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Abstract

This research considers the sparse
multifrontal QR factorization. An efficient
method to evaluate numbers of multiplicative
operations in factorizing each frontal matrix
is proposed. These numbers can be treated
as the node costs of the corresponding
elimination tree. This knowledge is very
useful to improve performance of sparse QR
factorization.  For example, experiments
conducted so far show that about 10\% of the
parallel execution time can be reduced.
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For a matrix A, there is an orthogonal
matrix Q such that
A=QR
where Ris upper triangular. Thisisthe QR
factorization of A, and the matrix R will be

called the Rfactor of A. QR factorization is
a very useful process to solve many
numerical linear algebra problems, e.g., the
least-squares problem. In real application,
the matrix Aisusually large and sparse.

Usually, we use elimination tree to
represent the process of sparse QR
factorization. A node represents a task.
The workload of each task is different.  For
example, Figure 1(d) is an elimination tree
with different costs. The information about
node costs is very useful. For example,
consider Figure 1(d) and assume that there
are 2 processors. The best task allocation
strategy isto assign tasks 1, 2, 3 and 4 to one
processor and to assign task 5 to the other.

The goa of this research is to design an
efficient method to evaluate node costs of the
elimination tree associated with a sparse
multifrontal QR factorization.

(1) Background

Considering the matrix A shown in
Figure 1(a), the corresponding A’A, the fill-in
graph and the elimination tree are shown in
Figures 1(b), 1(c) and 1(d), respectively.
The frontal matrices, the associated
Householder transformations and the update
matrices are drawn in Figure 2. Here, H(m, n)
represents a Householder transformation for
an m by n dense matrix. It can be proved
that an H(m, n) needs (2rm + m + n)
multiplicative operations when m> 2 and n>
1, and none operation otherwise. We can
treat this number as the cost of an H(m, n),
denoted as CH(m, ). According to Figure 2,
we can calculate al of the node costs. For



example, the cost of node 1 is. CH(3, 4) +
CH(2, 3) = 31 + 17 = 48. These costs are
shown in Figure 1(d).

From the above example, we understand
that the key-points to evaluate node costs are
the dimensions of al small dense matrices
which Householder transformations are
applied to. One possible way to collect
these data is the profile of the numerical
factorization, but the time complexity will be
the same as that of numerical factorization.
The following definitions, lemmas and
theorems are required to establish an efficient
cost evaluation method.

(2) Cost Evaluation

Consider a matrix A with mrows and n
columns, m n.

Definition 1: For matrix A, let /f? be the

number of rows whose leading nonzeros are
in column /.

Let m and r; be the numbers of rows
and columns of F;, respectively. And let vy; 1),

Vo) -+ Vo) b€ the nodes in {v}
Madj(v), where 1 P < pj2) < ... <
pyn) N

Definition 2: For a frontal matrix F;, let
" be the number of rows whose leading

nonzeros are in columns K(/,1), p(,2), ...
pa.i).
Theorem 1. The Cost to factorize fronta
matrix F; is
CF,=Q CH(mU" - i+1n; - i+1)

i=1
Definition 3: For an update matrix U, let
/77" be the number of rows whose leading

nonzeros are in columns p(j,/), for 2 ]
n.
Theorem 2: For anode v,
i1+ APUD =
mp(/,f):!/0+hf fori=1
! }nf""‘l)+hf’(/") for2€£iEn,
/ / /
Theorem 3: For anode v,
P9 = min(mP0 ) - min(mP"0 - 1),

(3) Evaluation Algorithm

Combining all theorems, Algorithm 2 can
evaluate costs of factorizing each frontal
matrix, i.e., costs of each node.

(4) Application

Under  multiprocessor  environment,
processor allocation and task scheduling are
important issues to achieve high performance.
It seems that the knowledge of node costs is
useful for QR factorization. Therefore, we do
some experiments.

First, we modify Kan's processor
allocation and task scheduling agorithm [2]
so that it is suitable for QR factorization.
Then, we apply the algorithm to several test
matrices that are selected from Harwell-
Boeing collection, and estimate the parallel
execution time. The process contains two
parts. In the first part, the knowledge of
node costs is not supported; that is, we
assume that the costs of all nodes are
equivalent. In the second part, the
knowledge of node costs is supported.
Figure 3 is our experimental result. In
Figure 3, the estimated execution time is
normalized. We assume that the normalized
execution time is 1, if there are infinite
number of processors and the system is
communication-free. Experiments conducted
so far show that about 10\% of the the
execution time can be reduced.

(5) Conclusion

We have proposed an efficient method to
evaluate node costs of the elimination tree
associated to a sparse multifronta QR
factorization. Knowledge of node costs is
very useful for studying many related
problems, e.g., column reordering, processor
dlocation and task scheduling of sparse
multifrontal QR factorization.
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Algorithm 2: Cost Evaluation

Input:  Madj(v;) and I, for 1 < j < n.
Output: CF}, the cost to factorize frontal matrix Fj,for1 <j<n.
Stepl: for node v;,1 < j <n,do

for each v € {v;} U Madj(v;) do

Bk =0
Step2: for node vj, 1 < j<n, do
Step2.1: for each v € {v;} U Madj(v;) do
Calculate m¥ by Theorem 2
Step2.2: Calculate CF; by Theorem 1
Step2.3: for each v, € Madj(v;) do
Calculate I¥ by Theorem 3
Step2.4: for each vi € Madj(v;) do
ho62) = hoiay +
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