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一、中文摘要

本研究探討的是稀疏矩陣 QR 多鋒面
分解的問題。我們提出了一種方法來計算
分解各鋒面矩陣時的運算個數。這些數字
可以被視為相對應消去樹節點的加權。當
我們要發展好的稀疏矩陣 QR 分解程式
時，這些資料十分的有用。比如，利用此
一資料，QR分解的平行執行時間大約可縮
短 10%。

關鍵詞：數值線性代數﹑稀疏矩陣﹑QR分
解﹑多鋒面方法﹑最小平方和問題

Abstract

This research considers the sparse
multifrontal QR factorization. An efficient
method to evaluate numbers of multiplicative
operations in factorizing each frontal matrix
is proposed. These numbers can be treated
as the node costs of the corresponding
elimination tree. This knowledge is very
useful to improve performance of sparse QR
factorization. For example, experiments
conducted so far show that about 10\% of the
parallel execution time can be reduced.

Keywords: numerical linear algebra, sparse
matrix, QR factorizatiion, multifrontal
method, least-squares problem

二、計畫緣由與目的

For a matrix A, there is an orthogonal
matrix Q such that

A = Q R
where R is upper triangular. This is the QR
factorization of A, and the matrix R will be

called the R-factor of A. QR factorization is
a very useful process to solve many
numerical linear algebra problems, e.g., the
least-squares problem.  In real application,
the matrix A is usually large and sparse.

Usually, we use elimination tree to
represent the process of sparse QR
factorization. A node represents a task.
The workload of each task is different.   For
example, Figure 1(d) is an elimination tree
with different costs. The information about
node costs is very useful. For example,
consider Figure 1(d) and assume that there
are 2 processors. The best task allocation
strategy is to assign tasks 1, 2, 3 and 4 to one
processor and to assign task 5 to the other.

The goal of this research is to design an
efficient method to evaluate node costs of the
elimination tree associated with a sparse
multifrontal QR factorization.

三、結果與討論

(1) Background

Considering the matrix A shown in
Figure 1(a), the corresponding ATA, the fill-in
graph and the elimination tree are shown in
Figures 1(b), 1(c) and 1(d), respectively.
The frontal matrices, the associated
Householder transformations and the update
matrices are drawn in Figure 2. Here, H(m, n)
represents a Householder transformation for
an m by n dense matrix.  It can be proved
that an H(m, n) needs (2mn + m + n)
multiplicative operations when m > 2 and n >
1, and none operation otherwise. We can
treat this number as the cost of an H(m, n),
denoted as CH(m, n). According to Figure 2,
we can calculate all of the node costs. For
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example, the cost of node 1 is: CH(3, 4) +
CH(2, 3) = 31 + 17 = 48. These costs are
shown in Figure 1(d).

From the above example, we understand
that the key-points to evaluate node costs are
the dimensions of all small dense matrices
which Householder transformations are
applied to. One possible way to collect
these data is the profile of the numerical
factorization, but the time complexity will be
the same as that of numerical factorization.
The following definitions, lemmas and
theorems are required to establish an efficient
cost evaluation method.

(2) Cost Evaluation

Consider a matrix A with m rows and n
columns, m ≧ n.
Definition 1: For matrix A, let 0

jl  be the
number of rows whose leading nonzeros are
in column j.

Let mj and nj be the numbers of rows
and columns of Fj, respectively. And let vp(j,1),
vp(j,2), … , vp(j,nj) be the nodes in {vj} ∪
Madj(vj), where 1 ≦ p(j,1) < p(j,2) < …  <
p(j,nj) ≦ n.

Definition 2: For a frontal matrix Fj, let
),( ijp

jm  be the number of rows whose leading

nonzeros are in columns p(j,1), p(j,2), … ,
p(j,i).
Theorem 1: The Cost to factorize frontal
matrix Fj  is
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Definition 3: For an update matrix Uj, let
),( ijp

jl  be the number of rows whose leading
nonzeros are in columns p(j,i), for 2 ≦ i
≦ nj.

Theorem 2: For a node vj,
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Theorem 3: For a node vj,
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(3) Evaluation Algor ithm

Combining all theorems, Algorithm 2 can
evaluate costs of factorizing each frontal
matrix, i.e., costs of each node.

(4) Application

Under multiprocessor environment,
processor allocation and task scheduling are
important issues to achieve high performance.
It seems that the knowledge of node costs is
useful for QR factorization. Therefore, we do
some experiments.

First, we modify Kan's processor
allocation and task scheduling algorithm [2]
so that it is suitable for QR factorization.
Then, we apply the algorithm to several test
matrices that are selected from Harwell-
Boeing collection, and estimate the parallel
execution time.  The process contains two
parts.  In the first part, the knowledge of
node costs is not supported; that is, we
assume that the costs of all nodes are
equivalent.  In the second part, the
knowledge of node costs is supported.
Figure 3 is our experimental result.  In
Figure 3, the estimated execution time is
normalized.  We assume that the normalized
execution time is 1, if there are infinite
number of processors and the system is
communication-free. Experiments conducted
so far show that about 10\% of the the
execution time can be reduced.

(5) Conclusion

We have proposed an efficient method to
evaluate node costs of the elimination tree
associated to a sparse multifrontal QR
factorization. Knowledge of node costs is
very useful for studying many related
problems, e.g., column reordering, processor
allocation and task scheduling of sparse
multifrontal QR factorization.

四、計畫成果自評

最後之研究內容與原計畫大致相符。部
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分結果已發表於 International Conference on
Parallel and Distributed Processing Techni-
ques and Applications [1]。
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Figure 3.
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