In fact, if we make a 
rough cut between the initial and final and simply take 3/4 or 4/5 
of an utterance as the final part to  be used in the first stage, the 
recognition rate will be even higher. However, because in such an 
approach the second stage cannot be started until the complete 
syllable is uttered, a significant delay always exists no matter how 
efficiently it can reduce the computation. On the other hand, a 
more straight forward approach to reduce computation is the well- 
known beam search. This is to recognize an utterance with all 408 
syllable models at  first. After evaluation of the first few frames, 
we select only the most possible syllable models as candidates of 
the utterance and continue to evaluate their probabilities for the 
successive frames. Such selection can be done repeatedly. The 
probability of the model for the correct syllable usually becomes 
significantly higher than most of the other 407 syllable models very 
soon. This makes the beam search approach very attractive. It 
is easy to decide a sequence of phases and beam width for beam 
search which can speed up the computation several times but with 
almost no loss in recognition rate. In fact, some utterances can 
be correctly recognized in beam search while missed in full search. 
This is because most confusing syllable models have the same fi- 
nal but different initial, thus are easily deleted in the beginning 
frames while become very confusing with similar probabilities af- 
ter all the frames are evaluated. In fact, the two-stage search and 
the beam search approaches can be used together, in which beam 
search can be applied in the first stage and/or the second stage of 
the two-st age search. 

5 

Now, we consider how to parallelize the syllable recognition in many 
processors. The available processors are the INMOS transputers 
T800-20, a 32 bit, 10 MIPS processor with integral 64 bit floating 
point unit with sustained performance of 1.5 MFlops/sec. The 
T800 uses a DMA block transfer mechanism to transfer messages 
with other transputers via four INMOS links. The link interface 
and the processor all operate concurrently, allowing processing to 
continue while data are being transferred on all of the links. The 
four serial links on the T800 give a unidirectional transmitted rate 
of 1.7 Mbytes/sec and a combined ( bidirectional ) data rate per 
link of 2.3 Mbytes.sec, at a link speed of 20 Mbits/sec. 

To parallelize the syllable recognition, we must distribute its 
computation to many processors first. There are many factors in- 
volved for the total computation amount. These include the num- 
ber of frames, number of syllable models, number of states, number 
of mixtures and order of autocorrelation. It is difficult (but not 
impossible) to distribute the computation according to number of 

Implementa t ion  of the Syllable Recognition 
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frames because for real-time processing, the input frames are pro- 
duced one after one and all computation must follow this sequence. 
For example, we cannot finish the computation about thc second 
frame before the results about the first frame are available. Dis- 
tributing the computation according to syllable models is ideal if 
we don’t combine the duplicated computation for shared parame- 
ters together as mentioned above, in which, the evaluation for every 
syllable model uses the same input but is completely independent 
except that their results must be collected and compared. Once 
the duplicated computation are combined, an approach is to par- 
tition the syllable models according the cross relationships in the 
parameter-sharing. The 408 syllables can be partitioned into seven 
groups (as in Table 1). 

e 
1 
U 
iu 

e, eh, el, en, eng, er 
I ,  la, le, iai, iau, IOU, ian, in, iang, ing 
n, ua, uo, uai, uei, uan, uen, uang, ueng 
iu, iue, man, iun, lung 

Table 1: Syllable partition table according to  parameter-sharing re- 

In this way, a syllable shares either the same initial HMM or the 
same final HMM with some other syllables belonging to  the same 
group but shares no parameter with any syllable in other groups. 
To distribute the computation according to  syllable models can 
then refer to  this partition to  minimize data dependence among 
processors. Because the number of initials or number of finals con- 
tained in every group here are not equal, more processors should be 
assigned for larger group to  balance the load. Such arrangement 
seems reasonable, but becomes infeasible if the twestage search 
mentioned above were applied or turns out to be unbalanced if 
beam search were used. Better dynamic allocation mechanism is 
thus needed. 

An alternative is to distribute the computation according to 
the states of HMM’s. In this case every processor shares the same 
input and should pass the transition probabilities to  the proces- 
sor which evaluates the probabilities for the next state. The data 
dependence flow is simple and unidirectional. However, the com- 
putation necessary for each state is not equal because there are 99 
initials modeled using the first few states but 38 finals modeled us- 
ing the last few states. Even though we can assign more processors 
for the state with more computation involved, once the two-stage 
search or beam search is applied, we still need a dynamic allocation 
mechanism to balance the load among processors. 

