
Tree-Structured Template Generation for Web Pages

Shui-Lung Chuang
Institute of Information Science

Academia Sinica
Taipei 115, Taiwan

slchuang@iis.sinica.edu.tw

Jane Yung-jen Hsu
Dept. of Comp. Sci. & Info. Eng.

National Taiwan University
Taipei 106, Taiwan

yjhsu@csie.ntu.edu.tw

Abstract

As the web becomes an increasingly important source of
information, tools for modeling, searching, and extracting
information from Web pages are indispensable. By model-
ing the structure of a Web page defined by its markup tags,
one can easily extract target information using structural
templates. This paper introduces the Tree Template Au-
tomatic Generator (TTAG) that learns tree-structured tem-
plates from training Web pages. TTAG was applied to both
query-based and frequently updated Web sites, and pro-
duced effective templates from a small number of examples.
The experiments show that TTAG is a powerful extraction
tool for semi-structured information sources.

1 Introduction

As the Web becomes the most popular source of in-
formation, valuable data are present in manually encoded
or automatically generated Web pages. Techniques for
modeling, searching and mining information from Web
pages have gained much attention from research in database
and artificial intelligence; e.g., syntax parsing gram-
mar [2], delimiter-string pattern [13], and finite-state trans-
ducer/automaton [10]. Most approaches treat each Web
page as a sequence of strings, even though HTML/XML
documents natively have a tree structure. As was pointed
out in [11], while the two HTML documents in Figures 1
and 2 use many different tags, they share much of the same
structural layout. To take advantage of the structural context
of the target fields within a document, this research investi-
gates the global layout of documents.

A document is a combination of three ingredients: con-
tent, format and structure. Content is the actual data, for-
mat prescribes the presentation of the data, and structure
relates the pieces in the document. Techniques for seman-
tic processing of document content are not mature enough
for practical use. Structural information, on the other hand,

<html>
<head><title>MEMORANDUM</title></head>
<body>
 MEMORANDUM
<dd> TO: MICHAEL SMITH </dd>
<dd> FROM: DERREN LIU </dd>
<dd> SUBJ: PROJECT DEMO </dd>
<dd> DATE: 10 MAY, 2003 </dd>
<p>Professor Hsu asks us to demo our term
project on May 15, 2003 at 3:00 p.m. in
Lab. Please make sure that your part is
ready then.</p>
</body>
</html>

Figure 1. A memo and its HTML source.

can serve as useful clues in identifying and retrieving in-
formation. Given a Web document, the markup tags and
their nesting relations define a hierarchical structure of con-
tent blocks (see Figure 2), which can serve as the basis for
deeper analysis of the structural layout of the document.

A group of Web pages often share a similar structure if
the pages are designed under the same guideline, or if the
pages are generated automatically, e.g., the result pages of
a search service or the front page of a daily news. Such reg-
ularities allow us to simply examine one or a few similar
pages in order to figure out their common structure, which
can in turn be used to determine the information contained
in additional similar pages. For example, the memos shown
in Figure 1 and 2 can be modeled and matched by the same
tree-structured template. The templates can be generalized
to represent document groups with small structural varia-
tions. Ideas from traditional tree automata are adopted in
designing efficient matching algorithms to identify target
information within a document.

Designing effective document templates is a tedious task.
This research addresses the issue by developing the TTAG
algorithm for automatic generation of tree-structured tem-
plates from training documents. TTAG depends on a top-
down level-by-level multi-string alignment of markup tags
in the document tag trees. In the rest of this paper, we first
review some related work and introduce the notion of tree-
structured template. The template generation algorithm is
then presented in detail, followed by the experiments.

Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence (WI’04)
0-7695-2100-2/04 $ 20.00 IEEE

<HTML>
<HEAD> <TITLE> MEMORANDUM </TITLE> </HEAD>
<BODY>
<H1> MEMORANDUM </H1>
<HR>

 TO: MICHAEL SMITH
 FROM: DERREN LIU
 SUBJ: INTERNET SEMINAR
 DATE: 9 APR, 2003

<HR>
<P>There will be an Internet Seminar on Thursday,
April 23, 2003 at 2:00 to 4:00 p.m. in Room 409.
</P>
<P>Dr. Simon will give a talk about Internet Agents
at that time. Please make every effort to attend it.
</P>
</BODY>
</HTML>

DATE: 9 APR, 2003

SUBJ: INTERNET SEMINAR

FROM: DERREN LIU

TO: MICHALE SMITH

MEMORANDUM

MEMORANDUM

<BODY>

<HEAD> <TITLE>

<H1>

<HR>

<HR>

<P>

<P>

<HTML>

Dr. Smith will give a talk about ...

b c

a

There will be an Internet Seminar ...

(a) (b) (c)

Figure 2. Another memo, its markup source, and the corresponding document tree structure.

2 Related Work

There has been much research on Web information
extraction [8, 15]. Previous work on wrapper induc-
tion/generation is often based on the linear string model,
e.g. delimiter string [13] and finite-state transducer [10].
The learned pattern rules mostly capture the local regular-
ities. Muslea et al. [16] proposed Stalker to incorporate
global structural information. Stalker used a manually con-
structed embedded catalog tree to hierarchically describe
the target fields within the documents. Kosala et al. [12]
explores document tree structure in extraction tasks using
grammatical induction on tree automata.

In contrast, document templates can model the entire
web page of interest, rather than a set of shallow extrac-
tion patterns. RoadRunner [6] treated each input page as
a list of tokens, and used regular expression as the tem-
plate. Arasu and Garcia-Molina [1] proposed a more so-
phisticated and improved approach. Hsu and Yih [11] first
proposed template-based mining. Chuang [5] created the
initial design of the template generation algorithm. Using
the tag trees of Web pages to generate explicit regular tree
templates; the proposed approach can benefit from the hier-
archical structure information contained in trees.

More recent research aims to identify data records of in-
terests in a data-intensive Web site automatically. In par-
ticular, some focused on data extraction from tables and
lists [17]. Embley et al. [7] proposed a method using heuris-
tics and domain ontology to perform the task, and But-
tler et al. [3] extended it with more heuristics to waive the
need of domain knowledge. IEPAD [4] used PAT trees [9]
to extract repetitive patterns from the Web page string, and
further applied sequence alignment to overcome the inex-
act match of patterns. According to a comparative study in
[14], IEPAD produced too many patterns, most of them are
spurious. Liu et al. [14] proposed the MDR algorithm that
directly operated on HTML tag trees to identify interested
data regions. Their implementation was limited to mining

data records formed by HTML table-related tags. Overall,
automatically identifying interested data records is difficult,
since only users know what they are really interested in. The
automatic approaches produce plausible candidates, thereby
facilitating the process of labeling training data.

3 Document and Template Tree

A Web page can be parsed into a tree, called document
tree or tag tree (see Figure 2(c)). Each node is associated
with a markup tag or a text string. The children of a node
can be represented as a sequence or string. Regular ex-
pression is a convenient tool for describing a set of similar
strings. The superscript ? is optional closure, indicating that
an item can appear once or zero; + is positive repeat clo-
sure, indicating that an item should appear non-zero times.

A template tree may contain multiple types of nodes. A
square denotes an exact node, which can only match a doc-
ument tree node with the same label a. The wildcard label ∗
can be used to match any label. The ellipse indicates a com-
pound node, which matches any node. It can also match two
or more consecutive nodes, which become the compound
node’s children.

Figure 3 shows several template trees that match the
memo document tree shown in Figure 2(c). The template
in Figure 3(a) matches any memo with multiple paragraphs
and optional block delimiter. The template shown in Fig-
ure 3(b) is more relaxed and matches the memo shown in
Figure 1. The template in Figure 3(c) is further relaxed by
treating all header block as a compound node.

Determining the matching between a template tree and a
document tree can be very complicated. Fortunately, many
efficient tree-matching algorithms have been designed in the
literature [18]. We are now ready to focus on how to gener-
ate a template tree for a class of similar documents.

Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence (WI’04)
0-7695-2100-2/04 $ 20.00 IEEE

m

e t x

b

h x

r

?

u

i x

i x

i x

i x
r

?

p

+

x

(a)

m

e

b

∗

r

? ∗

∗

∗

∗r

?

p

+

(b)

m

e

b

p

+

(c)
Abbreviation List: m : <html>, e : <head>, t : <title>, b : <body>, h : <h1>, r : <hr>, u : , i : , p : <p>, x : CDATA.

Figure 3. Several example template trees for matching the memo shown in Figure 2.

4 Template Generation Algorithm

The template generation algorithm is designed to com-
pose a template top-down, beginning from the root and go-
ing down one level at a time, as the nature of a tree. For a
template node n, its child nodes is determined as follows:
First, we find the nodes corresponding to n in the training
set, and treat their children as strings. Then, a regular ex-
pression pattern for matching all the strings is inferred. Fi-
nally, the resulting pattern is translated into a sequence of
template-tree nodes, becoming the child nodes of n. In the
following subsections, we describe the algorithms for mul-
tiple sequence alignment, inducing patterns from an align-
ment, and the overall template generation algorithm.

4.1 Multiple Sequence Alignment

Sequence alignment matches two or more strings by
insertion or deletion. If two aligned symbols are equal, it
is an identity; otherwise, it is a mismatch. An insertion
or deletion (indel) is one or more letters aligned against
“−”. There can be many possible alignments for a given
string set. For example, two possible alignments of strings
abcdcdb and abbcdb are shown below.

a b c d c d b
a b b c d b −

a b − c d c d b
a b b c d − − b

A good alignment is one with the fewest mismatches
and indels. Suppose that each mismatch or indel is penal-
ized with one point. We can use dynamic programming to
minimize the distance of two strings (a.k.a editing-distance
problem), and get the corresponding alignment via back-
tracking.

To align more than two strings, we adopt the progressive
alignment approach. Given k strings, align any two of the k

strings and replace them with the resulting pairwise align-
ment. This gives an alignment problem with k − 1 strings.
Repeat the process until only one k-way alignment remains.

4.2 Inducing Pattern from an Alignment

Now, we are ready to introduce how to induce a template
expression from an alignment of k strings. The pattern must
match each of the k training strings, and should be gen-
eral enough to cover unseen strings. We assume the result-
ing template is represented in restricted regular expression
without the notion of disjunction.

A k-string alignment s = s1s2 . . . sn of length n, where
(1 ≤ i ≤ n), can be viewed as an array with k rows. Each
column denotes k symbols being aligned into t i in the result
pattern µ̂(s) = t1t2 . . . tn.

ti =
{

µ(si)? if − ∈ si,
µ(si) otherwise.

The mapping function µ is defined to output a symbol if if
all input symbols are the same; or to output a more general
symbol (e.g. a wildcard ∗) if there’s a mismatch. The details
of the mapping function µ will be described in Section 4.3.
When a column contains the dash symbol, i.e. an indel dur-
ing alighment, it indicates one or more sequences contain
no symbol at the position. The corresponding symbol in the
result pattern must be optional. For example, consider the
alignment shown below.

a b − c d c d b
a b b c d − − b

The generated pattern the alignment should be

a b b? c d c? d? b

Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence (WI’04)
0-7695-2100-2/04 $ 20.00 IEEE

Note that we can further combine some adjacent sym-
bols to generalize the pattern. For example, we can transfer
bb? to b+, c?d? to (cd)? and cd(cd)? to (cd)+, and the fi-
nal pattern becomes ab+(cd)+b. Such combination of adja-
cent sub-patterns can only be done if the substituted pattern
cover the same input strings. For example, bb? can be sub-
stituted by b+, but b cannot be replaced by b?. Consider the
case for replacing c?d? with (cd)? in the above example,
where c? corresponds to (c−) in the original alignment, and
d? is derived from

(
d−

)
. The dash symbol appears in the

same string in both columns, which indicates that the two
columns are highly correlated.

