
 1

P@rty: A Personal Email Agent

 Yu-hsiung Deng Thong-han Tsai Jane Yung-jen Hsu
Dept. of Computer Science Information Engineering

National of Taiwan University
1 Sec4 Roosevelt Rd., Taipei 106, Taiwan
URL: http://mobile.csie.ntu.edu.tw/~deng

{deng@robot.csie.ntu.edu.tw}

Abstract
Electronic mail provides an essential communication
media for people all over the world. This paper
presents a personal email agent, named P@rty, which
helps its user manage the growing volume of messages.
P@rty is designed to 1) classify the user's incoming
messages into folders automatically, and 2) prioritize
each incoming message based on the user's preferences.
The classification algorithm is a hybrid of statistical
keyword-based method and case-based reasoning. The
agent prioritizes messages based on a user profile,
which is constructed from both positive and negative
feedback from the user over time. Preliminary results
from our experiments showed that the proposed
approach is able to classify mail messages with good
accuracy after training.

Introduction
As the most popular application on the Internet,
electronic mail (email) has become an increasingly
critical tool to running a business and/or one's daily life.
Many people are overloaded with a large number of
emails on a regular basis, and important messages can
often get buried under piles of other emails by mistake.
Existing email software typically offers functions that
help users manage multiple email accounts, organize
their emails into folders, specify filters to sort emails
automatically by subject, sender, etc. and to block
unwanted emails. However, having to perform such
organizational tasks manually is both time-consuming
and tedious for most users.

 Instead of simply offering tools that are manipulated
by a human user, an email agent attempts to organize
email messages automatically based on its knowledge
about each individual user. In particular, the agent
should be able to classify incoming email messages
into folders, and to prioritize them so that the user can
focus on more important emails first. This research
has developed a personal email agent, named P@rty,
which provides such functionality.

 Email classification belongs to the general problem
of automatic document classification [5]. However, the
choices of folders depend on the subjective view of

each individual user. The folders are usually not
defined a priori, and additional folders can be created
as a user's messages accumulate. As a result, email
classification involves handling a fair amount of
exceptions, and creating additional folders when
necessary. On the other hand, while prioritization of
emails can be viewed as a classification problem as
well, it is much more dynamic in nature. As a person
carries out her daily job requirements, her interests
shift with time and context. For example, messages
related to a specific event may lose their significance
when the event is over; messages advertising a sale
may be more important during holiday seasons when
one has a stronger motivation for making purchases.

 Standard classification techniques are not adequate
for processing emails. In the following sections, we
will start by describing the representation of an email
message for classification. A similar structure is used
to represent an email folder. A hybrid classification
algorithm, SEC (Statistical method with Exception
handling using Case-based reasoning) is introduced.
The method allows the agent to deal with exceptions in
classifying emails. Finally, a time-dependent scheme
for prioritizing emails is proposed to accommodate the
dynamics in user preferences.

Representation of Emails and Folders
There are three kinds of text documents. The first kind
has no specific structure, such as plain-text documents.
The second kind has a well-defined structure, such as
SGML documents. The structure of a document can
provide clues for classification. The last kind of
documents has a partial structure. For example, email
messages and news articles are semi-structured, each
with a structured header part and an unstructured body
of text. The structured part of the document can help
us identify specific attributes useful for classification.

 The proposed representation is an extension of the
standard Vector Space Model for text documents [6].
Given an email, there are some informative features in
its header part, such as ¡§Fro m, ¡§To, and ¡§ubject¡
fields (RFC 822). A user often sorts mails into
different folders according to the sender or subject of
each message. Instead of extracting all the keywords
and put them in one bag, the keywords from individual
fields are kept and used separately.

