
Reducing Procedure Call Overheatd:
Optimizing Register Usage at Proceduire Calls

Feipei Lai and Chia-Jung Hsieh
Dept. of Computer Science and Information Eng. & Dept. of Electrical Eng.

National Taiwan University, Taipei, Taiwan, R.0.C.
E-mail: flai@cc.ee.ntu.edu.tw

Abstract

This paper proposes a common global variable re-
assignment and an integrated approach which takes
advantage of the complementary relationship of in-
lining and interprocedural register allocation to reduce
the procedure call overhead without causing additional
negative effect. Our approach is based on the obser-
vation of analyzed program characteristic t o identify
the heavy called procedures regions and the register us-
age information t o optimize the placement of register
save/restore code. This method also takes f i l l advan-
tage of free-use registers at each procedure call site.
The average performance improvement is 1.233 com-
pared with the previous schemes that performed either
of them independently.

1 Introduction

On the run-time of a program, the main proce-
dure call overhead includes common global variable ac-
cess and preserving registers for local variables across
procedure calls. There has been much research fo-
cuses on either of the inlining or the interprocedural
register allocation independently to reduce the pro-
cedure call overhead. But either of them has some
constraints. The inlining would cause the code size ex-
pansion and control stack overflow. Moreover, the in-
teraction with the register allocation will decrease the
performance[4]. On the other hand, if one procedure
is called from more than two sites, some situations of
call sites may prevent the others from applying inter-
procedural register allocation. In such condition, we
pick some call site to do inlining according to the crit-
ical region information to augment the opportunity of
taking full advantage of the free registers. Moreover, if

of the inlined procedure is guided by the interprocedu-
ral analyzer, the problem caused by the interactions

the placement of the register save/restore operations

with the register allocation would be removed. So an
integrated approach is proposed.

Also, we maintain common global variables in reg-
isters to avoid the extra register save/restore code at
procedure call. Instead of dedicating a register to a
global variable throughout the program call graph, we
uses profile information to allocate an important glob-
al variable into a register only in limited subsets of the
call graph.

This paper is organized as follows. Section 2 ex-
hibits some program characteristics by a series of ex-
periments on six C pro,grams. The approach we pro-
vided to make more efficient use of registers is outlined
in Section 3. Some experimental results are shown in
Section 4. Finally, Section 5 gives the conclusion.

2 Program Characteristics

Table 1 shows the set of benchmarks that we s-
elected as the examples in our studies. For each
benchmark, most of the called C library functions are
merged into the testing program with their C source
code and also participate in the interprocedural op-
timization. The ‘Size’ column shows the sizes of the
programs in terms of tlhe number of lines of C code.
The ‘Proc.’ column gives the number of procedures
within the program. The ‘Description’ column briefly
describes each program.

First, we are curious about the distribution of pro-
cedure calls on the compiler-time. The following func-
tion is applied to each benchmark program and the
result is depicted in Figure 1.

. fxN

Where T = xp callIn, means the number of all dy-
namic procedure calls, and callhp be the number of

0-8186-6555-6194 $04.00 0 1994 IEEE
649

n Program I Size I Proc. I Description II
compress
espresso

grep

lex

1606 20 compress program
13879 376 boolean function

5815 82 search a file for a

10536 134 lexical analysis pro-

n

given string

I gram generator

yacc

Table 1: Benchmarks

6881 I 180 parsing program
generator

times the procedure p is called. The total number of
procedures, N, is sorted in increasing c a l h sequences
into the Array sort-list. Figure 1 plots the cumula-
tive fraction of all dynamic procedure calls against the
fraction of total procedures.

1, we find that most of the
dynamic procedure calls are dedicated to only a small
proportion of the whole set of procedures. As a con-
sequence, very significant improvement will be gained
after removing the call overhead out of the call sites
that the control is transferred to these heavy called
procedures.

According to Figure

y 0.2

2 0.1

L..
8 . -

1_-.___

'-I-..
-

..-._ ..-_. ~

-

Figure 1: Distribution of procedure calls

1

0.9

0 . 8

0 . 7

0 . 6

0 . 5

0 . 4

0 . 3

0 . 2

0.1

o i

In order to do the inlining and register upthrust
optimization, the interprocedural analyzer must have
the register usage information of each call site. The
free register at call site s is a physical register that
holds no live value across call site s, but it may be live
elsewhere within the procedure. These free registers
can be safely used by target callee procedure of the call
site without any savelrestore actions. In Figure 2, the
number of free registers on each call site is depicted.

compress -
I .

e*
-

._: ! y:: ::,x j !
-
- li

yacc -
-

... -
..I -

-
__..

