
A Petri-Net Based Hierarchical Structure
for Dynamic Scheduler of an FMS :

Rescheduling and Deadlock Avoidance

Y. L . Chen, T. H. Sun and L. C. Fu

Department of Computer Science and Information Engineering
National Taiwan University, Taipei, Taiwan, R.O.C.

Abstract
Flexible manufacturing sys tems (F M S s) have re-

ceived considerable at tent ion and evolve to be one of
the fastest growing industrial field in the last decade.
In these sys tems , m u c h higher e f i c i e n c y of manufac-
turing can be achieved (owning to their intr insic f lex-
ibility) provided a good scheduling policy i s adopted.
In this paper, w e propose a dynamic scheduler wi th a
hierarchical structure t o cope with the unavoidable dis-
turbing events in such dynamic sys tems like a n F M S .
In particular, we based o n our earlier work [6] handle
the rescheduling problem as we as the deadlock avoid-
ance problem. T h e mer i t of this work i s i t s complete-
ness in considering all possible components in a n F M -
S, including A G V transportat ion sys tem.

Abstract
Flexible manufacturing systems (FMSs) have re-

ceived considerable attention and evolve t o be one of
the fastest growing industrial field in the last decade.
In these systems, much higher efficiency of manufac-
turing can be achieved (owning t o their intrinsic flex-
ibility) provided a good scheduling policy is adopted.
In this paper, we propose a dynamic scheduler with
a hierarchical structure to cope with the unavoidable
disturbing events in such dynamic systems like an Fhl-
S. In particular, we based on our ea.rlier work (61 han-
dle the rescheduling problem a.s we as the deadlock
avoidance problem. The merit of this work is its com-
pleteness in considering all possible components in an
FMS, including AGV transportation system.

1 Introduction
An FMS may be viewed as a discrete event dynamic

system, and its scheduling problem is known to one of
the NP-ha rd combinatorial problems. For this reason,
it can be alternatively tackled by means of heuristic or
approximate scheduling procedures, which are usually
allowed in most of the ca.ses, to determine optimal or
nearly optimal solutions. On the other hand, real-time
control operations of an FMS often involves decisions
as how t o solve occasional problems due to addition
of new parts, machine failure, set-up changes, main-
tenance, etc., which may be viewed as rescheduling.
Such a problem also belongs to the class of NP-hard

1050-4729/94 $03.00 0 1994 IEEE

combinatorial problems. So, a good rescheduler is crit-
ical to the performance of the system. Recently, there
has been much interest in researches on rescheduling
that has been focused on how to improve the system
performance.

The rescheduling problem is generally more diffi-
cult than the scheduling problem, because the former
problem needs to be accomplished in real-time and,
hence, remains t o be a challenging problem. O n this
regard, the work [3], proposes a prototype of an intel-
ligent real-time rescheduler for a job-shop FMS which
is actually a decision support system to help the man-
ager to handle the disturbance based on an expert
system scheduling module and a hi h level Petri-Net
simulator module. Another work [aksolves this prob-
lem based on the simulated annealing to technique ob-
tain a modified schedule by rescheduling. Others like
[6] proposes a rule-based on-line scheduling system for
an FMS that generates appropriate priority rules to s-
elect a transition to be fired from a set of conflicting
transitions. It should be noteworthy that both [6] and
[7] include rescheduling in their scheduling method,
in which 161 designs a real-time scheduling subsystem
to select one randomly among the conflicting transi-
tions whereas [7] uses timed place Petri-Net to solve
this problem. The work [8] proposes a production rule
base in such way tha t the dynamic scheduler can read
different processing rules as candidates from the rule
base and make real-time decisions accordingly.

In flexible manufacturing systems, many kinds of
parts are processed by many kinds of machines and
are transferred by automated-guided vehicles (AGVs) .
The transferred one may go from a buffer to a speci-
fied machine, from a machine to a buffer, or between
two different machines. In such a complex environ-
ment, lack of proper control will cause the deadlock
to occur. But the problem of an FMS deadlock is
ignored by most researchers who pay most attention
to scheduling and control. So far, several efforts have
been focused on this problem. In most of the cases,
deadlock prevention and deadlock avoidance methods
are used because those methods can make the FM-
S utilization better. If we want to avoid a deadlock,
then dea.dlock avoidance is a major issue. There have
been some existing results on deadlock avoidance pro-

1998

posed in the literature. For example, [4] uses PN-
based models t o do deadlock prevention by static re-
source allocation policies, and deadlock avoidance by
dynamic policies; [5] uses a deadlock avoidance tech-
nique; [9] proposes a systematic method for designing
locks and interlocks for deadlock avoidance by using
the reachability graph of the Petri-Net model; [l] pro-
poses a destination graph in order to analyze the flow
of workpieces in job-shop manufacturing system, and
hance achieves the deadlock avoidance by eliminating
the pre-deadlock condition.

