
Optimal Placement of Replicas in Data Grid Environments with

Locality Assurance

Yi-Fang Lin Pangfeng Liu
Department of Computer Science

National Taiwan University

Taipei, Taiwan, R.O.C.

pangfeng@csie.ntu.edu.tw

Jan-Jan Wu
Institute of Information Science

Academia Sinica

Taipei, Taiwan, R.O.C.

Abstract

Data replications is a typical strategy for increas-
ing access performance and data availability in Data
Grid systems. Current work on data replication in Grid
systems focuses on infrastructure for replication and
mechanisms for creating/deleting replicas. The impor-
tant problem of choosing suitable locations for placing
replicas in Data Grids has not been well studied.

In this paper, we address the problem of data replica
placement in Data Grids given the traffic pattern and
locality requirements. We propose a new placement al-
gorithm that finds the optimal locations for the replicas
so that the workload among these replicas is balanced.
We also propose a new algorithm to decide the mini-
mum number of replicas required when the maximum
workload capacity of each replica server is known. All
these algorithms ensure that locality requirements from
the users are satisfied.

1 Introduction

Grid computing is an important mechanism for
utilizing distributed computing resources. These re-
sources are distributed in different geographical loca-
tions, but are organized to provide an integrated ser-
vice. A grid system can provide computing resources
so that users at different locations can utilize the CPU
cycles of remote sites. In addition, users can access
important data that are available only in several lo-
cations, without the overheads of replicating them lo-
cally. These services are provided by an integrated grid
service platform so that user can access the resource
transparently and effectively.

One class of grid computing and the focus of
this paper is Data Grids that provide geographically

distributed storage resources to large computational
problems that require evaluating and managing large
amount of data [3, 11, 16]. For example, the scientists
working on bioinformatics may need to access human
gnome databases on different remote locations. These
databases have tremendous amount of data, so the cost
of maintaining a local copy on each site that needs
the data is extremely expensive. In addition, these
databases are mostly read-only, since they are the input
data to the applications for various purposes, such as
benchmarking, identification, and classification. With
the high latency of wide-area network that underlies
most Grid systems, and the need to access/manage
several petabytes of data in Grid environments, data
availability and access optimization becomes key chal-
lenges to be addressed.

An important technique to speed up data access for
Data Grid systems is to replicate the data in multiple
locations, so that a user can access the data from a site
in his vicinity. It has been shown that data replication
not only reduces access costs, but also increase data
availability in many applications [11, 17, 15]. There is
a fair amount of work on data replication in Grid envi-
ronments. However, most of the existing work focused
on infrastructures for replication and mechanisms for
creating/deleting replicas [4, 7, 6, 8, 11, 15, 18, 17, 19].
We believe that, in order to obtain maximum gains
of replication, a strategic placement of the replicas is
necessary.

A number of early works address placement of data
replicas in parallel and distributed systems with reg-
ular network topologies such as hypercubes, torus,
rings, and trees. These networks posses many attrac-
tive mathematical properties that enable the design of
simple and robust placement algorithms [2, 12, 21].
These algorithms, however, cannot be directly ap-
plied to Data Grid systems due to hierarchical net-

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

work structures and special data access patterns in
Data Grid systems that are not common in traditional
parallel systems. An initial work on replica place-
ment for Data Grids was reported in [1]. The author
proposed a heuristic algorithm, named Proportional
Share Replication, for the placement problem. How-
ever, the algorithm does not guarantee to find the op-
timal solution.

In this paper, we study replica placement in Data
Grid systems, taking into account several important
issues described below. First, the replicas should be
placed in proper server locations so that the workload
on each server is balanced. A naive placement strat-
egy may cause “hot spot” servers that are overloaded,
while other servers are under-utilized. Another impor-
tant issue is choosing the optimal number of replicas.
The denser the distribution of replicas is, the shorter
the distance a client site needs to travel to access a data
copy. However, maintaining multiple copies of data in
Grid systems is expensive, and therefore, the number of
replicas should be bounded. Clearly, optimizing access
cost of data requests and reducing the cost of replica-
tion are two conflicting goals. Finding a good balance
between them is a challenging task. Finally, we also
consider the issue of service locality. Each user may
specify the minimum distance he can allow from him
to the nearest data server. This serves as a locality
assurance that users may specify, and the system must
make sure that within the specified range there does
exist a server to answer the request.