 2

 As there is no explicit field in the body of an email
message, which could be a plain text or an encoded
binary file, a strategy to extract information is required.
The strategy presented in this paper is straightforward
and simple. Our approach is parsing the content of the
body part and retrieving the tokens that are Email
addresses, nouns, and special strings that are not nouns,
verbs, adjectives, or adverbs. The special string above
could be a human name or an abbreviation of a project,
etc. It is probably informative although it might be just
a misspelling word. The same strategy is performed in
the ¡§ubject¡ field of the header part. There are 6
fields extracted from a mail eventually. They are
showed below respectively.

Subject: nouns in the subject field of the header part.
Sender: sender address in the header part.
Receiver: receiver addresses in the header part.
Address: E-mail addresses occurred in the body part.
Specific: special strings in the subject and body part.
Keyword: nouns in the body part.

is introduced in this paper. Mails are represented as
vectors, which are made up of these six fields.
Elements, which are called terms in the following
sections, in the vectors are weighted according to their
term frequencies and centroid values. The word
"centroid" refers to the concentration of a term among
classified classes. It is defined by equation (1).

where Njk

f refers to the number of the term k occurred
in the field j of the folder f, and Njk refers to the total
number of the term k occurred in the field j of all
folders.

A mail is represented as following.

M = (m1, m2, m3, m4, m5, m6), (2)

where mi represents one of the six fields mentioned
above, and

mi = (tfi1¡ £ i1, tfi2¡ £ i2, tfi3¡ £ i3, ¡ , tfin¡ £ in),
(3)

where tfij is a normalized term frequency, a value from
0 to 1, of the j-th term in corpus, and £ ij is the
centroid value of the same term.

In order to simplify calculation, folders into which
mails are classified are also represented as the same
structure as mails. Calculating similarities between
mails and folders helps make decisions to classify
mails. High centroid value of a term means the term
partially appearing in some certain folders. By contrast,
low centroid value shows that it has a more average
distribution. A folder is represented as following.

F = (f1, f2, f3, f4, f5, f6),
(4)

where fi represents one of six fields.

fi = (dfi1¡ £ i1, dfi2¡ £ i2, dfi3¡ £ i3, ¡ , dfin¡ £ in),
(5)

where dfij is a normalized document frequency, a value
from 0 to 1, of the j-th term in corpus, and £ ij is the
centroid value of the same term.

Classification
In recent years, several people have tried to apply
machine learning and information retrieval techniques
to text classification. The NewT [7] system is a
personalized news filtering system. It uses genetic
algorithms to decide what document should be filtered.
William Cohen also has worked on email classification.
He compared two kinds of text classification
algorithms. One is a traditional IR method, TFIDF.
The other method is developed by himself, a rule-based
method named RIPPER [1]. In his experiments, he
confirmed that the RIPPER¡¦s performance is better
than TFIDF [5]. CMU¡¦s machi ne l ear ni ng grouphas
been very active in the field. They applied the naive
Bayesian classifier to the problem of email
classification. Their system ifile [4] has a correctness
of over 70%. The classification scheme used in this
research combines both the rule-based and case-based
methods in order to handle the special characteristics
of emails. The rule-based approach performs
classification in the large, while the case-based
approach takes care of exception handling.

 Our focus in this section is on classifying semi-
structured texts like emails. The classification heuristic
provided here is the distribution status of terms. A
mail having more terms with high centroid values over
a folder is considered more "similar" to that folder than
others. The similarity function between a mail and a
folder is defined as following.

Similarity ¡ M , F ¡ = � i ¡ mi ¡ fi ¡ ^ � i ,
(6)

where � i is the weights of the field i.

 By sorting similarity scores, a mail could be first
approximately classified into a folder that is the most
"similar" to it. To get a more appropriate answer,
exceptional cases must be considered.