'_(.... e..-- -
_ _ _ _ _

Ire* Rl#>.L.T.

Figure 2: Number of free registers on each call site

v)

compress -
ea

Degree of Register Usage

Figure 3: Degree of register usage on each procedure

Figure 3 shows the degree of register usage for each
procedure under the configuration of 32 general regis-
ters. The xaxis denotes the degree of register usage
measured in the fraction f of the total general reg-
isters, R. The following function is applied to each
benchmark program.

number of procedures
whose register usage 2 U x R
total number of procedures Y('11) =

where U means the degree of register usage. Figure 3
exhibits that the register usage degree of half of the
procedures is less than 0.6 (approximately, 19 regis-
ters) for each benchmark program. It means there is
still opportunity for further improvement in register
utilization.

All the analysis result exhibited in this section
would guide the development of our interprocedural
optimization to reduce most of the procedure call over-
head with the least processing effort.

650

3 Implementation

If we restrict the processing sccpe of interprocedu-
ral optimization within each individual module, inlin-
ing would not be performed if the procedure bodies of
caller and callee are not in the same module. So we
construct a simple compilation system in which each
separate module is stored in its intermediate repre-
sentation form. Every time the compiler is triggered,
it only re-compiles those modified source modules to
the intermediate representations. Then, the modifier
loads each module in its intermediate form and does
the necessary modification according to the decision of
the interprocedural analyzer. Therefore, our compiler
can support separate compilation.

3.1 Overview of the Integrated Approach

Figure 4 illustrates the main phases in our compila-
tion system. The GNU C compiler is used as the front
end of our compiler. In the pre-compilation, we com-
pile all modules of the source program and outputs the
program structure information required to make in-
terprocedural analysis. The program structure infor-
mation includes the static program call graph, global
variables of each procedure, candidates of implicitly
called procedures and loop-structure. After all the
information has been gathered, the frequently called
procedures are identified, and then the common glob-
al variables reassignment and the interprocedural an-
alyzer are run. The interprocedural analyzer makes
the optimization operation decision based on the re-
lationship described and generates the records of nec-
essary modification action. Not modifying any code,
instead, the relevant directions for each procedure is
placed in a program database. Finally, the modifier
does the actual modification according to the modi-
fication records in the program database. The data
base is a pool used for keeping both the register usage
information and the modification records.

3.2 Register allocator

In order to provide a more accurate estimation of
register pressure on each call site and register usage
information of each procedure to the interprocedural
analyzer, we do the register allocation first.

Common global variables reassignment

Our compiler reserved 4 registers as dedicated register-
s for carrying the common promoted global variables
across the procedure boundaries. In programs with

t
oala codrr

Figure 4: Comlpilation organization

high register usage pressure, the reservation of the reg-
isters will affect the amount of spill code. To avoid the
additional spill code affects the benefit of the common
global variable reassignment, the decision of promot-
ing the global variables to the dedicated registers must
take the integrated effect into account. And while not
holding the common gl'obal variables, the dedicated
registers are released as general registers. In order to

executingkqs : F>CT>C > > H > E > . .

&id region I = (F, G, D. E)

criticalregion I1 = (C A)

In Region I :

Common Global variables : { x, y, z)

F : { x,z}

G : X,Y 9 1

E : { X,Y }
D : { x)

x -> rdl (D. E, F. G)
z-Zrd2 (F , G) ===>

Figure 5: (Critical regions.

get the most benefit with the least number of dedicat-
ed registers, one should be able to locate the regions
with heavy dynamic procedure calls and assign those
common frequently referenced global variables within
these regions into the detdicated registers. Fortunately,

651

Figure 1 in previous section shows us that most part
of the dynamic procedure calls are dedicated to only a
small portion of the whole procedures. Our analyzer i-
dentifies the critical regions, the regions covering most
dynamic procedure calls, on the program call graph
to apply the common global variables promotion and
inlining. The approach we adopted

Rocedure D Procedure E Procedure F . - - - - - - - .
load r3.x
load 16.2

store x.13
store zs6
call H
load r3.x
load r6.z

:E: z.2
call G
load r3.x
load r6,z

store x.r3
store 2 ~ 6

- - -- - - - -

n this phase is

Figure 6: Intermediate code before the common global
variables reassignment.

described below. Firstly, the analyzer identifies the
critical regions. Each critical region is constructed by
selecting the frequently called procedure, and then in-
cluding all callers of the procedure together with itself
into the same region set. Those overlapping region set-
s are merged as a single set. In Figure 5, F, G and
C are those heavily called procedures, and then, two
critical region sets are picked out as shown.

