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Abstract 

This paper proposes a common global variable re- 
assignment and an integrated approach which takes 
advantage of the complementary relationship of in- 
lining and interprocedural register allocation to  reduce 
the procedure call overhead without causing additional 
negative effect. Our approach is based on the obser- 
vation of  analyzed program characteristic t o  identify 
the heavy called procedures regions and the register us- 
age information t o  optimize the placement of register 
save/restore code. This method also takes f i l l  advan- 
tage of free-use registers at each procedure call site. 
The average performance improvement is 1.233 com- 
pared with the previous schemes that performed either 
of them independently. 

1 Introduction 

On the run-time of a program, the main proce- 
dure call overhead includes common global variable ac- 
cess and preserving registers for local variables across 
procedure calls. There has been much research fo- 
cuses on either of the inlining or the interprocedural 
register allocation independently to reduce the pro- 
cedure call overhead. But either of them has some 
constraints. The inlining would cause the code size ex- 
pansion and control stack overflow. Moreover, the in- 
teraction with the register allocation will decrease the 
performance[4]. On the other hand, if one procedure 
is called from more than two sites, some situations of 
call sites may prevent the others from applying inter- 
procedural register allocation. In such condition, we 
pick some call site to do inlining according to the crit- 
ical region information to augment the opportunity of 
taking full advantage of the free registers. Moreover, if 

of the inlined procedure is guided by the interprocedu- 
ral analyzer, the problem caused by the interactions 

the placement of the register save/restore operations 

with the register allocation would be removed. So an 
integrated approach is proposed. 

Also, we maintain common global variables in reg- 
isters to avoid the extra register save/restore code at 
procedure call. Instead of dedicating a register to a 
global variable throughout the program call graph, we 
uses profile information to allocate an important glob- 
al variable into a register only in limited subsets of the 
call graph. 

This paper is organized as follows. Section 2 ex- 
hibits some program characteristics by a series of ex- 
periments on six C pro,grams. The approach we pro- 
vided to make more efficient use of registers is outlined 
in Section 3. Some experimental results are shown in 
Section 4. Finally, Section 5 gives the conclusion. 

2 Program Characteristics 

Table 1 shows the set of benchmarks that we s- 
elected as the examples in our studies. For each 
benchmark, most of the called C library functions are 
merged into the testing program with their C source 
code and also participate in the interprocedural op- 
timization. The ‘Size’ column shows the sizes of the 
programs in terms of tlhe number of lines of C code. 
The ‘Proc.’ column gives the number of procedures 
within the program. The ‘Description’ column briefly 
describes each program. 

First, we are curious about the distribution of pro- 
cedure calls on the compiler-time. The following func- 
tion is applied to each benchmark program and the 
result is depicted in Figure 1. 

. fxN 

Where T = xp callIn, means the number of all dy- 
namic procedure calls, and callhp be the number of 
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n Program I Size I Proc. I Description II 
compress 
espresso 

grep 

lex 

1606 20 compress program 
13879 376 boolean function 

5815 82 search a file for a 

10536 134 lexical analysis pro- 

n 

given string 

I gram generator 

yacc 

Table 1: Benchmarks 

6881 I 180 parsing program 
generator 

times the procedure p is called. The total number of 
procedures, N, is sorted in increasing c a l h  sequences 
into the Array sort-list. Figure 1 plots the cumula- 
tive fraction of all dynamic procedure calls against the 
fraction of total procedures. 

1, we find that most of the 
dynamic procedure calls are dedicated to only a small 
proportion of the whole set of procedures. As a con- 
sequence, very significant improvement will be gained 
after removing the call overhead out of the call sites 
that the control is transferred to these heavy called 
procedures. 

According to  Figure 
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Figure 1: Distribution of procedure calls 
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In order to do the inlining and register upthrust 
optimization, the interprocedural analyzer must have 
the register usage information of each call site. The 
free register at call site s is a physical register that 
holds no live value across call site s, but it may be live 
elsewhere within the procedure. These free registers 
can be safely used by target callee procedure of the call 
site without any savelrestore actions. In Figure 2, the 
number of free registers on each call site is depicted. 
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Figure 2: Number of free registers on each call site 
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Degree of Register Usage 

Figure 3: Degree of register usage on each procedure 

Figure 3 shows the degree of register usage for each 
procedure under the configuration of 32 general regis- 
ters. The xaxis denotes the degree of register usage 
measured in the fraction f of the total general reg- 
isters, R. The following function is applied to each 
benchmark program. 

number of procedures 
whose register usage 2 U x R 
total number of procedures Y('11) = 

where U means the degree of register usage. Figure 3 
exhibits that the register usage degree of half of the 
procedures is less than 0.6 (approximately, 19 regis- 
ters) for each benchmark program. It means there is 
still opportunity for further improvement in register 
utilization. 