We can also consider allocating the computation according to 
the mixture index. The syllable recognition evaluation can be re- 
garded as two parts, calculating the observation probabilities and 
the state transition probabilities respectively. The former takes 
more than 90% of the total computation. We can thus assign one 
processor as the master to calculate the state transition probabil- 
ities and other processors as slaves to calculate the observation 
probabilities. Distribution of the computation for these slave pro- 
cessors is then based on the mixture index. Every slave processor 
can be responsible for the inner product of the input autocorre- 
lation vectors with the characteristic vectors of a certain mixture. 
They share the same input and their results should be merged 
and compared to  choose the largest one. The exponential value 
of the largest one is then computed as the observation probabil- 
ity and sent to  the master processor. The structure is shown in 
Fig.2. Although the inner product and PDF values must be passed 
among processors, this won’t increase too much overall computa- 
tion time because the linksof T800’s have their own DRlA interraces 
to  transfer these data concurrently with the processors’ operation. 
The data dependence flow is simple and unidirectional. There are 
at least three important advantages in this configuration. First, 

lations 

the computation load is always balanced no matter the two-stage 
search or beam search is applied. Secondly, it will be easy to modify 
the connection relations among the HMM states or the observation 
probability function, because the two parts are separated in this 
configuration. Lastly, different specific functions (e.g. HMM state 
transit,ion probabilities, inner product or exponential value evalua- 
tion) are separately implemented, thus it will be easy to implement 
this configuration on specially designed circuits with low cost. This 
is why we finally configure the syllable recognition subsystem in 
this structure. There still exists one more different approach, i.e., 
to distribute the computations according to  the order of autocor- 
relation. However, this will cause too much data dependence and 
communication because every product obtained in one processor 
must be added to  another product obtained in another processor 
Note that a 32 bit floating point multiplication takes the processor 
only 650 ns, but 2350 ns will needed for the link to pass the 32 bit 
result to another processor. 

(1) Input autocorrelation vectors 
(2) Selected candidates ty fast method or 

(3) Pdf value of input autocorrelation vector 
beam search.approach 

(4) M,aximum inm, duct value of 
(5) Most possiMe syllables for input utterance 

rnucture 1 to m&re N 

Figure 2: Block diagram of syllable recognitzon sub-system 

6 Tone Recognition 

There are totally five different lexical tones in Mandarin usually 
referred as the the first, second, third, fourth and the fifth tones, 
among them the fifth(or neutral) tones is the most difficult to d i s  
tinguish. This is because there exist typical pitch contours for the 
pitch frequencies of the first four tones in general. However, the 
pitch frequencies of the fifth tone do not necessarily follow any spe- 
cific pattern. Some initial efforts on Mandarin lexical tone recogni- 
tion had been reported with very encouraging results[5], but they 
all concentrated on the recognition of the first four tones while the 
fifth tone was always ignored. In this research,special algorithm 
is used to distinguish the fifth tone, and we give up the conven- 
tional SIFT algorithm but choose the improved parallel processing 
approach to detect the pitch interval in order to reduce the com- 
putation requirements, in which only one pitch-period estimator IS 

used. The block diagram is as shown in Fig.S(a). First, the speech 
signal is lowpass filtered with a cutoff of about 600 Hz to produce a 
relatively smooth waveform. Following the filtering, the “peaks and 
valleys” (local maxima and minima) are located. An impulse train 
is then derived from the filtered signal. Each impulse has a value 
equal to  the difference between the peak amplitude and preceding 
valley amplitude, and is located at  each peak The impulse train 
is next processed by a time varying nonlinear operation. When 
an impulse is detected in the input, the output is set to the value 
of that impulse and then held for a blanking interval, T,, during 
which no pulse can be detected. At the end of the blanking inter- 
val, the output begins to decay and then rise exponentially. When 
an impulse exceeds the level of the output, the process is repeated. 
The duration needed to  detect the next impulse is an estimate of 
the pitch period. The nonlinear time function is shown in Fig.3(b). 

The extracted pitch periods are first smoothed using a median 
filter. The observation vector sequence is then derived from this 
smoothed pitch period. We use the conventional feature vector 
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definition for tone recognition, 

where fi is the pitch frequency at time 1. In order to improve the 
recognition of the fifth (neutral) tone, an additional parameter, the 
probability of the syllable duration, is used to evaluate the final 
probability. 

where Pdura and Phmm are respectively the probability of the syl- 
lable duration and the discrete HMM with codebook size 16. Pduro 
can be estimated from the distribution of the training data. The 
test results indicate that the recognition rate of all the five tones is 
92.3%. 