Section 2 proposes a hierarchical structure consist-
ing of four levels to solve the dynamic scheduling prob-
lem. Section 3 introduces the modeling technique used
for the system simulator . Section 4 discussed the
rescheduling problem and solves i t mainly using the
A* search technique. In section 5, problem with dead-
lock is introduced and is solution algorithm is suggest.
Finally, conclusion is made in section 6.

2 Hierarchical Structure for a Dynam-
ic Scheduler

Schedules for medium and long term operations of
a production system must be generated a priori. Un-
fortunately, the future states of the system cannot be
known at the time schedules are generated. Many un-
predicted disturbances will arise during production,
but they were not accounted for in the original sched-
ule. The typical solution to this problem is to apply
standard scheduling methods to reschedule the sys-
tem on occurrence of such a disruption. Nevertheless,
and optimal policy is to perform dynamic scheduling
which includes some sort of discrete control of produc-
tion systems to handle the above-mentioned disturb-
ing events flexibly and effectively. But , except the
small sized systems, the problem for general systems
is rally a n NP-hard problem. In order to reduce its d-
ifficulty as well as the complexity as much as possible,
hierarchical control methods should be employed.

Generally speaking, a scheduling system may work
either on-line or off-line. An off-line scheduling sys-
tem is relatively easier to design but is more difficult
to perform rescheduling, whereas an on-line schedul-
ing system is difficult relatively more to design but
is easier to do rescheduling. So, how to balance the
trade-offs between those two is critical. To this aim,
we propose a hierarchical structure consisting of sever-
al levels, such as scheduler, process runner, controller
and physical system. Now, we define the function of
each level and the relations among them.

Scheduler: Scheduler level generates a sequence of
actions for achieving a given goal for each task,
i.e., generates a complete plan for a given task
before any of its operations begins. The speci-
fication of the operation sequence concerning a
job (task) includes information about operation
type and operation time. Usually, we can have
two classes of different schedulers. One class is
to consider transporting time, whereas the oth-
er does not. But roughly speaking, the scheduler
level can be viewed as a coarse schedule gener-
ator which mainly generates the order of opera-

tions concerning the job and seldom considers the
transporting time. To sum up, the main function
of this level consists of

1) getting jobs information and the layout of the
system, and

2) generating a coarse schedule for the whole
jobs.

The level called process runner
modifies the existing production (process) plan
according to the run-time situations when neces-
sary, i.e., do rescheduling when one of the follow-
ing situations occur: a physical machine breaks
down, an urgent task or a new part is added in,
unacceptable time delay in execution is observed,
or a deadlock is perceived, etc. T h e function of
the process runner is only to modify the original-
ly planned order of operations under abnormal
conditions but with the minimum change. For
this, an objective function in order to decide the
priority of conflict tasks has to be defined. In
this level, a simulator and a deadlock detection
mechanism are also included. The simulator can
evaluate various scheduling rules while analyzing
the effects due to these different rules on sever-
al performance measures possibly under different
conditions by using simulation. Therefore, the
process runner can be viewed as a detailed sched-
ule generator which generates the detailed order
ofjobs operation, which certainly includes the ve-
hicle routing schedule.
In the absence of abnormal condition , the simu-
lation should provide a "better" way of the coarse
schedule received from the scheduler, which is
readily implementable by the physical system.
However, if a deadlock is detected by the deadlock
detection mechanism or if some abnormal condi-
tion described earlier suddenly takes place, the
process runner is supposed to perform reschedul-
ing to avoid deadlock or to appropriately respond
to that abnormal condition. To s u m up, the func-
tion of this level includes

1) generating a detailed schedule for the whole
jobs, including the AGV routing schedule;

2) recovering from unpredictable disturbing
events in the system;

3) modifying the schedule generated by the
scheduler for the reasons described above;

4) simulating the system behavior under differ-
ent scheduling rules to find a "better" refined
schedule;

5) detecting the potential deadlock situation;
6) activating the global rescheduler when neces-

sary.

