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Abstract 
Calendar scheduling is a necessary but tedious job in daily life.  Even with the help of 

scheduling software, a user has to specify his/her personal scheduling criteria repeatedly in each 
delegation.  This paper presents a software agent that learns a user's scheduling patterns from past 
experience, and suggests relevant scheduling criteria when the user wants to arrange a new activity.  
New schemas of scheduling criteria are induced using decision trees. To improve the agent’s learning 
performance, an enhanced decision tree algorithm, HID3, is proposed. Moreover, the agent observes 
the calendar of a user to identify inconsistency between his actual behavior and scheduling criteria.  
The agent can alert user of such inconsistency and suggest updates to his scheduling criteria.  
Experimental data show that the proposed personal calendar agent can not only learn a user's 
scheduling criteria with high accuracy, but also keep up with subsequent changes.   
 
1  Introduction 
 
Calendar scheduling is a necessary but tedious job in daily life.  When scheduling an activity, 
one must consider personal restrictions and preferences as well as external factors such as the 
schedules of the other participants, and any required resources.  There have been software 
developed to help people manage their calendars and schedule their daily activities.  For 
example, Haynes et al. [1] proposed a community of distributed software agents that can 
communicate with each other by e-mail, and schedule meetings on behalf of their users using 
a negotiation mechanism.  A user simply specifies the criteria of the meeting to be scheduled, 
then the agents find a time acceptable to all the participants. 

 
While such agents help automate the task of scheduling, a user needs to specify his 

scheduling criteria explicitly each time he delegates the task to the agents.  To further 
automate the scheduling process, we designed a personal calendar agent that relieves the user 
of repeated delegation by suggesting scheduling criteria learned from past experience [2]. 

 
In what follows, Section 2 first formulates the problem of calendar scheduling in terms of 

restrictions and preferences, and Section 3 describes the proposed learning approach.  The 
mechanisms for updating and verifying the learned results are presented in Sections 4 and 5.  
The experimental results are summarized in Section 6, followed by a discussion of related 
work and the conclusion. 
 
2  Problem Formulation 
 
When a user delegates her agent to schedule her calendar, she has to specify the set of 
activities together with all relevant scheduling criteria initially.  Each activity is specified by 
five attributes: activity name, participants, location, required resources, and activity duration.  



The goal of a personal calendar agent is to find the best time to schedule each activity by 
learning the general patterns of a user's scheduling criteria and reusing them in future 
delegations. 

 
Each scheduling criterion is either a restriction or a preference.  The former defines 

constraints that must hold in the user’s calendar, while the latter indicates choices among 
alternative schedules.  There are three kinds of restrictions as follows. 

 
(1) Time interval restriction constrains the time for a single activity.  For example, taking 

subways cannot be scheduled at 2 a.m. since it is out of service after midnight. 
(2) Precedence restriction constrains the ordering of two activities.  For example, one 

must get a passport before traveling abroad. 
(3) Time margin restriction constrains the time margin between two activities.  For 

example, the time margin between two meetings must be greater than the travel time 
between the two meeting places. 

 
Similarly, there are three types of preferences. 
 
(1) Time interval preference models the user's time-slot preference for a single activity, for 

example, preferring working in the morning to at night. 
(2) Precedence preference models the execution priority of two activities, for example, 

doing homework before playing a game. 
(3) Time margin preference indicates preferred time margin between two activities, for 

example, arriving at the airport at least one hour before the flight’s scheduled departure. 
 
Unlike restrictions, preferences may be violated.  For example, suppose that a user 

prefers “meeting in the afternoon”.  It is acceptable, while not ideal, to schedule a meeting in 
the morning in order to accommodate the other participants. 

 
The personal calendar agent induces the general patterns of a user's scheduling criteria, 

which are used as suggestions in scheduling new activities. The learned general patterns are 
represented as schemas.  A schema describes the conditions of the activities associated with 
a specific restriction or preference.  For example, given a preference schema “dislike 
meeting with John in the morning”, the agent will suggest “dislike morning” for all meeting 
in which John participates.  When the user wants to arrange a new activity, the agent 
suggests relevant scheduling criteria according to the learned schemas. 

 
3  Learning Schemas 
 
3.1 Decision Trees 
 
We use a machine learning approach, decision tree, to induce schemas.  The schemas for the 
six kinds of scheduling criteria are learned respectively. 

