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Abstract

Wormbhole switching has become the most
widely used switching technique for multicom-
puters. However, the main drawback of worm-
hole switching is that blocked messages remain
in the network, prohibiting other messages
from using the occupied links and buffers. To
address the deadlock problem without com-
promising communication latency and the in-
cremental expansion capability that irregu-
lar networks can offer, we propose a simple
topology called Eztended Incremental Trian-
gular Mesh (EITM) for switch-based networks.
EITM is an extension of a previous ITM (In-
cremental Triangular Mesh) topology with a
more flexible structure. We also show that
EITM is highly scalable, allows incremental
expansion of systems, has guaranteed dead-
lock freedom, and can support contention-free
multicast. First, we show that for an EITM,
any shortest path routing method will not
deadlock, therefore EITM networks are ideal
for the escape paths in adaptive routing net-
works. Second, we show that it is possible
to arrange the nodes of an EITM in a cir-
cular order so that two messages from inde-
pendent parts of the circular order will not
interfere with each other - this is extremely
useful for implementing contention-free multi-
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cast and other collective communication oper-
ations. We also present the results on the rela-
tion between ITM/EITM, outer planar graphs
and chordal graphs. We show that chordal
graphs are strongly related to the freedom of
deadlock for shortest path routing, and ITM in
our previous paper is indeed maximum outer
planar graph.

1 Introduction

Wormbhole switching [4, 15] has become the
most widely used switching technique for
multicomputers. The availability of high-
speed wormhole switches, such as Autonet (7],
Myrinet [1], and Servernet [12], has also made
network of workstations a promising alterna-
tive for cost-effective parallel computing. In
earlier stored-and-forward routing method an
entire message has to be stored in one node be-
fore it could be sent to the next. In contrast,
wormbhole routing uses a cut-through approach
that divides the message into small flits that
travel through the network in a pipelined fash-
ion, therefore it eliminates the need to allocate
large buffers in the intermediate nodes along
the path [15]. This not only simplifies the
switch design but also provides a distance in-
sensitive routing methodology for sufficiently
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large messages.

The main drawback of wormhole switching
is that blocked messages remain in the net-
work, prohibiting other messages from using
the occupied links and buffers, therefore wast-
ing channel bandwidth. We further classify
this problem into two categories. First, a
poorly designed routing algorithm might cause
a deadlock on a wormhole routing network, in
which messages are tangled together and no
message can proceed. Secondly, for a partic-
ular communication pattern (e.g. multicast),
a large number of messages may go through
a common channel and cause significant delay.
Although no deadlock occurs, the communica-
tion performance is degraded due to this con-
tention problem.

Deadlock-free routing and contention min-
imization have been extensively studied for
proprietary networks, in which the processing
nodes are usually interconnected into a reg-
ular topology, such as mesh, torus or hyper-
cubes [4, 5, 6, 9, 8, 10, 16]. On the other
hand, switch-based interconnects have been a
popular choice for building networks of work-
stations and PCs. Typically, these switches
support networks with irregular topologies.
Such irregularity allows easy design and wiring
of scalable systems with incremental expan-
sion capability (allows the addition of one or
more switches at a time). However, the ir-
regularity also makes routing and deadlock
avoidance on such systems very complicated.
Several deadlock-free routing algorithms have
been proposed in the literature for irregular
networks (1, 7, 12, 17). These algorithms
avoid deadlock by restricting routing to re-
move cyclic dependencies between channels.
As a consequence, some messages may be
routed through non-minimal paths, resulting
in increased latency.

To address the deadlock-free routing prob-
lem without compromising communication la-
tency and the incremental expansion capabil-
ity that irregular networks can offer, in a pre-

vious paper [14] we proposed a simple topology
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called Incremental Triangular Mesh (ITM) for
switch-based networks. ITM is highly scal-
able, allows incremental expansion of systems,
has guaranteed deadlock freedom, and can
support contention-free multicast [14]. This
paper extends the idea of ITM into Eztended
Incremental Triangular Mesh (EITM). EITM
has a more flexible topology, provides higher
bandwidth, and most important of all, has all
the routing properties as we showed for ITM.
This paper also formally establishes the re-
lation between ITM and outerplanar graph,
and shows that ITM is maximum outerplanar
graph.