Controller: This level is the interface between the
logical system and the physical system, which di-
rectly controls the whole system to execute com-
mands generated by higher level, i.e., i t runs the

Process Runner:

1999

--c

Figure 1: Architecture of a hierarchical dynamic
scheduler

physical operations interpreted from the hierar-
chical dynamic scheduler commands. So, con-
troller executes tasks on the physical hardware
based on the time table decided from the high-
er levels. To sum up, the function of this level
includes

1) driving the machine to perform operations;
2) controlling the physical operations onto real

world system;
3) feedbacking physical s ta tus information to

the upper levels.

The real world system layout.
It contains physical machines, resources, AGV's,
Automatic Storage/Retrieval System (AS/RS),
etc.

Besides these, there is a global rescheduler which
functions only when the process runner can not solve
the problem. When this occurs, the process runner
trigger the global rescheduler t o feedback initial sta-
tus, i.e., the s ta tus t o which the current status can be
reset, for rescheduling process t o scheduler in order to
regenerate a new coarse schedule. Finally, the archi-
tecture of the whole hierarchical dynamic scheduling
system is shown in Fig. 1.

3 Petri-Net Based Modeling
In the level with process runner as has been de-

scribed previously, detail system modeling is crucial
to the success of the functioning of that level. Since
the dynamics of an FMS are often very complex and,
hence, how to model an FMS is an extremely com-
plicated problem. There exist many ways to model
an FMS, like colored Petri-Net, Markov chain pro-
cesses, queuing networks, etc. Furthermore, there are

Physical S y s t e m :

many system properties in an FMS, such as resource
sharing, concurrency, routing flexibility, unexpected
changes, and deadlock, etc. I t is well-known that Petri-
Net is a powerful tool for describing and analyzing
asynchronous and concurrent system behavior main-
ly because it can represent the precedence relations
of asynchronous and concurrent systems. Therefore,
Petri-Net model is very suitable for modeling and an-
alyzing such dynamic processes.

Petri-Net is also a graphical representation to un-
derstand the system. Traditionally, Petri-Net is often
used as models of automated manufacturing system-
s t o represent the controlled system operation. This
model is, then, used for analysis of the system prop-
erties or simply for simulation. In light of this, here
we use Petri-Net t o model flexible manufacturing sys-
tems. Generally, Petri-Net does not include time and
precedence relationships in the model, but time, how-
ever, is a crucial consideration in our problem. Hence,
we need t o include time in our model, called timed
place Petri-Net, to model our system. Timed place
Petri-Net model associates time with places, which
represent the periods of time during which the token-
s have t o stay in the places before they can become
available again. Petri-Net based simulation model for
a general FMS with multiple task flows and trans-
portation control. Due t o shortage of space, the mod-
eling well not be presented here, but the very tech-
nique will be adopted in this paper. In our earlier
work [lo], we have proposed a detailed.

4 Rescheduling
Most of rescheduling methods solve the reschedul-

ing problem by using the original scheduling methods
to reschedule the system. But our goal is to reschedule
the original schedule by different policy and still retain
the schedule efficiency. So, rescheduling is in general
a more difficult problem than scheduling problem be-
cause the time allowed t o be spent is quite limited,
i.e., a decision must be made by the rescheduling sys-
tem based on the some optimization criterion defined
therein itself immediately.

Many criteria have been proposed for reschedul-
ing (e.g. makespan, mean flow time, lateness, etc.).
We select the makespan here as our criterion, where
makespan is defined as the maximum job completion
time. To be realistic, we assume job preemption is not
allowed. So, the present objective is to find a schedule
which gives a sequential order of performing the jobs
so that the makespan is minimized. Once the Petri-
Net model is constructed, a feasible schedule for these
jobs can be obtained by simulating the Petri-Net and
searching through the reachability graph. Simply be-
cause the search is based on the Petri-Net model, the
search space is can be constrained only the feasible
schedules.

