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Abstract 
Electronic mail provides an essential communication 
media for people all over the world.  This paper 
presents a personal email agent, named P@rty, which 
helps its user manage the growing volume of messages.  
P@rty is designed to 1) classify the user's incoming 
messages into folders automatically, and 2) prioritize 
each incoming message based on the user's preferences.  
The classification algorithm is a hybrid of statistical 
keyword-based method and case-based reasoning.  The 
agent prioritizes messages based on a user profile, 
which is constructed from both positive and negative 
feedback from the user over time.  Preliminary results 
from our experiments showed that the proposed 
approach is able to classify mail messages with good 
accuracy after training. 

Introduction 
As the most popular application on the Internet, 
electronic mail (email) has become an increasingly 
critical tool to running a business and/or one's daily life.  
Many people are overloaded with a large number of 
emails on a regular basis, and important messages can 
often get buried under piles of other emails by mistake.  
Existing email software typically offers functions that 
help users manage multiple email accounts, organize 
their emails into folders, specify filters to sort emails 
automatically by subject, sender, etc. and to block 
unwanted emails.  However, having to perform such 
organizational tasks manually is both time-consuming 
and tedious for most users. 
 
 Instead of simply offering tools that are manipulated 
by a human user, an email agent attempts to organize 
email messages automatically based on its knowledge 
about each individual user.  In particular, the agent 
should be able to classify incoming email messages 
into folders, and to prioritize them so that the user can 
focus on more important emails first.  This research 
has developed a personal email agent, named P@rty, 
which provides such functionality. 
 
 Email classification belongs to the general problem 
of automatic document classification [5].  However, the 
choices of folders depend on the subjective view of 

each individual user.  The folders are usually not 
defined a priori, and additional folders can be created 
as a user's messages accumulate.  As a result, email 
classification involves handling a fair amount of 
exceptions, and creating additional folders when 
necessary.  On the other hand, while prioritization of 
emails can be viewed as a classification problem as 
well, it is much more dynamic in nature.  As a person 
carries out her daily job requirements, her interests 
shift with time and context.  For example, messages 
related to a specific event may lose their significance 
when the event is over; messages advertising a sale 
may be more important during holiday seasons when 
one has a stronger motivation for making purchases. 
 
 Standard classification techniques are not adequate 
for processing emails.  In the following sections, we 
will start by describing the representation of an email 
message for classification.  A similar structure is used 
to represent an email folder.  A hybrid classification 
algorithm, SEC (Statistical method with Exception 
handling using Case-based reasoning) is introduced.  
The method allows the agent to deal with exceptions in 
classifying emails.  Finally, a time-dependent scheme 
for prioritizing emails is proposed to accommodate the 
dynamics in user preferences. 

Representation of Emails and Folders 
There are three kinds of text documents.  The first kind 
has no specific structure, such as plain-text documents. 
The second kind has a well-defined structure, such as 
SGML documents.  The structure of a document can 
provide clues for classification.  The last kind of 
documents has a partial structure.  For example, email 
messages and news articles are semi-structured, each 
with a structured header part and an unstructured body 
of text.  The structured part of the document can help 
us identify specific attributes useful for classification. 
 
 The proposed representation is an extension of the 
standard Vector Space Model for text documents [6]. 
Given an email, there are some informative features in 
its header part, such as ¡§Fro m, ¡§To, and ¡§ubject¡ 
fields (RFC 822).  A user often sorts mails into 
different folders according to the sender or subject of 
each message.  Instead of extracting all the keywords 
and put them in one bag, the keywords from individual 
fields are kept and used separately. 
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 As there is no explicit field in the body of an email 
message, which could be a plain text or an encoded 
binary file, a strategy to extract information is required.  
The strategy presented in this paper is straightforward 
and simple.  Our approach is parsing the content of the 
body part and retrieving the tokens that are Email 
addresses, nouns, and special strings that are not nouns, 
verbs, adjectives, or adverbs.  The special string above 
could be a human name or an abbreviation of a project, 
etc.  It is probably informative although it might be just 
a misspelling word.  The same strategy is performed in 
the ¡§ubject¡ field of the header part.  There are 6 
fields extracted from a mail eventually.  They are 
showed below respectively. 
 
Subject: nouns in the subject field of the header part. 
Sender: sender address in the header part. 
Receiver: receiver addresses in the header part. 
Address: E-mail addresses occurred in the body part. 
Specific: special strings in the subject and body part. 
Keyword: nouns in the body part. 
 
is introduced in this paper.  Mails are represented as 
vectors, which are made up of these six fields.  
Elements, which are called terms in the following 
sections, in the vectors are weighted according to their 
term frequencies and centroid values.  The word 
"centroid" refers to the concentration of a term among 
classified classes.  It is defined by equation (1). 
 
 
where Njk

f refers to the number of the term k occurred 
in the field j of the folder f, and Njk refers to the total 
number of the term k occurred in the field j of all 
folders. 
 