All the analysis result exhibited in this section 
would guide the development of our interprocedural 
optimization to reduce most of the procedure call over- 
head with the least processing effort. 
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3 Implementation 

If we restrict the processing sccpe of interprocedu- 
ral optimization within each individual module, inlin- 
ing would not be performed if the procedure bodies of 
caller and callee are not in the same module. So we 
construct a simple compilation system in which each 
separate module is stored in its intermediate repre- 
sentation form. Every time the compiler is triggered, 
it only re-compiles those modified source modules to 
the intermediate representations. Then, the modifier 
loads each module in its intermediate form and does 
the necessary modification according to the decision of 
the interprocedural analyzer. Therefore, our compiler 
can support separate compilation. 

3.1 Overview of the Integrated Approach 

Figure 4 illustrates the main phases in our compila- 
tion system. The GNU C compiler is used as the front 
end of our compiler. In the pre-compilation, we com- 
pile all modules of the source program and outputs the 
program structure information required to make in- 
terprocedural analysis. The program structure infor- 
mation includes the static program call graph, global 
variables of each procedure, candidates of implicitly 
called procedures and loop-structure. After all the 
information has been gathered, the frequently called 
procedures are identified, and then the common glob- 
al variables reassignment and the interprocedural an- 
alyzer are run. The interprocedural analyzer makes 
the optimization operation decision based on the re- 
lationship described and generates the records of nec- 
essary modification action. Not modifying any code, 
instead, the relevant directions for each procedure is 
placed in a program database. Finally, the modifier 
does the actual modification according to the modi- 
fication records in the program database. The data 
base is a pool used for keeping both the register usage 
information and the modification records. 

3.2 Register allocator 

In order to provide a more accurate estimation of 
register pressure on each call site and register usage 
information of each procedure to the interprocedural 
analyzer, we do the register allocation first. 

Common global variables reassignment 

Our compiler reserved 4 registers as dedicated register- 
s for carrying the common promoted global variables 
across the procedure boundaries. In programs with 

t 
oala codrr 

Figure 4: Comlpilation organization 

high register usage pressure, the reservation of the reg- 
isters will affect the amount of spill code. To avoid the 
additional spill code affects the benefit of the common 
global variable reassignment, the decision of promot- 
ing the global variables to the dedicated registers must 
take the integrated effect into account. And while not 
holding the common gl'obal variables, the dedicated 
registers are released as general registers. In order to 

executingkqs : F>CT>C > > H > E > . .  

&id region I = ( F, G, D. E) 

criticalregion I1 = ( C A )  

In Region I : 

Common Global variables : { x, y, z ) 

F : { x,z} 

G : X,Y 9 1 

E : { X,Y } 
D : { x )  

x -> rdl ( D. E, F. G ) 
z-Zrd2 ( F , G )  ===> 

Figure 5: (Critical regions. 

get the most benefit with the least number of dedicat- 
ed registers, one should be able to  locate the regions 
with heavy dynamic procedure calls and assign those 
common frequently referenced global variables within 
these regions into the detdicated registers. Fortunately, 
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Figure 1 in previous section shows us that most part 
of the dynamic procedure calls are dedicated to only a 
small portion of the whole procedures. Our analyzer i- 
dentifies the critical regions, the regions covering most 
dynamic procedure calls, on the program call graph 
to apply the common global variables promotion and 
inlining. The approach we adopted 

Rocedure D Procedure E Procedure F . - - - - - - - . 
load r3.x 
load 16.2 

store x.13 
store zs6 
call H 
load r3.x 
load r6.z 

:E: z.2 
call G 
load r3.x 
load r6,z 

store x.r3 
store 2 ~ 6  

- - -- - - - - 

n this phase is 

Figure 6: Intermediate code before the common global 
variables reassignment. 

described below. Firstly, the analyzer identifies the 
critical regions. Each critical region is constructed by 
selecting the frequently called procedure, and then in- 
cluding all callers of the procedure together with itself 
into the same region set. Those overlapping region set- 
s are merged as a single set. In Figure 5, F,  G and 
C are those heavily called procedures, and then, two 
critical region sets are picked out as shown. 