In this paper, the rescheduling is done by the pro-
cess runner. The purpose of process runner is to relax
the existing schedule generated by the scheduler t o a
linearly ordered sequence without time consideration,
This can drastically reduce the complexity of the orig-
inal scheduler. At the same time, the process runner
can be viewed as an on-line scheduler.

2000

4.1 Timing for Rescheduling
Generally speaking, the time to do rescheduling is

when a disturbing event occurs. All the operations
in the schedule which have not been completed yet
a t that time must be rescheduled. Because we as-
sume tha t jobs are non-preemptive, when the s tar t
time of some operation is before the time to perfor-
m rescheduling and that particular operation is not
yet completed, we will still retain the time schedule
for t ha t particular operation in rescheduling process.
The appropriate occasions for doing rescheduling are
listed below:

1) a physical machine breaks down;

2) a n urgent task is added into the system;

3) a new part is added into the system;

4) time lag in execution of the original schedule;

5) a deadlock occurs.

In consequence, we can regard the rescheduler as a
real-time scheduler which is going to be processed ev-
ery time immediately after the disturbing event occurs
in the system. For example, when a machine breaks
down, the controller senses that event and then place a
token to the place, which is interpreted as disappear-
ance or identification, or both of that machine. Or,
when a sensor which is controlled by the controller
has not sensed the arrival of some AGV a t some des-
tination yet along the route determined by scheduler
due to possible time delay. All these occasions will ask
the rescheduler t o perform rescheduling.
4:2 Rescheduling Algorithm

In the following, we propose a method to do
rescheduling. First we assume each job consists of a
set of operations to be performed by various machines.
Below we introduce some assumptions and notations
in order to treat the problem.

We assume that the job shop has N jobs in total
and M machines, and

J , :
M, :

the i t h job, 1 5 a 5 N
the j t h machine, 1 5 j 5 M ,

where Ji = (Oi 1 , 0 , , 2 , . . is the order of opera-
tions of the i t h job, i.e., the operations are performed
in the increasing order of the index n. Sometimes an
operation may require a shared resource such as an
AGV to transfer the part to its next destination ma-
chine to process.

After the Petri-Net model of the problem is con-
structed, we use a search algorithm to find a solution
described below. Before that ,we first introduce some
notations. Let the function c (M, ,Mj) be the actual
cost of a minimum-cost path from the marking Mi to
the marking M,. Then, the cost of a minimum-cost
path from the marking M to some goal marking Mg is
given as c (M , A!,). Then, we define h'(M) as follows:

h ' (M) = m i n { c (M , A{,) I A/i, is a goal marking }

so that any path from marking M t o the goal marking
M, that achieves h ' (M) is a n optimal path. Another
function g ' (M) is defined as follows:

g * (M) = c(M0, M) , for any marking M reachable from MO.

Now we define the function f' as follows:

f * (M) = g ' (M) + h ' (M)

The value of f ' (M) a t marking M indicates the actual
cost of an optimal path from M O t o M plus the cost
of an optimal path from M to a goal marking M,.
So, we let the function f be an estimate off ' . Then,
f(A4) is defined as follows:

f (M) = d M) + h (M) I

where g is a n estimate of g' and h is an estimate of
h'.

From the above, this algorithm has three functions
f , g, and h, which hence constitute the evaluation
function for search. These three functions are defined
as follows:

f (M) : is an estimate of the minimum cost, i.e., the
cost from the initial marking MO to the goal mark-
ing M , along an optimal path which goes through
the marking M.

g(M): is the cost observed so far from the initial
marking MO t o the current marking M .

h (M) : is a n estimate of the cost from the marking M
to the goal marking along a n optimal path which
goes through the marking A l .

The search method which we used to solve the
rescheduling problem is the A' search method. The
A' search algorithm is a minimum-cost graph search
algorithm. It can be regarded as a branch-and-bound
search algorithm which uses the dynamic program-
ming principle with a cost estimate from the current
state to the goal state. It can be guaranteed to find a
minimum cost solution path if the heuristic function
h (M from the current marking to the goal marking

describe the basic method of our algorithm as follows:

S t a t e Desc r ip t ion : State is used to represent the

In i t i a l S t a t e : The initial state is given as M O =

is a i ower bound of h ' (M) . Now, we are ready to

marking of the Petri-Net.

(t l , t z , . . . , t p) , where:

MO : initial marking
t k
p

: the token number a t the place Pk
: the number of places

G o a l State: The goal state is reached when all jobs
are completed.