 
The input to a decision tree is an instance, which is described by a set of attributes; the 

output of the tree is a classification for that instance.  Each node in the tree specifies a test of 
some attribute of the instance, and each branch descending from that node corresponds to one 
of the possible values for this attribute [3]. 

 
In the decision tree for restriction schemas, the classification is either allowed, or 



forbidden; while in the decision tree for preference schemas, the classification can be one of 
the values {highly preferred, preferred, normal, disliked, highly disliked}.  For time interval 
schemas (both the restriction and preference schemas), the instances in the decision tree are 
activities.  For precedence and time margin schemas, the instances are activity pairs, as each 
schema is associated with two activities. 

 
For example, the decision tree in 

Figure 1 represents the time interval 
preference with respect to morning.  
Each path from the tree root to a leaf is 
a schema. The two schemas in the 
leftmost indicate “dislike exercise for 2 
hours in the morning” and “no 
preference for exercise for 0.5 hour in 
the morning”. This may be because the 
user usually has tight schedule in the 
morning so that a 2-hour exercise is too 
long for him. Similarly, the two 
schemas in the middle reflect the user 
prefers working in the morning if and 
only if it is not working with John. This 
may be because the user himself is an 
early person while John is a late person. 
The rightmost two schemas indicate the 
user dislikes doing entertainment 
outdoors in the morning maybe because 
the weather is too hot in the morning; 
and he is indifferent if the entertainment 
is indoors. 
 

Figure 2 shows a decision tree for 
precedence restrictions.  Each 
precedence restriction is associated with 
two activities, and indicates whether the 
execution order “the first activity before 
the second activity” is allowed.  Each 
path in the tree represents a precedence 
restriction schema.  For example, the 
middle-left path means “meeting before 
preparing meeting materials is 
forbidden” because one should prepare 
the material before the meeting. 

 
The tree in Figure 3 represents time 

margin restrictions.  It indicates 
whether it is allowed to execute two 
activities with a time margin “0.5 hour”. 
This restriction can represent the traffic 
time needed for commuting between the two locations. For example, if it takes 1 hour to 
commute between home and Academia Sinica, scheduling the two activities with a 0.5-hour 
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Figure 1: Time interval preferences with respect to morning 
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Figure 2: A decision tree representing precedence restrictions
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time margin is not feasible and thus forbidden. 
 
3.2 Hierarchical Concepts 
 
Two of the activity attributes, activity name and location, may contain hierarchical concepts.  
That is, their values can be grouped into several categories, which can be further grouped into 
super categories.  Different levels of categories form a hierarchy of activities. 

 
Take the attribute activity name for example.  Suppose that there are six values: “swim”, 

“jog”, “read”, “sing”, “study” and 
“coding”.  Among these values, 
“swim” and “jog” are “exercise”; “read” 
and “sing” are “enjoyment”; “study” 
and “coding” are “work”.  Furthermore, 
“enjoyment” and “exercise” are 
sub-categories of  “leisure”.  The 
hierarchy for “activity name” is 
illustrated in Figure 4. 

Figure 4: A hierarchy for the attribute “activity name” 

 
A user can categorize and build up such hierarchies, so that activities in the same 

category have similar scheduling criteria.  For example, if a user prefers swimming in the 
afternoon, it is likely that he also prefers jogging in the afternoon, since both of them are 
“exercise”.  The hierarchy enables the agent to induce more general schemas in terms of 
categories and to make suggestions for a novel activity in the same category. 

 
3.3 HID3 Algorithm 

 
HID3 (hierarchical ID3) algorithm is designed to improve the performance of decision tree 
learning by making use of the hierarchical attributes.  Similar to ID3, HID3 constructs the 
decision tree in a top-down fashion, i.e. from root to leaves.  At each node, an attribute is 
selected to classify instances to maximize the information gain.  However, when the chosen 
attribute contains hierarchical concepts, instances are partitioned according to the categories 
in the hierarchy, instead of their values. 

 
Take the hierarchy in Figure 4 as an example, if the attribute activity name is selected for 

the first time, the decision tree is branched according to the categories on the first level of the 
hierarchy.  That is, the instances are divided into the two categories: “work” and “leisure”.  
When the attribute “activity name” is chosen for the second time, the decision tree is 
branched according to the categories on the second level of the hierarchy.  That is, instances 
in the “work” category are divided into “study” and “coding”, while instances in the “leisure” 
category are divided into “exercise” and “enjoyment”.  This process repeats till the entropy 
of the leaf nodes becomes zero or the lowest level of the hierarchy is reached.  Details of the 
HID3 algorithm are described below. 