For the nice routing properties of EITM,
first, we show that on an EITM, any shortest
path routing method will not deadlock. There
are numerous deadlock-free routing algorithms
in the literature that work in a similar fash-
ion — messages must travel through the chan-
nels in a particular order to break the symme-
try (e.g. dimensional ordering [11] or up-down
routing in [7]). These approaches sacrifice cer-
tain throughput for deadlock free guarantee.
In contrast we argue that in EITM a mes-
sage can go through any shortest path with-
out deadlock, therefore EITM can be used as
dedicated virtual channels to avoid deadlock in
many adaptive routing networks. Secondly, we
show that it is possible to arrange the nodes
of an EITM in a circular order so that two
messages from independent parts of the circu-
lar order will not interfere with each other. It
is shown in [18] that it is impossible to find a
linear order for every irregular topology. Nev-
ertheless, for every EITM we can define a cir-
cular order that has the contention-free prop-
erty. This is extremely useful for implementing
contention-free multicast and other collective
communication operations.

The rest of the paper is organized as fol-
lows. Section 2 describes the related works.
Section 3 describes the deadlock-free and
contention-free property of EITM, and gives
detailed proof, and Section 4 concludes.
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2 Related Work

2.1 Deadlock-free Routing

Chien and Kim {3] describe a class of re-
stricted adaptive routing algorithms suitable
for packet-switched data transmission in mul-
tiprocessors. Planar-adaptive routing provides
an effective compromise that sacrifices some
routing freedom to reduce the possibility of
deadlock. Restricting routing at each step
to a specific hyperplane in k-ary n-cubes still
leaves many alternative routes, but the restric-
tion allows provably deadlock-free operation at
a cost of only 3 virtual channels, regardless
of the number of dimensions in the n-cube.
The result is a much lower hardware cost for
deadlock-free routers.

There are other general purpose deadlock-
free routing algorithms for wormbhole switches.
Up-down routing [7] first constructs a breadth-
first spanning tree on the switching network.
A directed link is "up” if it goes from a node
"upwards” towards the root, or if it goes from
one node to another node in the same level,
but with a higher processor id. A legal route
has all the "up” links appearing before all the
"down” links. Eulerian trail routing [17] as-
sumes that the network topology is Eulerian,
then routes the messages along this Eulerian
path. Shortcut channels may be used to re-
duce the length of the route [17].

Tseng et. al. [20] focus on multicasting
in wormhole-routed networks. A trip-based
model is proposed to support adaptive, dis-
tributed, and deadlock-free multiple multicast
on any network with arbitrary topology us-
ing at most two virtual channels per physical
channel.

With the introduction of virtual channel,
Duato et. al. [5, 19] suggested another ap-
proach for deadlock-free routing on any irregu-
lar networks. The network is split into two lay-
ers. An arbitrary routing algorithm is running
on the first layer, while a deadlock-free routing
algorithm is on the second layer. The key idea

is to compromise between maximizing perfor-
mance (on the first layer) and guaranteeing
deadlock-free operation (on the second layer).
If a message is blocked at the first layer, then
it moves down to the second layer and stays
there until it reaches its destination. The sec-
ond layer network is used as escape paths to
avoid deadlock.

2.2 Contention-free Routing

There are many contention-free multicast al-
gorithms for regular switching topologies. For
example, Esfahanian el. al. [16] suggested
contention-free multicast on n-dimensional
meshes and hypercubes, and provided good
performance from implementation on n-Cube
and Smalt 2-D mesh. Ho and Johnsson [11]
suggested dimensional ordering algorithms for
broadcast and personalized all-to-all commu-
nication on hypercubes. Other contention-free
algorithms include [5, 10].

It is much more difficult to design
contention-free routing algorithms for irregu-
lar network topologies. In many multicast al-
gorithms processors are arranged as a linear
list, with the property that if node a, b, c and
d appear in the list in order, then the message
between a and b will not interfere, or contend
from any links with the message between c and
d [18]. However, it is also shown in [18] that
for some irregular topologies such an ordering
simply does not exist.