A mail is represented as following. 
 
M = ( m1, m2, m3, m4, m5, m6 ),             (2) 
 
where mi represents one of the six fields mentioned 
above, and 
 
mi = ( tfi1¡ £ i1, tfi2¡ £ i2, tfi3¡ £ i3, ¡ , tfin¡ £ in ),    
(3) 
 
where tfij is a normalized term frequency, a value from 
0 to 1, of the j-th term in corpus, and £ ij is the 
centroid value of the same term. 
 
In order to simplify calculation, folders into which 
mails are classified are also represented as the same 
structure as mails.  Calculating similarities between 
mails and folders helps make decisions to classify 
mails.  High centroid value of a term means the term 
partially appearing in some certain folders.  By contrast, 
low centroid value shows that it has a more average 
distribution.  A folder is represented as following. 

 
F = ( f1, f2, f3, f4, f5, f6 ),                
(4) 
 

where fi represents one of six fields. 
 
fi = ( dfi1¡ £ i1, dfi2¡ £ i2, dfi3¡ £ i3, ¡ , dfin¡ £ in ),  
(5) 
 
where dfij is a normalized document frequency, a value 
from 0 to 1, of the j-th term in corpus, and £ ij is the 
centroid value of the same term. 
 

Classification 
In recent years, several people have tried to apply 
machine learning and information retrieval techniques 
to text classification.  The NewT [7] system is a 
personalized news filtering system.  It uses genetic 
algorithms to decide what document should be filtered.  
William Cohen also has worked on email classification.  
He compared two kinds of text classification 
algorithms.  One is a traditional IR method, TFIDF. 
The other method is developed by himself, a rule-based 
method named RIPPER [1].  In his experiments, he 
confirmed that the RIPPER¡¦s performance is better 
than TFIDF [5].  CMU¡¦s machi ne l ear ni ng grouphas 
been very active in the field.  They applied the naive 
Bayesian classifier to the problem of email 
classification.  Their system ifile [4] has a correctness 
of over 70%.  The classification scheme used in this 
research combines both the rule-based and case-based 
methods in order to handle the special characteristics 
of emails. The rule-based approach performs 
classification in the large, while the case-based 
approach takes care of exception handling.  
 
 Our focus in this section is on classifying semi-
structured texts like emails. The classification heuristic 
provided here is the distribution status of terms.  A 
mail having more terms with high centroid values over 
a folder is considered more "similar" to that folder than 
others.  The similarity function between a mail and a 
folder is defined as following. 
 
Similarity ¡ M , F ¡ = � i ¡ mi ¡ fi ¡ ^ � i  ,                    
(6) 
 
where � i is the weights of the field i. 
 
 By sorting similarity scores, a mail could be first 
approximately classified into a folder that is the most 
"similar" to it.  To get a more appropriate answer, 
exceptional cases must be considered. 
 

Exception 
After the approximate classification, users still have 
chances to change the decisions made by the agent.  In 
one case, a mail is manually filed into a folder Fd 
which is totally dissimilar to it in the vector space, but 
it perhaps makes sense to users.  This mail becomes the 
¡§negati ve excepti on¡̈  oFd.  In the second case, a mail 
is filed into a folder, which is similar to it, but not the 
most similar one.  It means that there is at least one 
another folder, named Fa, more similar to this mail.  
As a result, this mail becomes the ¡§positi ve excepti on¡
of Fa.  An intelligent agent should be able to learn from 
these.  When a new mail is similar to some previous 
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exceptions, the solutions of the exceptions will be more 
appropriate than the approximate decisions for it. 
 
In this module, each folder keeps both these two 
exceptional cases in databases to remind the agent.  In 
the second case, there are mappings between 
exceptional mails and their finally filed folders in the 
database as shown in Table 1.   
 

Exceptions Filed Folders 
Ma F9 
Mg F2 
Ml F5 
... ¡  

Mw F2 
 

Table 1.  The database of the folder Fn in the 2nd case is a 
mapping of exceptions and their finally filed folders. 

 
 A similarity function between two mails is required 
to calculate the similarity between a new mail and an 
exception, and is defined below. 
 
Similarity ¡ M , M¡¡ = � i ¡ mi ¡ m'i ¡ ^ � i  ,               
(7) 
 
where � i is the weights of the field i. 
 

Algorithm 
The heuristic of the classifying algorithm is first 
getting an approximate answer, searching for the 
potential similar exceptions, and applying the most 
suitable solution of one similar exception, if it exists.  
When searching for the suitable exceptions, the 
algorithm of case-based reasoning is used[3].  The 
following is the simplified classifying algorithm. 
 

1. For each new mail Mnew, find a set SimSet = {Fk 
|Similarity(Mnew, Fk) �  �  },where �  is the similarity 
threshold. 

 
2. If SimSet = � , go to setp 6. 
 
3. Choose the folder Fapprox whose similarity value is 

the highest as the approximate solution. 
 