We propose efficient algorithms for selecting optimal
locations for placing the replicas so that the workload
among these replica is balanced. Also when given the
data usage and service locality requirement from each
user site and the maximum workload allowed for each
replica server, our algorithm efficiently determines the
minimum number of replicas required, as well as their
locations.

The rest of the paper is organized as follows. Sec-
tion 2 describes our data grid model, and formally de-
fine our replica placement problem. Section 4 presents
our replica placement algorithms, and provides theo-
retical analysis for them. Section 5 concludes and ad-
dresses several open questions and future works.

2 Model

We assume a hierarchical data grid model in this
paper, due to its resemblance to hierarchical grid man-
agement, usually found in current grid systems [9, 6, 11,
18]. For example, in LCG (World-Wide Large Hadron
Collider Computing Grid) [9] project 70 institutes from
27 countries form a grid system. The system is orga-

nized as a hierarchy, with CERN (the European Or-
ganization for Nuclear Research) as the root, or tier-0
site. There are 11 tier-1 sites directly under CERN
that help distribute data obtained from Large Hadron
Collider (LHC) at CERN. Other tier-2 sites in LCG hi-
erarchy receive data from its corresponding tier-1 site.
The entire LCG grid can be represented as a tree struc-
ture. In the forthcoming EGEE/LCG-2 grid there will
be 160 sites from 36 countries in this tree structure. As
a result, this paper focuses on tree topology.

We use a tree T to represent a data grid system. The
root of the tree, denoted by r, is the hub of the data
grid. We assume that the database is located at the
hub, and a database replica can be placed in any tree
nodes other than the hub. All the leaves of the tree are
local sites where user can issue requests to access the
databases stored in this data grid system.

A user of a local site at the leaf accesses a database
as follows. First he tries to locate a database replica
locally. If a replica is not present, he goes to the parent
node to find if a replica is there. Namely a user request
goes up the tree and uses the first replica encountered
along the path towards the hub. We also assume that
each request has a range limit. This serves as a local-
ity assurance so that the request must be served by a
replica, or the hub, within a fixed number of steps to-
wards the root. For example, in Figure 1, the user at
node a tries to access a data within a range limit 2.
The user could not find the data locally, so he tries the
parent node b, where the data is not available either.
Finally the request reaches node c, and is served by the
replica there. The replica is within the range limit of
a so the access is valid. If the range limit of leaf a is
1 instead, we fail to serve the request by this arrange-
ment of replica, since there is no server placed at either
a or b. Formally we define that a request can reach a
server if the number of communication links between
it and the nearest replica along the path to the hub is
no more than its range limit.

replica

T

b

a

c

Figure 1. A data grid tree T .

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

The goal of our replica placement strategy is to place
the replicas so that various objectives are satisfied. For
example, if we can accurately estimate the usage fre-
quency of user from a leaf node towards a particular
data, then we can determine where to place a given
number of replicas so that the maximum amount of
data a replica server has to serve is minimized. Or, if
we fix the total amount of workload a replica server
can handle, then we can decide the minimum number
of replicas and the best locations to place them.

Next, we formally define the goals of our replica
placement strategy. Let T be the data grid system
tree, V be the set of nodes of T . Let v be a leaf in
V , then w(v) is the amount of workload from v, and
l(v) is its range limit. Note that for ease of explanation
we place workload only on the leaves. It is trivial to
generalize the results of this paper to cases where the
internal nodes can also introduce workload.

Let R be a subset of V , and a replica is placed in
each node of R. According to the data grid access
model mentioned earlier, for each leaf v we define its
server to be the first node in R that v encounters when
its request goes up towards the root of T . This server
node is denoted by sR(v). The workload on a tree node
v is defined to be the sum of the data requests for which
v is its server, i.e. wR(v) =

∑
sR(l)=v w(l). However,

if the distance between a leaf v and its server sR(v)
is larger than its range limit l(v), the workload of the
server is set to infinity.