Secondly, the analyzer employs the algorithm pro- 
posed by Santhanam et al.[l] within critical regions to 
select the common promoted global variables. Figure 
5 shows that, in a critical region, the global variables 
x and B are selected and assigned to the dedicated 
registers rd l  and rd2 respectively. 

Finally, the analyzer modifies the intermediate code 
guided by the result of the common global variables 
selecting. Figure 6 and Figure 7 illustrate this oper- 
ation. 

Intra-procedure register allocation 

To avoid the problem that the reuse of registers may 
severely hinder the later code scheduling, the register 
allocator takes both the live-range-conflict graph and 
the scheduling-conflict graph[6] into account. This 
method will naturally adapt t o  any pipeline architec- 
ture, and also be feasible to multiple-instruction-issue 

Figure 7: Intermediate code after the common global 
variables reassignment. 

processors. 

3.3 Inter-procedural optimization 

Inlining 

The code size expansion is a critical problem in in- 
line expansion. For simplicity, the analyzer does the 
dead-code elimination firstly and then merges calls in 
decreasing order of the number of times they are exe- 
cuted until the code size increase reaches a threshold 
within the critical regions under those constraints de- 
picted in section 1. Streamlining those procedure calls 
within these regions can remove most procedure call 
overheads and then result in a dramatic performance 
improvement but only with little compiling effort. 

Reduce save/restore at procedure calls 

The primary principle of this phase is to take advan- 
tage of the f ree  registers set at each call site. More- 
over, the registers save and restore operations can be 
placed at the least frequently executed sites by the 
register upthmst operation. Consider the following 
example. Assume procedure X is the caller of both 
procedures Y and Z. The spill code can be reduced if 
procedure Y or Z uses a free register on the call site 
of Procedure X. Furthermore, if sibling nodes Y and 
Z use the same registers that are not used in node X, 
and the execution frequency of node X is less than n- 
odes Y and Z, the spill code can be moved to  node X. 
This results in a performance gain. 

The algorithm of this phase is described as follows. 
Firstly, do the hierarchical interval partition on the 
program call graph. An important property of inter- 
vals is that they have header nodes that dominate all 
the nodes in the interval; that is, every interval is a 
region. Based on this property, the register upthrust 
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Figure 8: Example of hierarchical interval partition. 

operation can be applied safely in each interval, even 
dealing with recursion calls. Figure 8 gives an exam- 
ple of interval partition. In this Figure, the nodes C 
and D, the recursive procedure group, are grouped into 
interval 2 according to  the property described above. 
Applying register upthrust operation in interval 2 can 
achieve the efficiency suggested by Wall for recursive 
calls[3]. 

Secondly, for each procedure within each interval, 
compute the following sets: 

local-spill(p) = local-use n (r I r is live at 

UpthrUStleaj nodes = localuse - locabpill. 
upthrUstinteFnal node = (local-use - local-spill) U 

(up! hrust,,zl, e - local-spill) . 
a extra-use from callee-upthrust = U 
upthrustCallee - local-use. 
a extraspill for callee-upthrust = extra-use n {x I 
x is live at the call site ). 
a final sauelrestore = { locabpill } U 
{ extraspill for callee -upt hr ust }. 

some call sites that call t o  procedure p } .  

Finally, in bottom-up ordering, propagate the up- 
thrust register set from the leaf procedures in the in- 
terval toward the interval header. And then optimize 
the placement of the save/restore code, guided by the 
profile information. 

After applying the register upthrust operation, the 
register save/restore code is moved to the least fre- 
quently executed sites. Figure 9 gives an example of 
the register upthrust. 

3.4 Modifier 

The modifier examines all procedures within each 
r. critical region in a bottom-up order, then, according to 
the result of register upthrust, the modifier inserts the 

Figure 9: Example of register upthrust. 

suitable store/reload code to preserve the contents of 
registers across the procedure calls. Finally, the mod- 
ifier merges all to-beinlined call sites with the body of 
the callee procedure. At the same time, the modifier 
would do the register renaming on the inlined code, 
expand the activation record of the caller to absorb 
the local variables of inlined procedure, and eliminate 
the unnecessary store/re:load code within the inlined 
code. To consider the iinteractions between inlining 
and register allocation, only live registers are saved 
and restored across calls[4]. 

