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Abstract

In this paper, based on some theorems of Number theory,
a new convolution-based algorithm for computing the DCT
(with power of two length) is proposed. In terms of computa-
tional counts, the proposed algorithm computes a length-N
DCT (with N a power of two) using only N multiplications.

1 Introduction

Since the discovery of the discrete cosine transform (DCT)
[1] , many new algorithms for computing the DCT have been
developed. These algorithms are either indirect computa-
tions using fast Fourier transforms [1]-[2] or direct computa-
tions using matrix factorization (or recurisive computation )
[3] . On the other hand,the convolution-based approach
deals commonly with the prime length (Prime factors) DFTs
[4] . These algorithms can be optimized using the Wino-
grad’s convolution algorithm [5] , or be implemented using
the number theoretical transform (NTT) which needs only
order N multiplications.

In this paper, based on some theorems of Number the-
ory, a new convolution-based algorithm for computing the
DCT (with power of two length) is proposed. In terms of
computational counts, the proposed algorithm computes a
length-N DCT (with N a power of two) using only N multi-
plications.

2 Some Useful Theorems in Number
Theory and the Properties of DCT
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Theorem 1 Ifn > 2, then

5
~5%

4k+1=
4k +3 =

(mod 2™)
(mod 2™)

where k € Z (the set of integers) and (1,82 € Z% (the set
of positive integers).

Theorem 2 Ifn > 2, then

577 =1+2"1 (mod 2")

The proofs of Theorem 1 and 2 can be found in [6] .

Theorem 1 implies that there is a one-to-one mapping
between the following two subsets in Z;» (the integers mod-
ulo 2™) that is

{#t+1]t=0,1,---,22"2 -1} — {5* |t = 0,1,---,2""2 - 1}.
Corollary 1 For the matriz of indez functions
M= [f{(4i+1)(4j+1) (mod 4N))],"]‘=0|1,M,N_1

there exist a circular convolution matriz C and two permu-
tation matriz Py and P, , such that

M=PCP

[proof]: By theorem1
4i+1=5 (mod4N)

Therefore , we can reorder the rows and columns in M
ie.,

Q
[

[£((3¥4 -5%) (mod 4N)]
[£(627 (mod 4N))|

It

t1,t2=0,1,--,N~1
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Thus, C is a circular convolution matrix , and the in-
put and output reordering processes can be achieved by two
permutation matrices ( say P, and P, ), respectively.

According to Wang [3] , there are four types of DCT
definitions and the computation of the four types of DCT
can be reduced to the computation of the type-IV DCT.
Therefore , the fast algorithms for any type of the DCT
depends only on the computation of type-IV DCT .

3 Proposed Algorithm for Computing

Type-IV DCT
From (3] , the type-IV DCT can be rewritten as
N-1
X(k) = 3 o(n)-cos I VLD s (1)
n=0

We will prove that the work for computing N-point type-
IV DCT can be achieved by computing an N-point skew
circular convolution and permutations using the following
processes.
STEP 1. Extend [C,{,V (the notations defined in [3] are

adopted in the rest of this paper for simplicity) as follows:

2N-1
2r(2n+ 1)(2k + 1
Yk = 3 vim)-co(EEREDEER D vy
n=0
where
(n) = z(n) 0<n<N-1
LA T N<n<2N-1
and then

X(ky=Y(k) fork=0,1,---,N-1

STEP 2. Reorder the input and output sequence.
Similar to the previous work [2] the above 2N-point
transform can be rewritten as :

2N-1
Y= 3 #n)eos Rt DERF D)) g, 2N
= 8N
(2)
where
§(n) = y(2n)
n=0,1,--,N-1
§2N -n-1) = y(2n+1)
and
Y (k) = Y(2)
i k=0,1,---,N -1
Y@N -k-1) = Y(2k+1)

STEP 3. The matrix representation of (2) is

2r(4n + 1)(4k + 1)

G = [cos( 8N ]n,k:Q,l,--r,lN—l
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From corollary 1 , it follows that the following equation
hold :

Gaon = PanCanQan
where Py and Qg are two permutation matrices and Can
is a 2N-point circular convolution matrix and can be repre-
sented as :
27 - 5la=1)
—_— )

Con = {cos( N

]i,1=0‘1.-~.2;‘4'—1

STEP 4. Since

2 - 5N 27 - 5" )
8N 8NV

(by theorem 2 , details are in the Appendix)

cos( ) = — cos(

coo = | Hv —Hn
N = -Hy Hy

[_Z:]‘[HN]'[IN —N] (4)

where Hy is the so-called N-point skew circular convolution
matrix.

By (4) , it follows that the computation of Con can be
achieved by calculating an N-point skew circular convolution
and additional N additions/substractions.

Remark 1: In step 1,we extend the input sequence with N
zeros , therefore , the N additions/substractions in step 4
can be replaced by the "sign change” operations.

Remark 2: In step 1, we only need half of the output se-
quence. Therefore, the post-operations of (4) can be achieved
by "sign change” operations.

According to the above discussion , we can conclude that
the computation of an N-point type-IV DCT can be achieved
by an N-point skew circular convolution with some permuta-
tions and sign changes of input and output sequences. From
{7] , an N-point skew circular convolution (or the polynomial
procudt modulo z" + 1 ) can be computed by means of the
generalized number theoretical transform (GNTT) with only
N multiplications.

4 Algorithms for Discrete Sinusoidal

Transforms

According to the previous works {3,8,9) , the relations be-
tween some well-known discrete sinusoidal transforms ( DFT
, DHT (discrete Hartley transform) , DCT and DST (dis-
crete Sine transform) ) are very clear , and listing as follows

DFT(¥)

DFT(N) = (5)
two DCTI(X)
DHT(§)

DHT(N) = (6)

two DCT”(%)



perii(y)

DCT(N) = (7)
DCT (%)
DSTH(E)

DSTH(N) = (8)
pcTV(§)

Based on the discussion of section 3 , we can compute the

DCT™ (N) using N-point skew circular convolution (SCC(N)).

Therefore, the following result can be derived by the recur-
sive formulas (3)-(8).

DFT(N) = two SCC(&),two SCC(¥),--

DHT(N) = two SCC(&),two SCC(¥), -

peT(N)y = scc(F).sceE), -

DSTH(N) = ScC(¥),scC(d), -

with some interblock additions and sign changes.

Remark 3:  Although the DFT is defined in the complex
number system, we can still derive an algorithm using only
real SCCs.

5 Conclusion

In this paper,we have developed an algorithm which trans-
fers the problem of N-point type-IV DCT into the problem
of N-point skew circular convolution.In theory, this algo-
rithm can achieve the lower bound of the number of multi-
plications according to the minimum complexity polynomial
algorithms. In practice , by means of the number theoret-
ical transform,we can compute [C}VV} using only N multi-
plications, or we can use a filter-type structure that is very
suitable for the VLSI implementation.

According to the relations between type-IV DCT and
other famous transforms , we have mentioned that the other
discrete sinusoidal transforms can be computed by means
of the combination of some SCCs of smaller size,and possess
the same advantages in both theoretical and practical as the
type-1IV DCT.

Appendix
[proof of eq. 3]:

COs!

- COS( 21r-5"é!1+4N!)

= cos(5"m + &)

2.5+ N)
(Z2—)

(by theorem 3)

= cos(m+ ZF)

= - cos(%%)
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