From the definitions above we can define that a
replica set R is range feasible if and only if none of
the tree node has infinite workload, i.e., every request
can reach a server (or the hub) within its range limit.
In addition, let the maximum workload induced by R
be the maximum workload from all nodes of R and the
hub. The reason we include the hub is that all the data
requests unanswered by R will eventually be answered
by the hub. A replica set R is workload W feasible if
and only if the maximum workload of tree nodes due to
R is no more than W . Note that this definition implies
that a workload W feasible replica set is also range
feasible. Now we can formally define our objectives.

• Given the number of replica k, find a range feasi-
ble R replica set so that the maximum workload
among all nodes of R and the hub is minimized.

• Given the amount of workload a replica or the hub
can handle (denoted as W), find the minimum car-
dinality R that is workload W feasible.

We will refer to the first problem as MinMaxLoad,
and the second problem as FindR.

3 Related Works

This section summarizes the related work in placing
replica in tree topology. The first set of models allow
the request to go up and down the tree for the nearest
replica. For example, Wolfson and Milo [23] suggested
a model in which no limit is set for the server capacity.
The read cost is the number of hops from a request to
its server. The update cost is proportional to the sub-
tree that spans all the replicas. The goal is to minimize
read and update cost. Kalpakis et. al. [13] suggested a
model in which each server has capacity limit and each
site has different building cost. The read cost is defined
as the product of the amount of data transfer multi-
plied and the path length. The goal is to minimize the
summation of read, update and site costs. Unger and
Cidon [22] suggested a similar model but without server
capacity limit. Guha et. al. [10] suggested a model in
which there are a known number of servers in the tree,
each with equal capacity. There is no read, write, or
site building costs, and the goal is to assign the request
to a server (not necessarily the nearest one), so that the
maximum distance from a client to its assigned server
is minimized. Korupolu et. al. [14] suggested a model
in which the read cost is slightly different from other
models. The data access must go from the client, to
the least common ancestor of the client and the replica,
the to the replica.

The second set of models only allow the request to
search for the replica towards the root of the tree. For
example, Jia et. al. suggested a model in which no
server capacity nor site building cost is set. The read
cost is defined as the product of access path length and
the amount of data, and the update cost is defined as
the sum of link cost of the subtree from the root to all
replicas. The goal is to minimize the sum of read and
update cost. Cidon et.al. [5] suggested a similar model
in which a replica is associated with a site building cost,
but there is no update cost. The goal is to minimize
the sum of read cost and storage cost Tang and Xu [20]
later described a model similar to our model described
in Section 2. There is a range limit on the number of
hops a request from its assigned replica. however, there
is no server capacity limit in this model. The goal is to
find a feasible solution and minimize the sum of update
cost and storage cost.

Our model focus on the tree topology in which the
requests can only go upwards towards the root. In
real-life grid system like LCG [9], the requests go from
tier-2 to tier-1, then to tier-0 site in the search of data.
In addition, the grid hierarchy usually reflects the the
structure of administrative organization, or the geo-
graphic locality, so the assumption of having requests

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

going up towards the root is realistic.
Our model differs from the previous model (except

the model in [20]) since each client can assign its own
acceptable quality of service, in terms of the number of
hops towards to root of the tree. This is an important
requirement since different users may require different
levels of service quality. We model this as the range
limit so that the placement algorithm must make sure
that all the replicas are placed in such a way to satisfy
all the quality of service requirements. Finally, our
model emphasizes on workload balancing so we place
a capacity limit on the amount of data a replica can
serve. On the other hand, the model in [20] emphasizes
update and site building costs.

4 Algorithms

This section describes our algorithms that solve
MinMaxLoad and FindR. We will solve the FindR
first, and then use that algorithm to solve Min-
MaxLoad.

4.1 FindR

The problem FindR can be stated as follows. Given
a data grid tree T , the workload and the range limit on
its leaves, and a maximum workload W , find a work-
load W feasible replica set R with minimum cardinal-
ity. We use m(T, W) to denote this minimum cardinal-
ity. We also define that a replica set R is optimal for T
and workload W if R is workload W feasible, with only
m(T, W) replicas, and minimizes the workload on the
hub. We will drop the phrase “for workload W” when
the context clearly indicates the workload bound. This
section shows how to compute an optimal replica set R
for a data grid tree T .