Exception
After the approximate classification, users still have
chances to change the decisions made by the agent. In
one case, a mail is manually filed into a folder Fd
which is totally dissimilar to it in the vector space, but
it perhaps makes sense to users. This mail becomes the
¡§negati ve excepti on¡̈ oFd. In the second case, a mail
is filed into a folder, which is similar to it, but not the
most similar one. It means that there is at least one
another folder, named Fa, more similar to this mail.
As a result, this mail becomes the ¡§positi ve excepti on¡
of Fa. An intelligent agent should be able to learn from
these. When a new mail is similar to some previous

(1) ,

2

� �
�

�

�
�
�

�

�
�

f jk

f

jk
jk N

N�

 3

k

k

k

k

sI
s

rR
r

�

�

exceptions, the solutions of the exceptions will be more
appropriate than the approximate decisions for it.

In this module, each folder keeps both these two
exceptional cases in databases to remind the agent. In
the second case, there are mappings between
exceptional mails and their finally filed folders in the
database as shown in Table 1.

Exceptions Filed Folders
Ma F9
Mg F2
Ml F5
... ¡

Mw F2

Table 1. The database of the folder Fn in the 2nd case is a
mapping of exceptions and their finally filed folders.

 A similarity function between two mails is required
to calculate the similarity between a new mail and an
exception, and is defined below.

Similarity ¡ M , M¡¡ = � i ¡ mi ¡ m'i ¡ ^ � i ,
(7)

where � i is the weights of the field i.

Algorithm
The heuristic of the classifying algorithm is first
getting an approximate answer, searching for the
potential similar exceptions, and applying the most
suitable solution of one similar exception, if it exists.
When searching for the suitable exceptions, the
algorithm of case-based reasoning is used[3]. The
following is the simplified classifying algorithm.

1. For each new mail Mnew, find a set SimSet = {Fk
|Similarity(Mnew, Fk) � � },where � is the similarity
threshold.

2. If SimSet = � , go to setp 6.

3. Choose the folder Fapprox whose similarity value is

the highest as the approximate solution.

4. Find a set OuterSet = {Mouter | Similarity(Mnew,

Mouter) � � }, where Mouter is the exception mail in the
second case of the folder Fapprox.

5. If OuterSet = � , return Fapprox,
 else return Fconfidence selected from Confidence
Rating[3], which is described later.

6. Search each folder for exceptions in the first case,

and collect a set InnerSet = {Minner | Similarity(Mnew,
Minner) � � }, where Minner is the exception mail in the
first case of all folders.

7. If InnerSet = � , return NULL, which means no

recommended folders,
 else return Fconfidence selected from Confidence Rating.

Simplified classification algorithm

Confidence Rating
As described in above algorithm, OuterSet and
InnerSet are made up of pairs of the exception and its
filed folder. In the folder part, folders could possibly
be the same with, or differ from each other in the
extreme. Confidence Rating is a confident level to a
specific folder.

(8) 100%
) ,(Similarity

) ,(Similarity
),(

exc

exc

�� �
�

�

exc

exc

Mall

FM

MM

MM
FMConfidence

Prioritization
Prioritizing mails by their importance to different users
is another functionality of P@rty. The importance of a
mail to a single user could be mapped to a real number.
The value exceeding a positive threshold indicates the
email is important to the user. When the value is less
than a negative threshold, it implies that the email
might be refused by the user. Otherwise, the mails
with values between the positive threshold and negative
threshold are considered as unimportant mails.

 Prioritization starts from creating users' profiles first.
Every user has an empty profile in the beginning.
After P@rty receives the feedback about likes or
dislikes of read mails from the user, it keeps track of
"terms" appeared in those read ones. The word "term"
has the same definition with one described in the
classification module. A personalized profile consists
of two sets of terms. These sets recorded terms
appeared in favorite mails and in refused mails, and
are called the favorite set and refused set, respectively.
There is still some information about each single term
provided in a profile, such as appearance periods, and
the latest date at which it appeared.

 Weighting each term in that mail is feasible. The
situation that terms partially appears in the favorite set
rather than the refused set imply that new mails with
these terms are probably important or interesting to the
user. On the contrary, mails with terms mostly
occurring in the refused set are probably disliked ones.
Term-relevant weighting[1] is introduced as equation
(9).