O p e r a t o r : Each marking is one node of the A' search
algorithm. The node expansion in the A* search
algorithm a t every step is according to the evalu-
ation function defined below.

2001

Obviously, the evaluation function will be defined
as the objective function. Since our goal is t o mini-
mize the makespan for the whole jobs (i.e., the time
required to finish all the jobs), the evaluate function
here is chosen to be:

f (AI) = max{ C1 , Cz , . . . , C,} = { makespan of AI}

where the notation ck above is the completion time
of the job I C . In order to use the A' search algorithm
to find a n optimal and feasible solution, it needs to
be modified slightly to include the detection deadlock
mechanism is as follows:

A' search include Deadlock-detection
algorithm:

INPUT: An optimal routing assignment S obtained
from the scheduler.

OUTPUT: An optimal deadlock-free routing assign-
ment with minimum cost routing.

Step f . P u t the initial marking AT0 on the list O P E N
and calculate its cost function value. Then, ini-
tialize the upper bound on the makespan to be
M A X I N T .

Step 2. If O P E N is empty, terminate with failure.

Step 3. Select a marking from the O P E N list with
the minimum cost (i.e., the first marking of the
list).

a. Remove the marking hl from the O P E N list
and put M on the list C L O S E D . Let the
current marking Me = 116. If several mark-
ings have the same cost value, choose a goal
marking if it exists; otherwise, choose among
them arbitrarily.

b . Here, we must check if the marking is
deadlock-free by the Deadlock - detect ion
algorithm to ensure solution feasibility. If
the marking is deadlock-free, then accept it;
otherwise, abort it and repeat Step 3 t o se-
lect the next again.

Step 4. If M is the goal marking, construct the op-
timal path from the initial marking to the fi-
nal marking and terminate with success. And,
the optimal deadlock-free routing assignment has
been found; otherwise, continue.

Step 5. Find all the enabled transitions from the cur-
rent marking M,.

Step 6. Generate the next marking, or successor, for
each enabled transition, and set pointers from the
next markings to As.

Step 7. For every successor M, of M , do the following:

a. If M , is already on either O P E N or
C L O S E D list, direct its pointer along the
path yielding the smallest g(M,) .
If M , is on C L O S E D and requires pointer
redirection, put M, on O P E N list.

b . If M , is neither on O P E N list nor on
C L O S E D list, calculate h (M ,) and f (M ,) ,
and put M, on O P E N .

Step 6'. Reorder O P E N by the increasing magnitude
o f f of the markings.

Step 9. Go t o Step 2.

Because of the heuristic rules and constraints, we
can substantially reduce the solution space of the
problem. It can make the searching process much
simpler. Finally, we then apply the A' search to the
Petri-Net based hierarchical dynamic scheduler t o find
an optimal solution to complete all requirements and
operations.

5 Deadlock Avoidance and Deadlock
Recovery

System deadlock is a serious problem in a flexible
manufacturing system, which is a situation where a
set of jobs are waiting indefinitely for one another to
release certain resources. In other words, each job in
the set is waiting for a resource being held by another
job in the set while holding a resource needed by some
other jobs in the set. Consequently, the set of jobs are
in circular waiting. In an improperly designed FMS,
deadlocks may be resolved by clearing of buffers or
machines, and by restarting the system from an initial
condition known to produce deadlock-free operation
under nominal production conditions.

The deadlock problems can be classified into dead-
lock prevention, detection, recovery and avoidance.
Here, for our interest, we only deal with the dead-
lock avoidance problem, which is t o test a request to
see if it will cause deadlock. Deadlock avoidance is
an important issue for effective control of an FMS. To
avoid deadlocks and to allow design flexibility a t the
same time, we try to disable the events that may lead
to deadlock a t certain states. So, deadlock avoidance
is an at tempt to falsify one or more of the necessary
conditions in a dynamic way by keeping track of the
current state and the possible future conditions (i.e.,
disable some conditions when a deadlock becomes a
possibility in the immediate future).

Now, we are prepared to discuss how to solve a
scheduling conflict problem, and propose a method to
find deadlocks should they have happened.

5.1 Reasoning for Deadlock
When a deadlock occurs, the following four con-

ditions must be satisfied a t the same time (i.e. the
necessary conditions for a deadlock to occur): Mutu-
al exclusion, Hold and wa.it, No preemption, Circular
wait [Ill.