 
HID3 has a learning bias: to classify instances with the highest level of categories in the 

hierarchies.  That is, it tends to generate schemas in terms of more general categories.  
Therefore, it is able to improve the generalization ability of the learned schemas. 

 



Algorithm 1  HID3 Algorithm 
 
HID3 (S, C, A, H) 
Require: A set of instances S, a set of attributes A describing S, a set of classification C for S, and an 

array of categories H, with H[a] denoting the current categories for the attribute a 
Create a node r for the tree 
if the classification for all instances in S is the same then 
 Return r with that classification 
end if 
if A is empty then 
 Return r with the most common classification for the instances in S 
end if 
Choose an attribute a from A, that best classifies S 
Assign a to the test for r  
if a has hierarchical concepts then 
 Let V be the set of sub-categories of H[a] 
else 
 Let V be the set of possible values of a 
end if 
for each Vvi ∈  

Add a new tree branch below r, corresponding to the test iva =  
Let 

ivS be the subset of S that have value iv for a 
if 

ivS  is empty then 
 Add a leaf node with the most common classification for the instances in 

ivS  
else 

    if a has hierarchical concepts then 
if iv is on the lowest level of the hierarchy of a then 

     Add the sub-tree HID3(
ivS , C, A-{a}, H) 

       else 
     H[a]= iv  
     Add the sub-tree HID3(

ivS , C, A, H) 
   end if 
    else 
     Add the sub-tree HID3(

ivS , C, A-{a}, H) 
    end if 

end if 
end for 
Return r 

 
The difference of HID3 and ID3 can be explained from the viewpoint of hypothesis space.  

When the activity name attribute is selected as the classifier, ID3 hypothesizes that “activities 
with the same name have the same scheduling criteria”, while HID3 starts by hypothesizing 
that “activities in the same category on the first level of the hierarchy have the same 
scheduling criteria”.  If the scheduling criteria are different within the same category, the 
hypothesis of HID3 shrinks and becomes “all activities in the same category on the second 
level of the hierarchy have the same scheduling criteria”.  If the scheduling criteria remain 
different within the category, the hypothesis will keep shrinking and finally become 
“activities with the same name has the same scheduling criteria”, which is exactly the 
hypothesis of ID3.  In other words, HID3 explores more general hypotheses before reaching 



the hypothesis induced by ID3. 
 
The complexity, in both space and time, of HID is greater than that of ID3.  Furthermore, 

given that decision tree learning performs greedy search without backtracking, the bias of 
HID3 may result in learning schemas with lower accuracy.  The experiment reported in 
Section 6.1 compares the performance of the two learning algorithms, and examines if HID3 
is able to make better predictions when the scheduling criteria involving more hierarchical 
concepts. 
 
4  Updating Schemas 
 
The user's scheduling criteria may change over time.  After schemas are learned, the agent 
should also keep track of subsequent changes by updating the learned schemas. 

 
To this end, the agent keeps a restriction (or preference) value for each schema.  The 

restriction value r is a real number such that 
 

(1) r = 1 if the schema indicates that the proposed time is allowed. 
(2) r = -1 if the schema indicates that the proposed time is forbidden. 
 

On the other hand, the preference value p is any integer from the set {2, 1, 0, -1, -2}, 
indicating that the preference is {highly preferred, preferred, normal, disliked, highly disliked} 
respectively. 

The agent captures the changes by continuously updating the restriction and preference 
values of each schema.  Given a restriction schema rσ , the restriction value r of rσ  is 
updated iteratively each time when the user modifies the restriction, which is suggested 
according to rσ : 

oldnew rRr ×−+×= )1( αα  
 
where α is learning rate in [0,1], and R is in {1, -1} to indicate if the restriction is {allowed, 
forbidden} after the user's modification. 

 
Similarly, the function for updating preference value p is:  

 
oldnew pPp ×−+×= )1( αα  

 
where P is in {2, 1, 0, -1, -2} to indicate that the preference is {highly preferred, preferred, 
normal, disliked, highly disliked} after the user's modification. 