� jk = log ,
(9)

where j refers to field j, R is the total number of
relevant mails, rk is the number of occurrences of term
k in the relevant mails, I refers to the total number of
irrelevant mails, and sk is the number of occurrences of
term k in the irrelevant mails.

 People may change their preferences or priorities
about mails. If weighting terms only by term-relevance
mentioned above, it will never reflect the changes of a

 4

1

1

�
�

jk

jk
jk

h
time

d

user's preference because terms getting high weights
before still get high values, even the user doesn't like
them any more. By declining weights of terms until
the user gives a positive or negative feedback[2], P@rty
is able to adapt users' preferences. While the weights
of some other terms decrease to zero gradually without
getting any feedback, the terms getting feedback will
have the highest weight(value 1 in this module)
immediately. In order to get the declining period of
each term, the same period is initially set to all terms.
After the user's feedback, the periods of terms in a mail
are updated separately by their own time elapsed
between two occurrences. The declining function is
defined below:

(10)

where hjk is the declining peroid, and timejk is the time
elapsed between the last two occurrences.

Via combining the equations (9) and (10), following is
the weighting function of term k in field j.

wjk = tfjk¡ � jk¡ djk ,
(11)

The summation of the weights of the terms occurring
in the favorite set in a mail is an index showing how
this mail matches the favorite `preference.

Matchfavorite(M) = � j (� term k � favorite set wjk)¡ � j, (12)

where � j is the weights of the field j.

The summation of the weights of the terms occurring
in the refused set in a mail is an index showing how
this mail matches the refused preference.

Matchrefused(M) = � j (� term k � refused set wjk)¡ � j,
(13)

where � j is the weights of the field j.

An index, defined as the equation (14), combines these
two matching indices which maches the opposite
preferences, and is used to prioritize the mail it
indicates.

PrefIndex(M) = [Matchf(M)-Matchr(M)] + Matchf(M)
* { Matchr(M) / [Matchf(M) + Matchr(M)] },
(14)

where Matchf(M) refers to Matchfavorite(M), and
Matchr(M) refers to Matchrefused(M).

Conclusion
This document introduces an adaptive email agent that
prioritizes and classifies mails by combining exception
handling. A text classification algorithm SEC and a
novel prioritization approach using a time-decayed
method are described. To improve the prioritization
performance, handling more than three priority classes

and tuning the periods of decay call for further
investigation.

References

[1] W. W. Cohen, Learning Trees and Rules with
Set-valued Features. In Proceedings of The
Thirteenth National Conference on Artificial
Intelligence, Portland, Oregon, pp. 709-716, 1996.

[2] Y. Deng, A Personalized E-mail Agent. Master¡¦s
thesis, Department of Computer Science and
Information Engineering, National Taiwan
University, June 1998.

[3] T. Payne and P. Edwards, Interface Agents that
Learn: An Investigation of Learning Issues in a
Mail Agent Interface. Applied Artificial
Intelligence, 11, pp. 1-32, 1997.

[4] J. Rennie, ifile: An Application of Machine
Learning to Mail Filtering.
http://www.cs.cmu.edu/~jr6b/papers/ifile98.ps.gz

[5] G. Salton, Automatic Text Processing: The
Transformation, Analysis, and Retrieval of
Information by Computer, Addison-Wesley, 1989.

[6] G. Salton, A. Wong, C.S. Yang, Vector Space
Model for Automatic Indexing. In K.S. Jones and
P. Willett, editors, Readings in Information
Retrieval, pp. 273-280, San Francisco, Morgan
Kaufmann, 1997.

[7] B. Sheth, A Learning Approach to Personalized
Information Filtering. Master¡¦s t hesis,
Department of Electrical Engineering and
Computer Science, MIT, 1994.