Pfinal = Pdura x Phmm 

(4 
,Blanking intwal 

Figure 3: (a) Block diagram of PPE (b )  Nonlinear time function 

7 
Even if the syllable and tones can be correctly recognized using 
speech processing approaches, the high degree of ambiguities due 
to homonym characters still causes serious problems for the lin- 
guistic decoding process in the Mandarin dictation machine. This 
is because each Chinese character is pronounced as a monosyllable 
and in average each phonologically allowed syllable can represent 
at least 15 homonym characters. Thus the choice of the correct 
character for each syllable is a very difficult task. 

In this research, a powerful Markov model for Chinese language 
was developed to solve this difficult linguistic decoding problem[6]. 
The likelihood value for a given Chinese sentence is the product of 
the successive state transition probabilities, where the states can 
be either characters or words (a word is composed of one to several 
characters). This is because unlike English language there is no 
boundary marker between two adjacent words. The state transition 
probabilities are trained using a large quantity of training texts. 
For each sequence of input candidate syllables and probabilities, 
a word lattice can be constructed and the most probable output 
Chinese sentence can be obtained from the maximum likelihood 
path found in this lattice. Although the number of possible paths 
in the lattice is of exponential size in general, an efficient search 
algorithm based on dynamic programming was also developed to 
find the best solution in polynomial time. 

Our language model is to compute the Markov chain proba- 
bilities of the possible output sentences for the input sequences 
of syllables. Apparently, the computation amount will increase 
exponentially with the length of the sequence. Beam search thus 
must be imposed to avoid such increase. Experimental results show 
that the model performs well under beam search imposed, and the 
evaluation time can be acceptable. The parallelization strategy is 
straight forward. Suppose there are N characters corresponding to 
a syllable, numbered 0 to N - 1,  and we have M processors avail- 
able, numbered 0 to M - 1. We allocate the computation about 
those characters whose number is i mod M to processor numbered 
i. This allocation makes the load well balanced. Another important 
advantage in this configuration is that not only jobs are equaliy dis- 

The Markov Chinese Language Model 

tributed among the processors, but the large database storing the 
statistical relationships among the characters is also evenly divided 
for every processor. 
8 Physical Structure and Preliminary Test Results 

The block diagram of the fully parallel machine is shown in Fig.4. 
An IBM PC/AT is used as 1/0 controller for keyboard, monitor 
and disk driver. An A/D converter is directly connected to the 
host transputer to sample the filtered input utterances. The host 
transputer runs the user interface routine and the end point de- 
tection procedure. The input utterance is then sent to the next 
transputer responsible for tone recognition, concurrently a bypass 
process passes the input samples to the next transputer responsi- 
ble for calculating the autocorrelation vectors. The autocorrelation 
vectors are then sent to the syllable recognition subsystem which 
consists of seven transputers, with configuration discussed previ- 
ously. Since the language model subsystem cannot be started until 
the recognition units finished their jobs, it can share the same p r e  
cessors with the syllable and tone recognition subsystems. In other 
words, after syllable and tone recognitions are finished, the lan- 
guage model is run on the first eight transputers. There are there- 
fore a total of ten transputers used in the machine. Preliminary 
tests indicate that the time needed for the machine to  recognize 
the syllable and tone is shorter than the time needed to produce 
the utterance and there is less than 0.01 second delay between the 
speaker finishes an utterance and the estimated syllable and tone 
are decided. The time needed for the language model to process 
fifteen syllable hypotheses to obtain fifteen most probable charac- 
ters is about 0.2 second. The overall correction rate for the final 
output characters is found to be about 89% in the preliminary test. 

Speech I Acoustic HLw Pass 
Transducer Filter 

Figure 4: Block diagram of overall system 

9 Conclusion 

A fully parallel real-time Mandarin dictation machine which recog- 
nized Mandarin speech with almost unlimited texts and very large 
vocabulary has been completed on a transputer system. Isolated 
syllables are recognized using hidden Markov model techniques and 
transformed into Chinese characters through a Markov Chinese lan- 
guage model under speaker dependent mode. The overall system 
performance is still under test. The technology used in this ma- 
chine is quite different from those machine for other language due 
to the very specia.1 characteristics of Chinese language. 
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