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Abstract 

A mesh model which is composed of many element units what are called snkaes is presented. 
The  boundary sides surrounding a hole on the mesh form an element snake. These element snakes 
configure the whole mesh. We devise a Hopfield type energy function for these snakes. This energy 
function will guide the mesh for various applications, such as image coding, surface modeling, image 
recognition. 

I Introduction 
Mesh generation has been studied for object modeling, nonuniformly sampling, reconstruction visual 
data,  and so on. A mesh is designed for representing an image with a small number of nodes that 
will convey most of the information about the image. Weiss [8] presented a method of reconstructing a 
shape from incomplete and noisy data.  A major advantage of the method is its ability to handle shapes 
containing sharp corners or edges using the same mechanism. Terzopoulos et al. [4, 51 proposed the 
adaptive mesh model which is a dynamic network of nodal masses interconnected by adjustable springs. 
The mesh can automatically adapt to  the variations in the input data. Wang and Lee [7] proposed an 
active mesh representaion for image sequences tracking and presented an energy minimization approach 
for mesh generation. 

In this paper, we present an energy minimization approach for mesh generation. Our approach i s  quiet 
different from that described in [7]. The mesh we generate is composed of many basic units- "snakes" [ 3 ] .  
We define an energy function for the mesh and then minimize it following the Hopfield neural network 
[a]. The nodal points in the mesh are more densely distributed in regions containing interesting features 
such as edges and corners. Furthermore, we can generate meshes with variable shapes and deal with 
image sequences tracking. 

2 The snakes 
Kass et al,[3] proposed an energy-minimizing active contour model (snake) which could drivr a set, of 
points to lie on features of interest ,e.g. edges, in image. The model has the advantage that the final 
form of a contour can be influenced by feedback from a high level process. If we represent the position 
of a snake parametrically by v(s) = ( ~ ( s ) ,  y(s)), the energy function can be written as 
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where Eint represents the internal energy of the spline due to bending or discontinuiti.es, Eimage represents 
the image forces, and E,,, is the external constrain forces. The internal spline energy can be written 

Eint = ( ~ ( ~ 1 1  v s ( s )  1 2 +  (v(s)l v s s ( s )  12)>/2 ( 2 )  

In the above equation, the first-order term causes the snake to behave like a string (i.e. resist stretching) 
and the second-order term causes the snake to behave like a rod (i.e. resist bending). Adjusting the 
weights p ( s )  and v ( s )  controls the relative importance of the string and rod terms. The image force in 
eqn( 1) is sourced from various events such as lines or edges. 

Many methods have been proposed to minimize this energy function [l, 3, 6, 91. Basing on the idea 
presented in [6, 91, we solve thLe problem with Hopfield neural network. Our approach is different from 
that described in [6] and is more suitable for generating mesh. We will show how the snake model can 
be extended to form the mesh in next section. 

For simplicity, we consider the internal term and the image term in eqn(1). When we discretize the 
energy function, we can write 

n 

(3) 
2 

E s n a k e  = pi I vi - vi-1 1’ +vi I vi-1 - 2vi + vi+l 1 + E i m a g e ( V i )  
i=l  

where Eimage(vi)  = -7; I v I ( v ; )  l 2  denoting the negated intensity gradient at point vi. In most cases, 
the weighting factors pi and vi may be assumed to be two constants. However, it is not the case for 
our model and the choice of them will be discussed later. Note that every term in eqn(3) should be 
normalized, and the first term and the second term can be chosen in other forms. The details can be 
found in 191. 

To find the minimization of eqn(3), a two-dimensional Hopfield neural network is used. The network 
consists of n * m mutually interconnected neurons where n is the number of points of the snake and m 
is the number of neighbors around each point of the snake. The energy function is computed at  vi and 
each of its neighbors (Fig. 1). The location having the smallest value of energy function is chosen as the 
new position of vi. Let vi,P denote the binary state of the ( i ,p) th  neuron (1 for firing and 0 for resting). 
Let and yi,p be the IC and the y coordinates, respectively, of the neighboring point ( i , p ) ,  and g i , p  be 
the negated intensity gradient at  the neighboring point ( i , p )  defined as g i , p  = -yi I ~ I ( x i , ~ ,  ~ i , ~ )  1’. 

Figure 1: (a) Each node in th’e snake has eight neighbors. Thus, m = 9 in our case (including itself). (b) 
The energy function is computed at  vi and each of its eight neighbors. The location vi which has the 
smallest value of the energy function is selected as the new position of vi. 
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Then the Hopfield type energy for eqn(3) is 

n m m m m 

m m m 

p = l  p = l  p=l  
m m m 

p = l  p=1 p = l  
m m m 

p=l  p = l  p = l  

where the fourth term is included to  imply that only one point can be selected from the neighboring 
points (i, l), (i, a) ,  ..., (i, m) for each i. The last term is called self-connection eliminating term, which 
will change the diagonal value of the interconnection matrix of the Hopfield network (see next section). 
Consequently, it will influence the convergence property of the network. Note that  pi  and vi in eqn(3) 
are substituted by a i , i - 1  and , & - ~ , ~ + l  respectively. ai,j and P i , j  are defined as: 

a i , j  = 1 - ( g i , 5  + g j , ~ ) / l O  { Pi , j  = 15 + ( g i , 5  + gj,5)/40 

The choice of ai,j and pi,j are not limited. Different types will produce different results. Here we 
employ the simple forms to  illustrate the concept that  those neighboring nodes locate on the points having 
larger gradient are closer than those which locate on the points having smaller gradient. The value of 
gi ,p  are normalized to  range from 0 to  -255. The constants w1, w2, w3, w4 and wg are used to  weight the 
five terms. 