4.1.1 Contribution function

We first define several terminologies. Consider a data
grid tree T with r as the root. Let v be a node in T ,
and we use t(v) to denote the subtree rooted at v, and
t′(v) = t(v) − v, namely the forest of subtrees rooted
at v’s children. Also we use a(v, i) to denote the i-th
ancestor of node v while traversing towards the root of
T .

We now define a contribution function C. C(v, i) in-
dicates the minimum amount of workload on the node
a(v, i) contributed by t(v), by placing m(t(v), W) repli-
cas in t′(v) and none at a(v, j) for 0 ≤ j ≤ i. By defini-
tion C(v, 0) is the amount of workload on a node v due
to an optimal replica set for t(v). For ease of explana-
tion if there is no replica set for t(v) with cardinality

m(t(v), W) that could control the workload on a(v, i)
within W , C(v, i) is set to infinity. For example, if v is
a leaf, C(v, i) is w(v) when i ≤ l(v), and infinity when
i > l(v).

Figure 2 illustrates an example of C function. The
optimal replica set requires three replicas for T when
the workload W is 60, i.e., m(t(r), 60) = 3. The repli-
cas should be placed at leaves a, b and c to minimize
the workload on r to C(r, 0) = 35. However, when we
tried to minimize the workload on s = a(r, 1) by placing
only three servers, we can only achieve C(r, 1) = 55 by
placing replicas at nodes a, b and e. We need to place a
replica on node e since its range limit is only 1. Now if
we consider the workload on t = a(r, 2), since we could
not limit its workload within 60 by placing only three
replicas in t′(r), C(r, 2) is set to infinity.

range

25 10

3 3 23 1

data

r

s

t

a b c d e

40 40 30

Figure 2. The contribution function.

4.1.2 Bottom-up Computation

Now we describe a bottom-up process for computing C
and m functions for every node in a data grid tree. By
definition, if v is a leaf, C(v, i) is w(v) when i ≤ l(v),
and infinity otherwise. Now we would like to compute
the C and m function for an internal node r that has
children v1, ..., vn. Since the process is bottom-up, we
assume that we know all the C and m functions of
v1, ...vn. The following theorem establishes the relation
between the optimal replica sets for a tree and any of
its subtrees.

Theorem 1 Consider a data grid tree T , a node v in
T , and a workload W . There exists an optimal replica
set R for T with workload limit W so that |R∩ t′(v)| =
m(t(v), W)

Proof. By definition t(v) requires at least m(t(r), W)
replicas to be placed in t′(r) to make sure that the
workload on v is within W . As a result there does not

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

exist an optimal replica set R for T that could place
less than m(t(v), W) replicas in t′(v).

Now if an optimal replica set for T places more
than m(t(v), W) replicas in t′(v), it places at least
m(t(v), W) +1 replicas. In that case while we are con-
structing an optimal replica set for T , we simply place
m(t(v), W) replicas according to an optimal replica set
for t(v), and place one extra replica at v. The result-
ing new replica set for T will not introduce any extra
workload, and therefore is also an optimal solution for
T .

Theorem 1 suggests that for a node v with children
v1, ..., vn, there exists an optimal replica set R with
workload limit W so that |R ∩ t′(vj)| = m(t(vj), W),
for 1 ≤ j ≤ n. As a result in order to find the optimal
replica set for t(v) we need to place the least number
of replicas at vj ’s so that the sum of their C(vj , 1)
is at least

∑
1≤j≤n C(vj , 1) − W . This can be easily

done by repeatedly placing a replica at the remaining
vj that has the largest C(vj , 1), until the workload of v
is within W . Let this set of vj ’s be e(v, 0), which is the
set of children of v that each of them has to be placed
a replica to minimize the workload on a(v, 0) = v. We
have m(t(v), W) =

∑
1≤j≤n m(t(vj), W)+|e(v, 0)|, and

C(v, 0) =
∑

vj /∈e(v,0) C(vj , 1).
After knowing m(v, W), we want to compute C(v, i)

for i > 0.