Let r, s and t be three patterns. We designed Algorithm 1
for combining two patterns by replacing r ?s? with (rs)? and
Algorithm 2 that replaces rnsm with tl, where n, m, l ∈
{?, +} ∪ N .

Algorithm 1 Combine two optional patterns.
CombineOption(patterns r? and s? from a k-string alignment)
1: c1 . . . cm ← corresponding columns of r in the alignment
2: cm+1 . . . cn ← corresponding columns of s in the alignment
3: for each 1 ≤ i ≤ k do
4: if ∃j,l≤n(cji = −) ∧ (cli �= −) then /*cannot be combined*/
5: return pattern r?s?

6: return pattern (rs)?

Algorithm 2 Combine two patterns.
CombinePattern(two pattern: rn and sm)
1: if literal features of r and s are not identical or collisions happen then
2: return the pattern rnsm

3: ar1
1 ar2

2 . . . arn
n ← pattern of r by removing parentheses

4: as1
1 as2

2 . . . asn
n ← pattern of s by removing parentheses

5: for each 1 ≤ i ≤ n do

6: ti ←

ri if ri = si,
? else if {ri, si} ∈ {{?, 1}, {?, ?}},
?+ else if {ri, si} ∈ {{?, +}, {?, n}},
+ otherwise.

7: l ←

n + m if n, m are natural number,
?+ else if n = m =?,
+ otherwise.

8: t ← at1
1 at2

2 . . . atn
n with parentheses added back

9: return pattern (t)l

For any given alignment, there are many possible pat-
terns. To find simpler and shorter pattern, we define the
cost function η of a pattern p as

η(p) = number of ? and + in p.

That is, the complexity of a pattern is measured by the num-
ber of operations ? and +. The length of a pattern is defined
as the number of symbols. For example, the length of a 2

is 1 and the length of aa is 2. For patterns with the same
η value, the shortest pattern is preferred. The cost function
of an alignment s denotes the smallest cost of the corre-
sponding patterns. For example, given s = (a b c

c), we have
η(s) = η((ab)?c) = 1.

Algorithm 3 presents a dynamic-programming approach
to computing the pattern with the smallest η cost from a
given alignment. Given an alignment s = s1s2 . . . sn, we
define

Gi,j = η(s[i, j]).

to be the smallest cost of the sub-alignment s[i, j] =
sisi+1 . . . sj of s. By keeping all possible patterns in each
lattice when computing the G matrix, the patterns with the
smallest η cost is obtained from computing η(s) = G1,n.

Algorithm 3 Induce a pattern from a given alignment.
InducePattern(an alignment s = s1s1 . . . sn)
1: P, G ← two n × n matrices
2: for each 1 ≤ i ≤ n, i ≤ j ≤ n do
3: Pi,j ← {µ̂(s[i, j])}
4: Gi,j ← η(µ̂(s[i, j]))
5: for each 1 ≤ l ≤ n − 1, 1 ≤ i ≤ n − l do
6: j ← i + l
7: for each i ≤ k ≤ j − 1 do
8: for all r ∈ Pi,k ∧ s ∈ Pk+1,j do
9: for all p ∈ {CombineOption(r, s),CombinePattern(r, s)} do

10: if η(p) < Gi,j then
11: Gi,j ← η(p)
12: Pi,j ← {p}
13: else if η(p) = Gi,j then
14: Pi,j ← Pi,j ∪ {p}
15: return the shortest pattern in P1,n

4.3 Generating Template

The proposed template generation algorithm is straight-
forwardly top-down, constructing a template tree from the
root and going down one level at a time:

1. Generate an appropriate node n for the root of each
training document tree.

2. Generate the children of node n via the restricted reg-
ular expression induction.

3. Repeat steps 1–2 for all the subtrees.

To generate a template node from a set of training nodes
is to find a feasible label matching the set of training node
labels. If all training node labels are the same, it is the out-
put label. If some of them are different, a wildcard label ∗
can be used. If some training nodes are inserted spurious
nodes (it’s labeled as � and inserted by the labeling process,
stated in next section, to group consecutive nodes), a com-
pound node should be used.