3 From snake to mesh 
A mesh is formed with a finite number of nonoverlapping polygonal elements. To present clearly, we only 
consider the case which all the elements in mesh have the same number of nodes. Fig. 2(a) illustrates a 
quadrilateral mesh. Each element in the mesh is taken to be a snake. Thus, if we have row * col nodes in 
the mesh, we’ll have (row - 1) * (col - 1) snakes. Each element (snake) will shrink to  one point if there is 
no constrains imposed upon it.  However, since every internal node in the mesh is shared by four snakes, 
the forces impose upon the node will keep balance if there is no image forces (Fig. 2(b)). The corner 
nodes are fixed and the boundary nodes are constrained to  slide along the boundary the image frame. 

Then, we can define the energy function of the mesh as 

.Sn 

s=l  

where Sn is the total number of snakes in the mesh and Esnake(sl is defined in eqn(4). The Lyapunov 
function of a two-dimensional Hopfield network is written as: 

i=l p = l  

where N is the number of nodes of the mesh. Rearranging eqn(5) and comparing i t  with eqn(6) we have: 

where 
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parallel neighborhood 

' parallel ' neighborhood 

w-. diagonal neighborhood 

Figure 2: (a) The mesh is composed of many snakes. Each snake has four nodes; in it. (b) The snake 
has the tendency to shrink if there are no constraints imposed upon it. The interinal nodes in the mesh 
is influenced by eight forces. 

and 

respectively, where 6i , j  is the Kronecker delta function and B(i)  = 1 if node i if the boundary node 
(including corner nodes), else B(i) = 0. Q l l ( i , j )  and ~ $ z ( i , j )  are the neighborhood functions defined as: 

N 
l i ,p  = C k = l [ ( - W 3 Y i g i , p  $- 2W4Ei - W5Ti)42( i ,  k ) ( 2  - B(i )B(k) )]  

1 
0 ,otherwis,e 

,if i and .i are parallel neighborhood (fig. 3(b)). 

1 
0 ,otherwise 

,if i and .j are diagonal neighborhood (fig. 3(b)). 

A neuron ( i ,  p )  in the network receives weighted Wi,p;j,q input from each neuron ( j ,  q )  and a bias input 
I i , p .  The total input, net;,,, of the ( i ,p) th  neuron is computed as 

j = 1  q=l 

Then the ( i ,p) th  neuron if; updated as follows: 

Vi# = 

The rule described above for updating the neuron is applied in an asynchronous fashion. This means 
that for a given time, only a single neuron (which is selected randomly) is allowed to update its output. 
The iterative algorithm is presented below: 

1 ,if net;,, L: 0 i 0 ,if < 0 

Procedure 
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do /*  loop to update the mesh */ 
initialize the matrix W ans I used in eqn(8); 
Moved = 0;  
do /* loop to  update the network until it converges in this epoch*/ 

ChangeCount=O; 
UpdateCount=O; 
do /* loop to  move points to  new position among the neighboring points */ 

randomly select a node from the mesh for updating; 
update the position of this selected node; 
(calculate those neurons corresponding to  this node and its neighbors) 
if one of states of these neurons changes ,ChangeCount+ = 1 and Moved = 1; 
UpdateCountS = 1; 

until Updatecount 1 N ;  /* N is the number of the nodes of the mesh */ 
until Changecount = 0;  

until moved = 0 ;  

The experimental results is showed in Fig. 3 

Figure 3 :  (a) The initial mesh. (b) The final mesh. (c) The converged mesh only 

4 Variable region mesh 
The corner nodes and the boundary nodes of the mesh model we define above are constrained. These 
constraints can be removed to  produce meshes with variable regions. Initially, yi is set to  be zero for 
internal nodes. By this way, the mesh will shrink until the boundary nodes of the mesh are bounded on 
those points which have large gradient (Ideally, they are the contour of the object.). Then, we let t,he 
mesh behave the same as the mesh model we describe in previous section. The advantage of forming 
variable region mesh is that  it can reduce the data  to record the object in the image. In many cases 
we are interested in the object itself but not the background. Furthermore, the object encoded by the 
variable mesh is more accurate than that by the normal mesh since the snake can find the contour of the 
object accurately. The experimental results is showed in Fig. 4. This mesh can track the motion of the 
head, such as pitch, swing, and yaw. 

5 Conclusion 
In this paper we have presented a new method of mesh generation. The method is based on an energy- 
minimizing approach which we employ Hopfield neuron network to solve i t .  The experimental results 
show that the nodes in the mesh are more densely distributed in regions containing interesting features 
such as edges. Also, our model can generate variable region mesh which is showed in Fig. 4. Furthermore, 
image sequences tracking and image recognition can be achieved. Although we only show the 2-D case, 
this model can easily extended to  two types of 3-D mesh. The first type is used in object surface modeling. 
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Figure 4: (a) The initial mesh. (b)(c)(d) The intermediate states. (e) The final result. (f) The conver- 
genced mesh only. 

In the second type, the mesh is composed of cubes which is composed of six snakes. Thus,  each internal 
nodes is shared by twelve sna,kes. 
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