Theorem 2 Consider a data grid tree T , a node v in
T with children v1, ..., vn, and a workload W . There
exists a replica set R so that |R| = m(T, W), R mini-
mize the total workload due to R from t′(v) on a(v, i)
for i ≥ 1, and |R ∩ t′(vj)| = m(t(vj), W).

Proof. The proof is similar to Theorem 1. Con-
sider Figure 3. First |R ∩ t′(vj)| could not possibly
be less than m(t(vj), W), otherwise the workload on
vj will already be greater than W . If R has more
than m(t(vj), W) replicas in t′(vj), we can place only
m(t(vj), W) according to any optimal replica set for
t(ri), and place one replica at vj . The resulting replica
set will not contribute more workload on a(v, i).

An important implication of Theorem 2 is that when
we compute C(v, i) for i > 0, we can be certain that
there exists a set of replicas that can minimize the total
workload on a(v, i), with a known number of replicas in
each of t′(vj) (i.e., m(t(vj), W)). By definition C(v, i)
is the the minimum amount of workload on the ancestor
a(v, i) contributed by t(v) by placing m(t(v), W) repli-
cas in t′(v), and none at a(v, j) for 0 ≤ j < i (see Fig-
ure 3 for an illustration). Since we know the number of
replicas in each of t′(vj), we know there exists an R that

a(v, 1)

v1 v2 v3 v4 v5

v

a(v, 2)

Figure 3. The computation of contribution
function B(v, i) for i > 0.

can minimize the total workload a(v, i) by placing extra
m(t(r), W)−∑

1≤j≤n m(vj , W) replicas among ri. Now
it is clear that by choosing m(t(r), W)−∑

1≤j≤n m(vj)
vj ’s that have the largest C(v, i+1) (denoted as e(v, i)),
we can derive C(v, i) =

∑
vj /∈e(v,i) C(vj , i + 1).

4.1.3 Top-down replica placement

We now place replicas from top to the bottom of tree
recursively. Consider a node v, which has n children
v1, ..., vn. Our goal is to place replicas so as to mini-
mize the workload on a(v, i) by placing m(v, W) repli-
cas in t′(v), therefore our recursion starts from the root
and with i = 0. From the discussion in Section 4.1.2,
we know we can accomplish this by placing replicas in
e(v, i) – the subset of {v1, ...vn} that each of them has
to be placed a replica in order to minimize the workload
on a(v, i).

We consider two cases. In the first case we consider
the set of vj ’s that are in e(v, i). Let A denote the
set of children of these vj ’s. We can start the recursion
from each node of A with i set to 0, since we know that
every node in e(v, i) now has a replica. In the second
case we consider the set of vj ’s that are not in e(v, i).
From theorem 2, we know that if we want to minimize
their contribution to a(v, i), we just need to focus on
these replica sets that have m(vj , W) replicas in t′(vj).
In addition, we know that we can also assume that
there will be no replica in any of them. As a result we
simply retrieve e(vj , i + 1) – the subset of vj ’s children
that should be placed an extra replica to minimize the
workload contribution on a(v,i).

The pseudo code of this recursive top-down replica
placement procedure is in Figure 4. The parameter i
indicates the level of recursion towards the node whose
workload we want to minimize.

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

Place-replica(v, i)
{

if i is a leaf
return;

place a replica at each node of e(v, i);
for each child c of v {

if c is in e(v, i)
Place-replica(c, 0);

else
Place-replica(c, i + 1);

}
}

Figure 4. The pseudo code of the recursive
top-down replica placement.

Consider the example in Figure 5. The recursion
starts at a with i = 0. Suppose we know that we need
to place a replica at b and c. Now we only need to recur-
sively perform the top-down replica placement at the
children of b and c, namely f , g, h, and i. After plac-
ing the replicas at nodes b and c, we know that there
will be no replica placed at d and e. Now consider the
three subtrees of d. We know there exists a replica set
that can minimize the contribution to a, with m(j, W)
replicas in t′(j), m(k, W) replicas in t′(k), and m(l, W)
replicas in t′(l). We also know that this replica set has
no replica in d. As a result we simply retrieve e(d, 1)
– the subset of {j, k, l} that should be placed an extra
replica to minimize the workload contribution on a.