4. Find a set OuterSet = {Mouter | Similarity(Mnew, 

Mouter) �  �  }, where Mouter is the exception mail in the 
second case of the folder Fapprox. 

 
5. If OuterSet = � , return Fapprox,  
 else return Fconfidence selected from Confidence 
Rating[3], which is described later. 
 
6. Search each folder for exceptions in the first case, 

and collect a set InnerSet = {Minner | Similarity(Mnew, 
Minner) �  �  }, where Minner is the exception mail in the 
first case of all folders. 

 
7. If InnerSet = � , return NULL, which means no 

recommended folders, 
  else return Fconfidence selected from Confidence Rating. 
 

Simplified classification algorithm 
 

Confidence Rating 
As described in above algorithm, OuterSet and 
InnerSet are made up of pairs of the exception and its 
filed folder.  In the folder part, folders could possibly 
be the same with, or differ from each other in the 
extreme.  Confidence Rating is a confident level to a 
specific folder. 
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Prioritization 
Prioritizing mails by their importance to different users 
is another functionality of P@rty.  The importance of a 
mail to a single user could be mapped to a real number.  
The value exceeding a positive threshold indicates the 
email is important to the user.  When the value is less 
than a negative threshold, it implies that the email 
might be refused by the user.  Otherwise, the mails 
with values between the positive threshold and negative 
threshold are considered as unimportant mails. 
 
 Prioritization starts from creating users' profiles first.  
Every user has an empty profile in the beginning.  
After P@rty receives the feedback about likes or 
dislikes of read mails from the user, it keeps track of 
"terms" appeared in those read ones.  The word "term" 
has the same definition with one described in the 
classification module.  A personalized profile consists 
of two sets of terms.  These sets recorded terms 
appeared in favorite mails and in refused mails, and 
are called the favorite set and refused set, respectively.  
There is still some information about each single term 
provided in a profile, such as appearance periods, and 
the latest date at which it appeared. 
 
 Weighting each term in that mail is feasible.  The 
situation that terms partially appears in the favorite set 
rather than the refused set imply that new mails with 
these terms are probably important or interesting to the 
user.  On the contrary, mails with terms mostly 
occurring in the refused set are probably disliked ones.  
Term-relevant weighting[1] is introduced as equation 
(9). 
 
 
 
� jk = log  ,                  
(9) 
 
 
 
where j refers to field j, R is the total number of 
relevant mails, rk is the number of occurrences of term 
k in the relevant mails,  I refers to the total number of 
irrelevant mails, and sk is the number of occurrences of 
term k in the irrelevant mails. 
 
 People may change their preferences or priorities 
about mails.  If weighting terms only by term-relevance 
mentioned above, it will never reflect the changes of a 
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user's preference because terms getting high weights 
before still get high values, even the user doesn't like 
them any more.  By declining weights of terms until 
the user gives a positive or negative feedback[2], P@rty 
is able to adapt users' preferences.  While the weights 
of some other terms decrease to zero gradually without 
getting any feedback, the terms getting feedback will 
have the highest weight(value 1 in this module) 
immediately.  In order to get the declining period of 
each term, the same period is initially set to all terms.  
After the user's feedback, the periods of terms in a mail 
are updated separately by their own time elapsed 
between two occurrences.  The declining function is 
defined below: 
 

 
                                             

(10) 
 
 
where hjk is the declining peroid, and timejk is the time 
elapsed between the last two occurrences. 
 
Via combining the equations (9) and (10), following is 
the weighting function of term k in field j. 
 
wjk = tfjk¡ � jk¡ djk ,                  
(11) 
 
The summation of the weights of the terms occurring 
in the favorite set in a mail is an index showing how 
this mail matches the favorite `preference. 
 
Matchfavorite(M) = �  j (�  term k �   favorite set wjk)¡ � j,      (12) 
 
where � j is the weights of the field j. 
 
The summation of the weights of the terms occurring 
in the refused set in a mail is an index showing how 
this mail matches the refused preference. 
 
Matchrefused(M) = �  j (�  term k �   refused set wjk)¡ � j,           
(13) 
 
where � j is the weights of the field j. 
 
An index, defined as the equation (14), combines these 
two matching indices which maches the opposite 
preferences, and is used to prioritize the mail it 
indicates. 
 
PrefIndex(M)  =  [Matchf(M)-Matchr(M)] + Matchf(M) 
* { Matchr(M) / [ Matchf(M) + Matchr(M) ] },           
(14) 
 
where Matchf(M) refers to Matchfavorite(M), and 
Matchr(M) refers to Matchrefused(M). 
 

Conclusion 
This document introduces an adaptive email agent that 
prioritizes and classifies mails by combining exception 
handling.  A text classification algorithm SEC and a 
novel prioritization approach using a time-decayed 
method are described.  To improve the prioritization 
performance, handling more than three priority classes 

and tuning the periods of decay call for further 
investigation. 
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