4.4 An Illustrative Example

Let’s go through a brief example to illustrate the template
generation process. Figure 4 shows two search result pages
from Yahoo! for queries “Wrapper” and “Star Wars.” For

Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence (WI’04)
0-7695-2100-2/04 $ 20.00 IEEE

<html>
<head><title>Yahoo! Search Results</title></head>
<body>
<table> An Advertisement Image </table>
<center> Yahoo! Category Matches </center>
<p> Recreation > Hobbies > Collecting > Food </p>
<p> Computers > Software > Programming Tools </p>

<center> Yahoo! Site Matches </center>

<p> Recreation > Hobbies > Collecting > Food </p>

Jake’s Wrapper Collection
Quasi Comprehensive Candy Bar Wrapper Image Archive

<p> Computers > PLs > Tcl/TK > Scripts </p>

SWIG-Simplified Wrapper and Interface Generator

<p> Next 20 Matches </p>
</body>
</html>

<html>
<head><title>Yahoo! Search Results</title></head>
<body>
<table> An Advertisement Image </table>
<center> Yahoo! Category Matches </center>
<p> Entertainment > Movies and Film > Star Wars </p>

<center> Yahoo! Site Matches </center>

<p> Entertainment > Movies and Film > Star Wars </p>

Star Wars Cantina Chat - Star Wars Chat

<p> Next 20 Matches </p>
</body>
</html>

Figure 4. Two training Web pages.

�

�

�

�

� � � � � � �

	 	

� �

	

�

�

�

�

�

� � � � � �

	

�

Symbol Tag Concepts
A <html> {Category,SiteList}
B <head> {}
C <title> {}
D <body> {Category,SiteList}
E <table> {}
F <center>{}
G <p> {}
H <p> {Category}
I {SiteList}
J {}

Figure 5. Two training trees represented by node symbols.

the purpose of illustration, the two pages have been simpli-
fied, while preserving the skeleton structure of the original
pages.

Suppose that the target information to extract is each
two-fold entry (highlighted by rectangle boxes in Figure 4):
a category indicator, labeled as Category, and a list of link
items, as SiteList. By propagating the block names from
target nodes to the root, we construct the symbol of each
node, consisting of a syntactic part (i.e., a block tag) and
the block names contained in the corresponding node. Fig-
ure 5 shows the trees obtained after labeling (without show-
ing the text-string nodes). The node <html> contains the
blocks Category and SiteList, and the node contains
only the block SiteList. The gray nodes are those marked as
superfluous after pruning.

First, start by generating a node to match the roots of
training trees. In this example, an exact node with la-
bel <html> is appropriate. The next step is to gener-
ate the children of the resulting template node. The two
training sequences are exactly identical, so it is straightfor-
ward to generate the child nodes as <head><body>. The
subtree rooted at <head> contains no target information.
Thus we proceed to generate the subtree rooted at <body>.
Now the two training sequences are EFGGFHIHIG and
EFGFHIG. The pattern EFG+F (HI)+G is generated.
The same process is repeated for the nodes <p> and
at 2nd level of the result sequence because they contain the

<html>

T T

++
<table> <center> <p> <center> <p>

<p>

<body><head>

Figure 6. The final template tree.

target information. Since they are the target nodes (we in-
dicate each of them with a superscript T), we terminate the
process. Figure 6 presents the final template tree.

5 Experiment

We evaluated our approach on the following two types
of information sources: (1) the query-based, e.g., search
engines and online shopping stores, and (2) the periodi-
cal, e.g., news portals. The reason for choosing these two
types was that their result pages were very likely generated
by machines, and thus there might exist internal document
templates. For query-based sites, we gathered the responses
for 50 sample queries. The queries were chosen according

Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence (WI’04)
0-7695-2100-2/04 $ 20.00 IEEE

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

C
o
v
e
r
a
g
e
(
%
)

Training pages

Yahoo
Altavista
Openfind
MetaCrawler
CNET Shopper.com
Cora

Figure 7. The generation curve on query-
based information resources.

to each specific site. For example, the queries for Shop-
per.com were all computer products, e.g., “Microsoft Of-
fice” and “IBM Thinkpad.” All response pages of these in-
formation sites were lists of items. The target information to
be extracted was each individual item. For periodical news
information, we collected 50 daily front pages for each site.
The extraction targets were the news headlines.