We will refer to the entire replica-placement algo-
rithm as PlaceReplica.

r

b c d

f g h i j k l m

e

n

o p q

a

Figure 5. An example of top down replica
placement. A shaded tree node indicates a
replica.

4.1.4 Time complexity analysis

We analyze the time complexity of PlaceReplica by fo-
cusing on the bottom-up computation of C contribu-
tion function, since it dominates the total computation
time. For each tree node v we need to compute its
C(v, i), up to i = L, where L is the maximum range
limit among all nodes. Let the number of children of v
be n, then the computation requires n logn, if we sort
the C functions from all of v’s children. Note that this
requires L sorting since a child vj with a larger C(vj , i)
function value than another child vk does not mean vj

will have a larger C values than vk for other values of i.
As a result the computation cost of C for v is Ln log n.
The total cost of computing C functions for all nodes
is therefore LN log N , where N is the number of nodes
in the tree.

4.2 MinMaxLoad

We now derive an algorithm BinSearch for the Min-
MaxLoad problem. The algorithm BinSearch finds
the replica set by “guessing” the maximum workload
W with a binary search. We guess a value of W
as the maximum workload on the replicas and the
hub. If the algorithm PlaceReplica could not find
an optimal replica set within cardinality k, we in-
crease the value of W ; otherwise we reduce it. We
estimate an upper bound U on the workload for ev-
ery leaf, therefore the total amount of workload is
bounded by O(NU). It is easy to see that after
O(log N + log U) calls of BinSearch, we will be able to
find the smallest value of W by which only k replicas
suffices. The total execution time of BinSearch is there-
fore O(log N + log U)(LN log N). Because the bound
on the workload, U , is usually represented by a 32 bit
integer, the total execution time can be bounded by
O(LN log2 N).

Theorem 3 The algorithm BinSearch finds the opti-
mal replica set for MinMaxLoad in time O(log N +
log U)(LN log N), where N is the number of tree nodes
in the data grid, L is the maximum range limit. and
U is the maximum workload. When U is a bounded
constant, the time complexity is O(LN log2 N).

5 Conclusion

This paper addresses the issues of placing database
replicas in Data Grid systems with locality assurance.
Each request specifies a workload it requires, and a
distance within which a replica must be found. We
propose efficient algorithms that select strategic loca-
tions for placing the replica so that the workload among

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

these replicas is balanced, and the service locality re-
quired by each data request is guaranteed.

We formulate two problems: MinMaxLoad and
FindR, and derive efficient algorithmic solutions for
them. Based on the estimation of data usage and the
given locality requirement from various sites, our algo-
rithm efficiently determines the locations of replica if
both the number of replicas and the maximum allowed
workload for each replica have been determined. An-
other algorithm can determine the number of replicas
needed to ensure that the maximum amount of work-
load on every replica is below a certain threshold.

One open question for the replica placement prob-
lem is how to determine the replica location when the
network is a general graph, instead of a tree. It is
possible that we may need to consider other graphs,
(e.g. planar graphs), and derive efficient algorithms
for them. In addition, in the current hierarchical Data
Grid model, all the traffic may reach the root, if it is
not answered by a replica. This additional constraints
introduce additional complexity for the design of effi-
cient algorithm for replica placement in grid systems
when network congestion is one of the objective func-
tion to be optimized.

Acknowledgment The authors would like to ac-
knowledge the National Center for High-Performance
Computing in providing resources under the na-
tional project ”Taiwan Knowledge Innovation National
Grid”.

References

[1] J. H. Abawajy. Placement of file replicas in data
grid environments. In ICCS 2004, Lecture Notes
in Computer Science 3038, pages 66–73, 2004.

[2] M. M. Bae and B. Bose. Resource placement
in torus-based networks. IEEE Transactions on
Computers, 46(10):1083–1092, October 1997.

[3] A. Chervenak, I. Foster, C. Kesselman, C. Sal-
isbury, and S. Tuecke. The data grid: Towards
an architecture for the distributed management
and analysis of large scientific datasets. Journal
of Network and Computer Applications, (23):187–
200, October 2000.