4 Results 

The experimental results are measured on a FUSC 
simulator which is modified from the dlzsim. There 
are 32 general purpose registers in our base archi- 
tecture with 4 dedicated registers for common global 
variables reassignment. 'The comparison is built be- 
tween with interprocedural optimization and without 
this optimization. 

The performance improvement from inlining is 
shown at Table 2. The improvement is calculat- 
ed based on the execution cycles on our simulator. 
The 'Removing' column denotes the percent of stat- 
ic/dynamic procedure calls are eliminated after the 
operation of inline expansion, respectively. The 'b- 
tio' column indicates the amount of the code increase 
from the inline expansiom. The values are measured 
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5 Conclusions 

Progmm 
comnress 

Removing(%) 
~ Static I Dynamic Speedup Ratio(%) 

2.00 I 99.99 1.159 12.80 
~ ~~~ 

espresso r O . 0 6  I 52.14 I 1.063 I 0.15 
rrreD I 0.38 1 9.49 I 1.002 I 0.07 

Program 
commess 

“ I  , 
lex I 0.43 I 46.23 I 1.020 I 0.03 
li I 8.99 I 82.47 I 1.560 I 44.20 

“, I 

Static I Dynamic Speedup 
68 I 96 1.136 

yacc I 4.49 1 46.36 I 1.096 I 16.49 1 

L 

espresso 41 2 1.002 
~ grep 46 59 1.025 

lex 63 63 1.051 

Table 2: Result of inlining 

yacc I 46 I 64 

by the ratio of code increase to the original code size. 
3 shows the speed-up from the phase of 

register upthrust. The ‘Reducing’ column means the 
amount of register save/restore operations which are 
reduced after the operation of register upthrust. 

Table 

1.078 

n 1 Reducino/%) I II 

Table 3: Result of register upthrust 

The column ‘C.G. Speedup’ in Table 4 shows the 
performance improvement from the phase of common 
global variables reassignment. The next column shows 
that the performance improvement of average 1.233 
can be achieved when the compiler applies integrating 
approach. 

[I Progmm I C.G. Speedup I Integrating Speedup 

Table 4: Result of integrating approach 

Based on the program analysis in section 2, we em- 
ployed the common global variable reassignment and 
the integrated approach to  optimize the register us- 
age and then to reduce the procedure call overhead. 
We do the inlining under the constraints depicted and 
also considering the interactions with the register al- 
location to avoid the additional penalty. On the other 
hand, with the help of inlining, the interprocedural 
register allocation could avoid having the worst-case 
treatment a t  all call sites of the callee. 

The experimental results show that this integrat- 
ed approach we applied to reduce the procedure call 
overhead can achieve a significant speed-up which is 
better than previous work that performed either of 
them independently. 

References 

[l] V. Santhanam and D. Odnert, “Register Alloca- 
tion Across Procedure and Module Boundaries,” 
Proceedings of the ACM SIGPLAN’SO Confer- 
ence on Programming Language Design and Im- 
plementation, pp. 28-39, June 1990. 

[2] F. C. Chow, “Minimizing Register Usage Penal- 
ty a t  Procedure Calls,” Proceedings of the SIG- 
PLAN’88 Conference o n  Prog~amming Language 
Design and Implementation, pp. 85-94, June 
1988. 

[3] D. W. Wall, “Global Register Allocation at Link 
Time,” Proceedings of the SIGPLAN ’86 Sym- 
posium on Compiler Construction, pp. 264-275, 
June 1986. 

[4] Jack W. Davidsion and Anne M. Holler, “Sub- 
program Inlining : A Study of its Effects on Pro- 
gram Execution Time,” IEEE Transactions o n  
Software Engineering, Vol. 18, No. 2, pp. 89-102, 
February 1992. 

[5] K. D. Cooper, M. W. Hall, and L. Torczon, “An 
Experiment with Inline Substitution,” Software- 
Practice and Experience, Vol. 21(6), pp. 581-601, 
June 1991. 

[6] M.-C. Chang, F. Lai, and R.-J. Shang, “Exploit- 
ing Instruction-Level Parallelism with the Con- 
jugate Register File Scheme,” Proceedings of the 
25th Annual International Symposium on Mi- 
c~oarchitecture, pp. 29-32, December 1992. 

654 