 
By updating the restriction and preference values, the agent is able to adapt itself to the 

changes, and make updated suggestions for the user's scheduling criteria. 
 
5  Verifying Schemas 

 
Research in cognitive psychology shows the labile nature of human's preferences.  
Preferences specified by a person may be inconsistent: one may prefer an alternative A to B, 
prefer B to C, but prefer C to A (“intransitivity of preferences” [4]).  Even if the preference is 
consistent, when it is represented in terms of numerical values, these values may be 
asymmetrical.  For example, one may rate the alternative A as value “2”, when the 



alternative B is taken as the standard (whose value is “0”).  On the other hand, when the 
alternative A is taken as the standard, B may not be rated as “-2”, but “-3” or “-1” 
(“asymmetry in preferences” [5]).  Therefore, modeling preferences by user-input values is 
straightforward, but may not be able to reflect the preferences accurately.  There may be 
inconsistency between the user's scheduling criteria and scheduling behavior.  For example, 
the user may consider a time interval highly disliked, but always schedule activities in it, even 
though other time intervals are available. 

 
Since schemas are induced from the scheduling criteria specified by the user, the agent 

has to verify the schemas by keeping track of the user's scheduling behavior based on the 
actual calendar.  The basic idea is to calculate the frequency of violation of a preference 
schema.  If the frequency is too high, the agent suggests the user to ignore the preference. 

 
Given a preference schema pσ , the violation frequency v of pσ is updated each time 

when the activity defined in pσ is scheduled: 
 

oldnew vVv ×−+×= )1( αα  
 
where α is learning rate, and V is a Boolean value to indicate if pσ is violated in the actual 
calendar. 

 
With this mechanism, the agent is able to help the user clarify what he/she really wants 

and learn the user's scheduling criteria with better accuracy. 
 
6  Experiments 
 
6.1 Experiments for Learning Schemas 
 

The training instances in the experiments were generated semi-automatically.  We 
collected two users' daily activities, relevant scheduling criteria, as well as the hierarchies for 
activity name and location.  The users had a total of 20 and 30 scheduling criteria, 
respectively.  We selected 25 activities for learning time interval restrictions and preferences; 
and 15 activities for learning precedence and time margin restrictions and preferences. 

 
The training instances were generated according to these schemas and activities.  Noise 

was added into the training instances randomly.  The number of training instances needed 
was calculated according to learning theory to get PAC (probably approximately correct) 
results [6].  There were 196 instances for time interval restrictions; 1583 for time interval 
preferences; 425 for precedence and time margin restrictions; and 3640 for precedence and 
time margin preferences. 

 
Both ID3 and HID3 were explored in inducing decision trees.  Training instances were 

divided into five groups, and the learned schemas were evaluated by cross-validation. 
 
The experimental results show that the user's scheduling criteria can be learned by using 

decision trees.  The accuracy is shown in Tables 1 and 2. 
 
 



User A User B Accuracy (%) 
Training/testing HID3 ID3 HID3 ID3 
Time interval 98.5/85.7 98.5/82.7 99.6/91.8 99.6/89.7 
Precedence 99.6/98.2 99.6/98.8 99.4/99.4 99.4/99.4 

Time margin 100/97.3 100/96.8 99.3/91.8 99.3/87.1 

Table 1: The accuracy of learning restriction schemas 
 

User A User B Accuracy (%) 
training/testing HID3 ID3 HID3 ID3 
Time interval 99.4/93.2 99.4/88.4 99.4/98.9 99.4/97.6 
Precedence 100/91.7 100/90.5 100/94.4 100/80.9 

Time margin 99.9/90.5 99.9/90.4 99.9/96.9 99.9/97.1 

Table 2: The accuracy of learning preference schemas 
 
The two algorithms, HID3 and ID3, perform the same in the training set.  In the testing 

set, HID3 has better accuracy then ID3 if there are more hierarchical concepts in the instances 
(e.g., User A's time interval preferences; User B's time margin restrictions and precedence 
preferences); the two algorithms have similar performance if the schemas contain few 
hierarchical concepts.  This result shows that using HID3 instead of ID3 will not degrade the 
performance even if there are few hierarchical concepts in the key schemas. 

 
Consider the computation time of the two algorithms.  HID3 needs more time than ID3, 

but the difference is less than 30%. 
 