From the conditions described above, we know
when requesting a resource, one of the following situ-
ations may have happened:

(1) requested without success: For example, a job
requests a machine which is busy now and hence
the request is unsuccessful.

2002

(2) requested with success: For example, a job re-
quests a machine which is idle now and hence the
request is successful.

(3) release of a resource: For example, a job releases
a machine which has completed its assigned op-
eration for the job.

In the first two situations, we must check if a deadlock
cycle exists because those two situations constraint the
system tightly. Situation 3 will not foresse deadlocks
because it releases a resource.
5.2 Deadlock Avoidance Algorithm

We propose a method to do deadlock detection as
follows. We use the matrix multiplication and Wait-
f o r graph t o find deadlock situations. From above, we
know when a deadlock happens, there must exist a t
least one cycle in the Wazt-for graph. One thing we
must note is tha t the cycle is a necessary, but not a suf-
ficient condition for running into a deadlock. There-
fore, when no cycle exists in the Wait-for graph, the
system is in a safe state. But the system is potentially
unsafe if there is a cycle in the Wait-for graph. The
Wait-for graph is adapted from Resource-Allocation
graph.

Formal description of the Wait-for raph is giv-
en below. We define a directed graph $i.e. digraph)
G = (VI E) consisting of a node set V and an edge set
E where V = { 1 , 2 , . . ., [VI} and u , v E V , (u , v) E E
is an edge from U t o v. In such a graph, nodes cor-
respond t o the resources being held or requested, and
arcs correspond t o the wait relations between the re-
sources. Our goal is to find if any cycle exists in such
a graph. A cycle is a path from U to v , where U = v ,
and the length of the path is not equal to zero. A path
from U t o v is a sequence of nodes vo, 2 1 1 , . . . , vk, such
tha t vug = U and V k = v and each pair (v , , v , + ~) E E ,
for 0 5 i < k, so tha t the length of the path is equal
to I C .

First, we define the directed incident matrix in or-
der to represent the Wait-for graph as follows:

I all a12 . . . aln I

A n =

ayl aTz ay,,
ayl a;2 . . . a&,

aZl aZ2 . . . a;,,
.

By the method proposed above, we can calculate
the matrix A". Any element in matrix A" tha t is not
equal to zero represents a path with length being equal
to n. So, we can find all the circles in the Wait-for
graph.

Because the complexity order of the matrix multi-
plication is O(n) . Therefore, in order to reduce the
cost of calculation complexity, we can make some im-
provement in matrix multiplication method. This is
because one cycle may appear in more than one ma-
trix element. So, t o avoid repeated calculation, we
only need t o calculate it once. For example, 1231 and
2312 represent the same cycle, and we need not calcu-
late it twice. For the new method, A: is generated as
follows:

n

k = i + l

where i, j = 1 , . . . , n.
Furthermore, we need not examine all non-zero el-

ements. In fact; we only have to examine the diagonal
elements. Only a diagonal element is possible to create
a cycle, because the s tar t node of the first edge is the
sa.me as the end node of the last edge in a cycle. So,
we only have to find out to the diagonal terms which
are not equal t o zero and backtrack t o find the circuit
path, which is then a possible candidate for deadlock
situations.

Up t o now, a simple algorithm tha t will perform
the function described above can be presented in fol-
lowing, whenever one of following occasions occurs.

where 1) a new part is added into the system;

1

0 otherwise

when job i is holding one resource
while waiting for the resource held by job j a,j =

then, we define:

An = An-' * A

2) an urgent task is added into the system;

3) a part is requested by a new operation;

4) request of a resource can not be permitted;

Deadlock-detection Algorithm:

Step 1 . Find all the Wait relations between each pair
of the jobs and crea.te the Wait-for gra.ph for the
current state;

where i, j = 1,. . . , n, so that
Step 2. Call Detect-cycle algorithm;

2003

Step 3. If (a cycle exists) then
Call Resolve- d e ad lo c I C ;

update the current s ta tus of the system t o a
else

new status;

De tec t - cyc le A l g o r i t h m :

Step 1. Create the directed incident matrix which rep-
resents the status of the wait relations in the
Wait-for graph;