3 Extended Incremental Tri-
angular Mesh

This section defines EITM and describes its
properties. First we define ITM and then ex-
tend the definition of ITM (by adding extra
edges) into EITM. The first property of both
ITM and EITM is that they guarantee freedom
from deadlock for any shortest path routing.
This property allows ITM and EITM to route
messages through any shortest path without

211

TEEE ':

COMPUTER
SOCIETY

Proceedings of the Ninth International Conference on Parallel and Distributed Systems (ICPADS’02)
1521-9097/02 $17.00 © 2002 IEEE



the risk of deadlock. The second property is
that we can partition an ITM or EITM so
that the messages traveling in different sec-
tions will not interfere with one another. It
is shown in [18] that for some irregular graphs
this contention-free ordering simply does not
exist. We show that both ITM and EITM,
which can be very irregular, do provide this
ordering.

3.1 Definition of ITM

We first define the ITM topology [14]. The
concept of incremental triangular mesh is built
on top of a series of AddNode operations. Let
G' = (V', E') be a undirected graph and ¢’ €
E. To add a node v into G’ at edge €' = (z,y)
means that we add v into V' and connect v
to the two endpoints of ¢’. The edge €' is
called the corresponding edge of v. We also
assume that every added node has a unique
corresponding edge. Formally we have the
following definition: AddNode(G',v,(z,y)) =
(V' Uy, EU {(v,2),(v,0)})-

The incremental triangular mesh (ITM) is
defined recursively as follows. First a clique
of three nodes is an ITM. A graph G is an
ITM if and only if there exists another ITM
(denoted by G') of n — 1 nodes such that
G = AddNode(G',v,€'), where ¢’ € E' is the
corresponding edge of the newly added node
v.

A&’&

Figure 1: An incremental triangular mesh con-
structed by adding nodes a, b and c.

3.2 Definition of EITM

We now extend ITM to EITM for a more
flexible structure and better bandwidth. Af-
ter an ITM is constructed, we add additional
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edges into the graph. By the definition of
ITM just before a node v is added to the cor-
responding edge (z,y), there exists a unique
node z such that z, y and z form a trian-
gle. We optionally add an additional edge
(v,2), into the original graph so that v, z,
y, and z form a tetrahedron. The original
edges in G will be called ITM-edges or i-edges,
and these added edges are jump edges, or j-
edges. Formally we have the following defi-
nition: AddNode(G',v,(z,y)) = (V'Uv,EU
{(v,2), (v,9), (v, 2)})

We define (z,y,2) to be the corresponding
triangle for the added node v. A node can be
added into an EITM by a corresponding edge
(without a j-edge), or a corresponding triangle
(with a j-edge). Also notice that after adding
j-edges, the graph may no longer be planar.
Figure 2 shows an EITM of 6 nodes.

Figure 2: An EITM example.

3.3 Deadlock-free Routing

Most of the deadlock-free routing on a regular
network requires certain “dimension ordering”
in order to break the symmetry and guarantee
freedom from deadlock. For example we may
require that a message must traverse along the
correct row of a mesh before traversing the col-
umn to make sure that deadlock will not hap-
pen. This restriction may limit the available
bandwidth since some routes may be unnec-
essarily avoided just because of the possibility
of a deadlock. In contrast, in an EITM net-
work a message can choose any shortest path
without risking a deadlock.

Before we show the deadlock-free properties
for ITM and EITM, we establish the relation
between chordal graph and the deadlock free
property under shortest path routing.
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Lemma 1 A graph G is deadlock-free under
every shortest-path routing method if and only
if G is chordal.

Theorem 2 Any routing discipline that takes
the shortest path is deadlock-free in an ITM or
EITM.

3.4 ITM and Outerplanar Graphs

ITM is closely related to outerplanar graph
since the construction of ITM is the reverse
process of the well-studied polygon decompo-
sition problem [13, 2]. An outerplanar graph
is a planar graph whose nodes are all on the
boundary. An outerplanar graph is maximum
if we cannot add another edge without de-
stroying the outerplanarity. It is easy to see
that ITM is an outerplanar graph. It is also
true that a graph is an ITM if and only it is a
maximum outerplanar graph.

Theorem 38 [14] A graph G = (V,E) has an
ITM subgraph that contains all the nodes in V
if and only if there exists a Hamiltonsan cycle
in G for which G is totally triangulated. A
graph G s totally triangulated for a Hamilto-
nian cycle C if and only if when the vertices
of G are around a circle according to the order
they appear in C, no edge can be added without
intersecting an edge of G.