There are two issues to concern: whether a general
enough template can be generated for unseen pages and
how many training pages are required to produce such a
template. The experiment was conducted as follows. For
each site, we randomly chose a page for training. The cho-
sen page was labeled and then fed to the template genera-
tion module. The resulting template was used to divide the
whole sample pages into two sets: a successful set contain-
ing the pages whose items could be extracted, and a failed
set of pages that couldn’t be successfully handled. If the
failed set was not empty, a page was randomly chosen from
that set, labeled and then added to the training set, accord-
ing to which a new template was generated. The process
was repeated, until all sample pages were successfully han-
dled or there existed pages that couldn’t be handled anyhow.
To obtain a more reliable performance estimation, the entire
process was performed five times for each testing site. The
final curves on the coverage rates, i.e., the percentage of the
pages in the successful set over the entire testing pages, with
respect to the number of training pages for the two types of
testing sites are shown in Figure 7 and 8, respectively.

The experimental results show that the proposed tem-
plate generation approach can successfully handle the sur-
veyed sites. In general, if the pages of the same resource
have some deviation, i.e., different number of target items,
multiple training pages are required. In our experiment,
only the news site BBC requires one page to produce an
effective template for extracting its headlines. This is be-
cause the front pages of that site are very uniform in their

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

C
o
v
e
r
a
g
e
(
%
)

Training pages

BBC News
CNET News.com
Infoworld
NBA.com

Figure 8. The generation curve on periodical
information resources.

structure. All the other sites need multiple, but few, training
instances to produce effective templates.

However, we also found several drawbacks of our ap-
proach on actual Internet resources during the experiment.
The Web pages are generally designed for being displayed
via the Web browsers. The page designers intend to ver-
ify the correctness of their HTML pages via the browsers,
which have high tolerance on syntactic errors of HTML
documents. Even more, some tags are usually misused.
For example, <p> is usually used as a wilder blank line,
rather than an indicator of a paragraph. The misusing of tags
makes that the structure constructed according to markup
tags doesn’t reflect the structure intended by the author of
documents. This motivates the need of a sophisticated pars-
ing tool to construct more accurate document trees.

To have a comparison, we also gave our surveyed sites
a try to MDR1 [14], since their idea of using tag trees was
similar to ours and their experiment showed that MDR out-
performed other approaches, e.g., IEPAD [4]. For each site,
we selected one testing page and fed it to MDR system.
Because MDR was an automatic approach, we counted it
as correct if one of its output data regions contained the
data records that we extracted using our templates. Un-
fortunately, only the news site BBC could be correctly
handled by MDR. The processing of sites NBA.com and
MetaCrawler ended up with unexpected fatal program ter-
mination. The output of the remaining seven sites mostly
contained data regions for navigation or advertisement. The
main reason was that the current implementation of MDR
was limited to mining data records formed by table-related
tags. But most of the data records we wanted to extract
from our surveyed sites were not formed by table-related
tags (see Figure 4 for an example). Also HTML table had
been over-used in designing fancy page layout; most of nav-
igational bars or advertisment lists were arranged using ta-

1http://www.cs.uic.edu/∼liub/MDR/MDR-download.html

Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence (WI’04)
0-7695-2100-2/04 $ 20.00 IEEE

ble tags. While MDR did not perform well in our testing,
there’s not enough evidence to conclude whether TTAG is
better. Further comparison and evaluation of the proposed
approach with competing methods should be done for more
informatin sources.