Step 2. Calculate the matrix by the method proposed
previously (matrix multiplication);

Step 3. Check if there is any non-zero element;
If found, then the element is a situation which
may potentially cause a deadlock;

To resolve a deadlock, we can select a victim from
the cycle according t o some special priority and move
it t o a reserved storage buffer. When some special
conditions are satisfied, we can release it and let the
operation continue. The algorithm is summarized as
follows:

Reso lve -dead lock A l g o r i t h m :

Step 1. Determine the set of jobs which potentially
cause the deadlock cycle;

Step 2. Select a victim from the set of jobs by using
priority rules, and move it to a reserved storage
buffer;

Whenever there is a deadlock tha.t can not be avoid-
ed, then the productivity of the system will be affect-
ed considerably or even the production of the whole
system will be stopped. Consequently we must avoid
the deadlock as much as possible. But if we hope to
consider all the status that deadlock may occur, it is
impossible to do so because in a real-world system too
many unpredictable events may arise. When any of
these events happen, it is very likely to lead the sys-
tem t o a deadlock status.

6 Conclusion
This paper proposed a Petri-Net based hierarchical

structure for a dynamic scheduler of an FMS, con-
sisting of several levels, including scheduler, process
runner, controller and physical system modeled by a
Petri-Net using bottom-up a.pproach. In particular,
we discussed the problems of rescheduling and dead-
lock avoidance. and applied the .4' search and matrix
multiplication methods to solve these problems. A
prototype of this scheduler is developed for our exper-
imental FMS in National Taiwan University, but, their
results are not included due t o the shortage of space.

References
[l] Koji Takahashi, "Fundamental Control t o Avoid

Deadlock for Job-shop Manufacturing Systems",
JAPAN/USA Symposium on Flexible Automa-
tion, V01.2, pp.1703-1706, ASME 1992.

[2] Yasunori Watatani, and Susumu Fujii, "A Study
On Rescheduling Policy In Production System",
JAPAN/USA Symposium on Flezible Automa-
tion, V01.2, pp.1147-1150, ASME 1992.

[3] Zhiming Wu, "Combining of Expert Sys-
tem and Simulator for FMS Rescheduling",
JAPAN/USA Symposium on Flexible Automa-
tion, V01.2, pp.1143-1146, ASME 1992.

[4] N. Viswanadham, Y. Narahari, and T. L. John-
son, "Deadlock Prevention and Deadlock Avoid-
ance in Flexible Manufacturing System Using
Petri Net Models", IEEE Trans. Robotics and
Automat, vo1.6, No.6, pp.713-723, Dec. 1990.

[5] Perenc Belik, "An Efficient Deadlock Avoidance
Technique", IEEE Trans. on Computers, vo1.39,
No.7, July 1990.

[6] Itsuo Hatono, Keiichi Yamagata and Hiroyuk-
1 Taniura, "Modeling and On-Line Scheduling of
Flexible Manufacturing Systems Using Stochastic
Petri Nets", IEEE Trans. on Software Engineer-
ing, Vo1.17, No.2, pp.126-132, February 1991.

[7] Doo Yong Lee and Frank DiCesare, "Experi-
mental Study of A Heuristic Function for FMS
Scheduling", JAPAN/USA Symposium on Flex-
ible Automation, V01.2, pp.1171-1177, ASME
1992.

(81 Paul G. Ranky, "Intelligent Planning and Dy-
namic Scheduling of Flexible Manufacturing Cells
and Systems", JAPAN/USA Symposium on Flex-
ible Automation, Vol.1, pp.415-422, ASME 1992.

[9] N. Viswanadham, T.L. Johnson, and Y. Nara-
hari, "Performance Analysis of Automated Man-
ufacturing Systems with Blocking and Deadlock",
Proceedings of The Second International Con-
ference on Computer Integrated Manufacturing,
pp.64-68. May 1990.

[lo] Chin-Jung Tai,and Li-Chen Fu, " A Simula-
tion Modeling for a Flexible Manufacturing
System with Multiple Task-Flows and Trans-
portation Control Using Modular Petri-Net Ap-
proach", Proc. 9th International Conference on
CAD/CAM , Robotics & Factories of the Future,
August, 1993.

1111 Andrew S. Tanengaum, Modern Operating Sys-
tem, Prentice-Hall, 1992.

2004