3.5 Contention-free Routing

This section describes the contention-free
property of EITM. We assume that each link
in the network is bi-directional and two mes-
sages are contention-free as long as they do not
go through the same link in the same direction.

In switch-based network routing it is desir-
able to have an ordering among all the nodes
in a network such that two messages involving
processors from different sectors of this order-
ing do not interfere with each other. That is,
suppose we can define a total order < among
processors such that when w < z < y < 2,

then any message-passing between w and z
will not interfere with those between y and
z. Using this property we can design simple
contention-free recursive algorithms for broad-
cast and multicast, i.e. the source processor
first sends the message to the processor in the
middle of the list, and repeats the process on
the two sub-lists. Despite that this property
can be obtained for some regular graphs, it is
shown in [18] that there exist irregular graphs
where such orderings are not possible. Never-
theless, we show that for EITM we can de-
fine a similar order that has this nice “non-
interfering” property, despite the irregularity
of EITM.

Instead of a total order, we use a circular
order to enumerate the nodes in an EITM G =
(V.E). It is easy to see that all the nodes in
G form a simple cycle along the “boundary”
of G, so we can define a circular order among
the nodes by enumerating the nodes clockwise
or counterclockwise. We then define that w <
z < y if and only if a node = appears between
node w and y in the circular order.

Consider two messages m and m'. The mes-
sage m goes from w to z, and m’ goes from y
to z. The two messages m and m’ are inde-
pendent if and only if w < £ < y < z in the
circular order defined earlier. We will show
that all the shortest paths of two independent
messages will not share a communication link
in the same direction. That is, a shortest path
going from w to y will not share a directed
edge with any shortest path going from y to z
in an EITM.

3.5.1 Contention-free Multicast for

EITM

We describe the contention-free property for
EITM in this section. Notice that although
we can define a circular order for EITM similar
to ITM, we cannot use the results in [14] since
EITM is not planar. As a result we establish
new proof technique for the case of EITM.

Before going into the proof we establish a
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key property of EITM that the introduction of
a new node into an EITM G will not modify
the shortest path between two nodes that were
originally in G.

Lemma 4 Let G = (V,E) be an EITM and
G’ be the new EITM after adding a node v
into G. A path P from z to y, wherez,y€ V,
i8 a shortest in G if and only if P is a shortest
path in G'.

This property of EITM is crucial since it allows
the routing table on the nodes to be updated
incrementally. After adding a new node all the
previous shortest routes are not changed, and
the system only needs to create the routing
table entries for the newly added node.

Lemma 5 Two independent messages will
not travel through the same communication
link in the same direction in an EITM under
any shortest path routing discipline.

Theorem 8 Any multicast pattern can be
completed within O(log D) non-interfering
phases in an EITM where D is the number
of destinations.

4 Conclusions

This paper proposes a new interconnect-
ing topology, eztended incremental triangular
mesh, for switch-based network of worksta-
tions. We have shown that EITM guarantees
deadlock freedom for any shortest path rout-
ing and supports contention-free multicast.

The nice properties of EITM also make it an
ideal candidate for supporting adaptive rout-
ing in many networks. Adaptive routing can
be implemented by changing the routing ta-
bles and adding links in parallel with exist-
ing ones, or by splitting physical channels into
virtual ones. Deadlock can be avoided either
by restricting routing so that there are no
cyclic dependencies between channels, or sim-
ply by providing some escape paths to avoid
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deadlock, without restricting routing. EITM’s
deadlock-free property and incremental expan-
sion capability make it a suitable choice for
building the escape paths.

We also establish the relation between
ITM/EITM, chordal graphs, and maximum
outer planar graphs. We show that the chordal
graph criteria is both necessary and sufficient
for a network topology to be deadlock free un-
der any shortest path routing. We also show
that ITM is equivalent to maximum outer pla-
nar graph.

The future work includes two directions -
the investigation of general planar graph and
more complex extensions of EITM. We show
in a previous paper [14] that planar ITM
can have contention-free multicast. That re-
sult combined with the outer planarity indi-
cates that any outer planar graphs do support
contention-free multicast. However, for gen-
eral graph it is not clear how one could order
the nodes so that the contention-free argument
still works. On the other hand, the way we ex-
tend ITM is rather restricted — we are not able
to form a tetrahedron from all the facets, but
only those on the boundary. It is an interesting
question how this restriction can be relaxed.
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