In summary, HID3 matches the time performance of ID3 with a slight computational 

overhead. On the other hand, HID3 induces more general schemas and makes better 
predictions when the learning target contains hierarchical concepts. 

 
6.2 Experiments for Updating Schemas 
 
We randomly generated 1500 schemas for restriction and preference respectively, and 
simulated the user's changes by modifying each schema randomly. 

 
The results show that changes of restrictions and preferences can be captured by updating 

the restriction value (and preference value) of schemas.   On average, it takes about 2 to 5 
iterations to keep up with changes in restrictions; and 3 to 6 iterations to keep up with 
changes in preferences. 
 
7 Related Work and Conclusion 
 
There are two pieces of important research in this problem domain.  One is CAP (Calendar 
APprentice) by Mitchell et al [7], and the other is the learning interface agent by Maes [8, 9].  
Both of them are learning agents that help people in calendar scheduling. 

 
The CAP agent observes the user's scheduling behavior, and helps the user by suggesting 

meeting parameters (e.g., location, duration, date, time).  These suggestions are based on the 
rules induced by decision trees from the meetings scheduled by the user earlier. 

 



Maes's learning interface agent learns from the user's behavior by memory-based learning, 
and predicts the user's action in a particular situation.   The agent may suggest an action to 
the user (e.g., to accept an invitation, to reschedule a meeting) by comparing current situation 
against previous experience. 

 
Both of them focus on learning and predicting the scheduled time of the user’s activities. 

In other words, they predict which time slot the activity should be scheduled at.  However, 
suggesting scheduled time per se is hardly meaningful, especially when the activity involves 
other participants and/or resources.  The user cannot determine the scheduled time without 
considering external factors of scheduling (e.g., the preferences of other participants, the 
schedule of required resources).  Therefore, the scheduled time becomes undecided and 
unpredictable for any single user, let alone the agent. 

 
It is also problematic to learn the user’s scheduling patterns from scheduled time.  The 

scheduled time is a compromise between the user's preferences and other external factors.  
The user may violate the personal preferences in order to give way to the scheduling criteria 
of other participants or resources.  However, the user may maintain the same preferences the 
next time around and will arrange activities in the preferred time if external factors do not 
conflict with these preferences.  In other words, “scheduled time” does not necessarily equal 
the “preferred time”.  As a result, learning from scheduled time does not always reflect the 
actual preferences of the user. 

 
The other problem is that it is too specific to induce preferences from scheduled time.  

For example, the user prefers “meeting with John in the afternoon”.  Suppose the meetings 
happened to be scheduled on Wed. afternoon for several times.  The agent observes the 
calendar and concludes: “the user prefers Wed. afternoon”.  Actually, the user has no 
preference for Wed. over other days.  By observing the calendar only, it is impossible and 
unreasonable for the agent to generalize from “prefer Wed. afternoon” to “prefer afternoon”.  
In other words, the scheduled time for meetings is too specific to learn, and the learned result 
is only a small part of the user's preference.  The agent cannot get the whole picture of the 
user's preferences, until all kinds of meetings were scheduled in every possible time slot at 
least once.  That is to say, the agent is not able to predict the restrictions and preferences for 
a novel <meeting, scheduled time> pair, due to the lack of generalization ability. 

 
Instead of scheduled time, the proposed personal calendar agent learns to predict 

scheduling criteria.  When the user wants to arrange an activity involving external factors, it 
is more plausible for the agent to suggest scheduling criteria.  Such criteria need to be 
exchanged with the other participants.  An activity is then scheduled based on the scheduling 
criteria of all participants and resources. 

 
It is also easier to learn from scheduling criteria than scheduled time.  The user writes 

scheduling criteria for activities, and the agent induces schemas of the scheduling criteria.  
Because of the generalization power of learning, the agent is able to suggest scheduling 
criteria for previously seen activities as well as for novel activities.  Since the agent also 
keeps track of the actual calendar and calculates the violation frequency of each schema, it 
can not only repeat the user's scheduling criteria, but also suggest useful modifications 
proactively. 

 
This paper has presented an agent to learn a user's scheduling criteria.  The experimental 

evidence shows that the agent is able to learn a user's scheduling criteria with high accuracy, 



and keep up with subsequent changes effectively.  Such a learning agent can work with other 
calendar scheduling software to automate the scheduling process and to improve the quality 
of the resulting schedule. 
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