6 Concluding Remarks

In this paper, we propose a tree-template-based approach
to modeling the global structural layout of Web pages ac-
cording to the nested use of markup tags. Using tree-
structured templates has the advantage of preserving the
hierarchical structure context of the fields in a document,
which may be lost by using linear-string-based approaches.
To reduce the tedious labor in coding templates, an auto-
matic template generation algorithm is designed and well
engineered. We investigate its possibility by an initial ap-
plication to Web information extraction, and the experiment
results show its effectiveness. Further work is needed to
extend the proposed method to XML documents and other
semi-structured information sources.

References

[1] A. Arasu and H. Garcia-Molina. Extracting structured
data from Web pages. In Proceedings of the 2003
ACM SIGMOD International Conference on Manage-
ment of Data, pages 337–348, 2003.

[2] N. Ashish and C. A. Knoblock. Semi-automatic wrap-
per generation for internet information sources. In
Proceedings of the Second IFCIS International Con-
ference on Cooperative Information Systems, pages
160–169. Kiawah Island, CA, USA, 1997.

[3] D. Buttler, L. Liu, and C. Pu. A fully automated ex-
traction system for World Wide Web. In Proceedings
of the 2001 International Conference on Distrubuted
Computing Systems, pages 361–370, Phoenix, Ari-
zona, May 2001.

[4] C.-H. Chang and S.-L. Lui. IEPAD: Informatin extrac-
tion based on pattern discovery. In Proceedings of the
10th International World Wide Web Conference, 2001.

[5] S.-L. Chuang. Automatic generation of tree-structured
templates for information extraction from html docu-
ments. Master’s thesis, National Taiwan University,
June 1999.

[6] V. Crescenzi, G. Mecca, and P. Merialdo. RoadRun-
ner: Towards automatic data extraction from large
Web sites. In Proceedings of the 2001 International
Conference on Very Large Data Bases, 2001.

[7] D. Embley, S. Jiang, and Y. Ng. Record-boundary dis-
covery in Web documents. In Proceedings of the 1999
ACM SIGMOD International Conference on Manage-
ment of Data, pages 467–478, Philadelphia, USA,
1999.

[8] T. Guan and K.-F. Wong. KPS: a Web informa-
tion mining algorithm. Computer Networks, 31:1495–
1507, 1999.

[9] D. Gusfield. Algorithms on strings, tree, and se-
quence. Cambridge, 1997.

[10] C. Hsu. Generating finite-state transducers for semi-
structured data extraction from the Web. Information
Systems, 23(8):521–538, 1998.

[11] J. Y. Hsu and W.-T. Yih. Template-based informa-
tion mining from html documents. In Proceedings of
AAAI-97, pages 256–262, July 1997.

[12] R. Kosala, J. V. den Bussche, M. Bruynooghe, and
H. Blockeel. Information extraction in structured doc-
uments using tree automata induction. In Proceed-
ings of the the 6th European Conference on Principles
and Practice of Knowledge Discovery in Databases
(PKDD). Helsinki, Finland, 2002.

[13] N. Kushmerick, D. S. Weld, and R. Doorenbos. Wrap-
per induction for information extraction. In Proceed-
ings of the 15th International Joint Conference on Ar-
tificial Intelligence, pages 729–737, 1997.

[14] B. Liu, R. Grossman, and Y. Zhai. Mining data records
in Web pages. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, 2003.

[15] I. Muslea. Extraction patterns for information extrac-
tion: A survey. In Proceedings of the AAAI 1999
Workshop on Machine Learning for Information Ex-
traction, 1999.

[16] I. Muslea, S. Minton, and C. A. Knoblock. Hierarchi-
cal wrapper induction for semistructured information
sources. Journal of Autonomous Agents and Multi-
Agent Systems, 4:93–114, 2001.

[17] Y. Wang and J. Hu. A machine learning based ap-
proach for table detection on the Web. In Proceedings
of the 11st International World Wide Web Conference,
2002.

[18] K. Zhang, D. Shasha, and J. Wang. Approxmiate tree
matching in the presence of variable length don’t care.
Journal of Algorithms, 16:33–66, 1994.

Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence (WI’04)
0-7695-2100-2/04 $ 20.00 IEEE