Secondly, the analyzer employs the algorithm pro-
posed by Santhanam et al.[l] within critical regions to
select the common promoted global variables. Figure
5 shows that, in a critical region, the global variables
x and B are selected and assigned to the dedicated
registers rd l and rd2 respectively.

Finally, the analyzer modifies the intermediate code
guided by the result of the common global variables
selecting. Figure 6 and Figure 7 illustrate this oper-
ation.

Intra-procedure register allocation

To avoid the problem that the reuse of registers may
severely hinder the later code scheduling, the register
allocator takes both the live-range-conflict graph and
the scheduling-conflict graph[6] into account. This
method will naturally adapt t o any pipeline architec-
ture, and also be feasible to multiple-instruction-issue

Figure 7: Intermediate code after the common global
variables reassignment.

processors.

3.3 Inter-procedural optimization

Inlining

The code size expansion is a critical problem in in-
line expansion. For simplicity, the analyzer does the
dead-code elimination firstly and then merges calls in
decreasing order of the number of times they are exe-
cuted until the code size increase reaches a threshold
within the critical regions under those constraints de-
picted in section 1. Streamlining those procedure calls
within these regions can remove most procedure call
overheads and then result in a dramatic performance
improvement but only with little compiling effort.

Reduce save/restore at procedure calls

The primary principle of this phase is to take advan-
tage of the f ree registers set at each call site. More-
over, the registers save and restore operations can be
placed at the least frequently executed sites by the
register upthmst operation. Consider the following
example. Assume procedure X is the caller of both
procedures Y and Z. The spill code can be reduced if
procedure Y or Z uses a free register on the call site
of Procedure X. Furthermore, if sibling nodes Y and
Z use the same registers that are not used in node X,
and the execution frequency of node X is less than n-
odes Y and Z, the spill code can be moved to node X.
This results in a performance gain.

The algorithm of this phase is described as follows.
Firstly, do the hierarchical interval partition on the
program call graph. An important property of inter-
vals is that they have header nodes that dominate all
the nodes in the interval; that is, every interval is a
region. Based on this property, the register upthrust

652

Pmadm J

Figure 8: Example of hierarchical interval partition.

operation can be applied safely in each interval, even
dealing with recursion calls. Figure 8 gives an exam-
ple of interval partition. In this Figure, the nodes C
and D, the recursive procedure group, are grouped into
interval 2 according to the property described above.
Applying register upthrust operation in interval 2 can
achieve the efficiency suggested by Wall for recursive
calls[3].

Secondly, for each procedure within each interval,
compute the following sets:

local-spill(p) = local-use n (r I r is live at

UpthrUStleaj nodes = localuse - locabpill.
upthrUstinteFnal node = (local-use - local-spill) U

(up! hrust,,zl, e - local-spill) .
a extra-use from callee-upthrust = U
upthrustCallee - local-use.
a extraspill for callee-upthrust = extra-use n {x I
x is live at the call site).
a final sauelrestore = { locabpill } U
{ extraspill for callee -upt hr ust }.

some call sites that call t o procedure p } .

Finally, in bottom-up ordering, propagate the up-
thrust register set from the leaf procedures in the in-
terval toward the interval header. And then optimize
the placement of the save/restore code, guided by the
profile information.

After applying the register upthrust operation, the
register save/restore code is moved to the least fre-
quently executed sites. Figure 9 gives an example of
the register upthrust.

3.4 Modifier

The modifier examines all procedures within each
r. critical region in a bottom-up order, then, according to
the result of register upthrust, the modifier inserts the

Figure 9: Example of register upthrust.

suitable store/reload code to preserve the contents of
registers across the procedure calls. Finally, the mod-
ifier merges all to-beinlined call sites with the body of
the callee procedure. At the same time, the modifier
would do the register renaming on the inlined code,
expand the activation record of the caller to absorb
the local variables of inlined procedure, and eliminate
the unnecessary store/re:load code within the inlined
code. To consider the iinteractions between inlining
and register allocation, only live registers are saved
and restored across calls[4].