[4] A. Chervenak, R. Schuler, C. Kesselman, S. Ko-
randa, and B. Moe. Wide area data replication for
scientific collaborations. In In Proceedings of the
6th International Workshop on Grid Computing,
November 2005.

[5] I. Cidon, S. Kutten, and R. Soffer. Optimal allo-
cation of electronic content. Computer Networks,
40(2):205–218, 2002.

[6] W. B. David. Evaluation of an economy-based file
replication strategy for a data grid. In Interna-
tional Workshop on Agent based Cluster and Grid
Computing, pages 120–126, 2003.

[7] W. B. David, D. G. Cameron, L. Capozza, A. P.
Millar, K. Stocklinger, and F Zini. Simulation of
dynamic grid rdeplication strategies in optorsim.
In In Proceedings of 3rd Intl IEEE Workshop on
Grid Computing, pages 46–57, 2002.

[8] M.M. Deris, Abawajy J.H., and H.M. Suzuri. An
efficient replicated data access approach for large-
scale distributed systems. In IEEE International
Symposium on Cluster Computing and the Grid,
April 2004.

[9] Worldwide LHC Computing Grid.
http://lcg.web.cern.ch/lcg/.

[10] S. Guha, R. Hassin, S. Khuller, and E. Or. Capac-
itated vertex covering. J. Algorithms, 48(1):257–
270, 2003.

[11] W. Hoschek, F. J. Janez, A. Samar, H. Stockinger,
and K. Stockinger. Data management in an inter-
national data grid project. In In Proceedings of
GRID Workshop, pages 77–90, 2000.

[12] K. Kalpakis, K. Dasgupta, and O. Wolfson. Opti-
mal placement of replicas in trees with read, write,
and storage costs. IEEE Transactions on Paral-
lel and Distributed Systems, 12(6):628–637, June
2001.

[13] K. Kalpakis, K. Dasgupta, and O. Wolfson. Opti-
mal placement of replicas in trees with read, write,
and storage costs. IEEE Trans. Parallel Distrib.
Syst., 12(6):628–637, 2001.

[14] M. Korupolu, C. Plaxton, and R. Rajaraman.
Placement algorithms for hierarchical cooperative
caching. Journal of Algorithms, 38(1):260–302,
2001.

[15] H. Lamehamedi, B. Szymanski, Z. Shentu, and
E. Deelman. Data replication strategies in grid
environments. In In Proceedings of 5th Interna-
tional Conference on Algorithms and Architecture
for Parallel Processing, pages 378–383, 2002.

[16] R. Moore, C. Baru, R. Marciano, A. Rajasekar,
and M. Wan. I. Foster and C. Kesselman edited,

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

The Grid: Blueprint for a Future Computing In-
frastructure, chapter Data intensive computing.
Morgan Kaufmann PUblishers, 1999.

[17] K. Ranganathan, A. Iamnitchi, and I.T. Foste. Im-
proving data availability through dynamic model-
driven replication in large peer-to-peer communi-
ties. In In 2nd IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid, pages
376–381, 2002.

[18] K. Ranganathana and I. Foster. Identifying dy-
namic replication strategies for a high perfor-
mance data grid. In In Proceedings of the Inter-
national Grid Computing Workshop, pages 75–86,
2001.

[19] H. Stockinger, A. Samar, B. Allcock, I. Foster,
K. Holtman, and B. Tierney. File and object repli-
cation in data grids. In In 10th IEEE Symposium
on High Performance and Distributed Computing,
pages 305–314, 2001.

[20] X. Tang and J. Xu. Qos-aware replica placement
for content distribution. IEEE Transactions on
Parallel and Distributed Systems, 16(10), October
2005.

[21] N.-F. Tzeng and G.-L. Feng. Resource allocation
in cube network systems based on the covering
radius. IEEE Transactions on Parallel and Dis-
tributed Systems, 7(4):328–342, April 1996.

[22] O. Unger and I. Cidon. Optimal content location
in multicast based overlay networks with content
updates. World Wide Web, 7(3):315–336, 2004.

[23] O. Wolfson and A. Milo. The multicast policy
and its relationship to replicated data placement.
ACM Trans. Database Syst., 16(1):181–205, 1991.

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