4 Results

The experimental results are measured on a FUSC
simulator which is modified from the dlzsim. There
are 32 general purpose registers in our base archi-
tecture with 4 dedicated registers for common global
variables reassignment. 'The comparison is built be-
tween with interprocedural optimization and without
this optimization.

The performance improvement from inlining is
shown at Table 2. The improvement is calculat-
ed based on the execution cycles on our simulator.
The 'Removing' column denotes the percent of stat-
ic/dynamic procedure calls are eliminated after the
operation of inline expansion, respectively. The 'b-
tio' column indicates the amount of the code increase
from the inline expansiom. The values are measured

653

5 Conclusions

Progmm
comnress

Removing(%)
~ Static I Dynamic Speedup Ratio(%)

2.00 I 99.99 1.159 12.80
~ ~~~

espresso r O . 0 6 I 52.14 I 1.063 I 0.15
rrreD I 0.38 1 9.49 I 1.002 I 0.07

Program
commess

“ I ,
lex I 0.43 I 46.23 I 1.020 I 0.03
li I 8.99 I 82.47 I 1.560 I 44.20

“, I

Static I Dynamic Speedup
68 I 96 1.136

yacc I 4.49 1 46.36 I 1.096 I 16.49 1

L

espresso 41 2 1.002
~ grep 46 59 1.025

lex 63 63 1.051

Table 2: Result of inlining

yacc I 46 I 64

by the ratio of code increase to the original code size.
3 shows the speed-up from the phase of

register upthrust. The ‘Reducing’ column means the
amount of register save/restore operations which are
reduced after the operation of register upthrust.

Table

1.078

n 1 Reducino/%) I II

Table 3: Result of register upthrust

The column ‘C.G. Speedup’ in Table 4 shows the
performance improvement from the phase of common
global variables reassignment. The next column shows
that the performance improvement of average 1.233
can be achieved when the compiler applies integrating
approach.

[I Progmm I C.G. Speedup I Integrating Speedup

Table 4: Result of integrating approach

Based on the program analysis in section 2, we em-
ployed the common global variable reassignment and
the integrated approach to optimize the register us-
age and then to reduce the procedure call overhead.
We do the inlining under the constraints depicted and
also considering the interactions with the register al-
location to avoid the additional penalty. On the other
hand, with the help of inlining, the interprocedural
register allocation could avoid having the worst-case
treatment a t all call sites of the callee.

The experimental results show that this integrat-
ed approach we applied to reduce the procedure call
overhead can achieve a significant speed-up which is
better than previous work that performed either of
them independently.

References

[l] V. Santhanam and D. Odnert, “Register Alloca-
tion Across Procedure and Module Boundaries,”
Proceedings of the ACM SIGPLAN’SO Confer-
ence on Programming Language Design and Im-
plementation, pp. 28-39, June 1990.

[2] F. C. Chow, “Minimizing Register Usage Penal-
ty a t Procedure Calls,” Proceedings of the SIG-
PLAN’88 Conference o n Prog~amming Language
Design and Implementation, pp. 85-94, June
1988.

[3] D. W. Wall, “Global Register Allocation at Link
Time,” Proceedings of the SIGPLAN ’86 Sym-
posium on Compiler Construction, pp. 264-275,
June 1986.

[4] Jack W. Davidsion and Anne M. Holler, “Sub-
program Inlining : A Study of its Effects on Pro-
gram Execution Time,” IEEE Transactions o n
Software Engineering, Vol. 18, No. 2, pp. 89-102,
February 1992.

[5] K. D. Cooper, M. W. Hall, and L. Torczon, “An
Experiment with Inline Substitution,” Software-
Practice and Experience, Vol. 21(6), pp. 581-601,
June 1991.

[6] M.-C. Chang, F. Lai, and R.-J. Shang, “Exploit-
ing Instruction-Level Parallelism with the Con-
jugate Register File Scheme,” Proceedings of the
25th Annual International Symposium on Mi-
c~oarchitecture, pp. 29-32, December 1992.

654

