
LARGE VOCABULARY CONTINUOUS MANDARIN SPEECH
RECOGNITION USING FINITE STATE MACHINE

Yi-Cheng Pan, Chia-Hsing Yu, and Lin-Shan Lee
Dept. of Computer Science and Information Engineering, National Taiwan Univ., Taipei

{thomas, davidyu, Isl)@speech.csie.ntu.edu.tw

ABSTRACT

Finite slate transducer (FST), popularly used in natural
language processing (NLP) area to represent the
grammar rules and the characteristics of a language,
has been extensively used as the core in large vocahu-
liuy continuous speech recognition (LVCSR) in recent
years. By means of FST, we can effectively compose
the acoustic model, pronunciation lexicon, and lan-
guage model to form a compact search space. In this
paper, we present our approaches of developing a
LVCSR decoder using FST as the core. In addition, the
traditional one-pass tree-copy search algorithm is also
described for comparison in terms of speed, memory
requirements and achieved character accuracy.

1 INTRODUCTION
Automata theory has been developed with a long history,

and relevant research is still ongoing due to its elegant frame-
work and high efficiency. It has been widely used in natural
language processing (NLP) area to model the grammar rules and
characteristics of the language. The application of finite state
automata on large vocabulary continuous speech recognition
(LVCSR) was first introduced by M.Mohri[l], and a new con-
cept of weighted-finite-state machine was introduced, including
approaches of transforming the popularly used models such as
HMM models and N-gram language models to finite state ma-
chine[l][Z]. By means of the weighting scheme introduced, we
can effectively integrate several probability likelihood functions
in a finite state machine in a unified approach. We can then
incorporate different sources of knowledge easier and reduce the
complexity of the search space. Finite-state-transducer (FST) is
an cxtension of finite state automata. A finite state machine can
accept specific input strings (the set of strings accepted by a
finite-state-machine is referred to as a %nguage") and a FST
further has a string as output when it accepts strings. In the
LVCSR system using FST as the core, we first compile three
basic hiowledge sources (HMM acoustic models, pronunciation
lexicon, n-gram language model) into three respective FSTs. By
means of the composition algorithm, we can further integrate the
three FSTs into a vast search network. A Viterhi search is then
performed on this network and a best-matched path along with
the recognized word sequence will be returned.

In the rest of this paper, we first review traditional one-pass
tree-copy search algorithm in Section 2. We then introduce our
decoder based on FST in Section 3. The experiments and com-
parison between the two different decoders in terms of speed,
memory requirement and character accuracy are presented in
Section 4. Finally, in Section 5 some discussions are given.

2 ONE-PASS TREE-COPY SEARCH

tree copy search algorithm.
In this section, we briefly review the traditional one-pass

In this algorithm, the search is implemented in a left-to-
right, frame-synchronous fashion. We first compile a lexicon
tree as shown in Fig.1, in which each arc represents a suh-
syllabic HMM model and each path fmm the root to a leaf
represents one or several word@) with the same pronunciation.
The arcs visited by each path are the respective HMM models,
of which each word is composed. in the process of searching,
each active node may have several copies, where each copy
represents a different language model history. The path from the
root to an active node forms a partial path. If the active node is a
leaf node, a new language model history is generated all the
nodes having the same history are recombined and only the
node with the highest score will survive while others pruned.
Then from the new node having survived, we further generate a
new tree copy or replace the respective existing tree root node, if
the tree with specific history is already generated and the score
of the new node having survived is higher than the existing one.
It should be noted that we don't need to actually make several
tree-copies at run-time, and the tree is just the data structure
taken as a reference. In practice, only the active nodes need to
be kept in the memory, where each active node represents a
partial path. it should be also noted that the number of the nodes
activated at each frame may increase rapidly, thus the total
number of active nodes may increase exponentially. With lim-
ited memory and computing power, we therefore need to further
prune those active nodes with lowest scores. During pruning, we
need to take the language model scores into account. At each
node, there are one or several paths to go to different leaf
node(s). We pick up the leaf among them which has the highest
uni-gram language model score, and this score is the look-ahead
language model score for the node. Each active node is then
judged by the sum of their decoding score and the look-ahead
language model score during pruning.

Fig.] An example of a tree lexicon

3 FST-BASED SEARCH ALGORITHM

3.1 FST and WFST
An FST A can be represented as a six-tuple:

< Q, n, F,C,A,6 > . Q is the set of all states in A, while n t Q is
the initial slate and FC Q is the set of all final states. is the
alphabet set of input strings, while A is the alphabet set of out-

0-7803-8678-7/04/$20.00 02004 IEEE 5 ISCSLP 2004

put strings. Finally, S is the set of all possible transitions
(Qxz + Qx A). In speech recognition task, a weight is further
attached to each transition. A weighted FST (WFST) is exactly
the same as FST, except that 6 is now the set of all possible
transitions (Qx 3 Qx Ax K) ,where K is the set of all possi-
ble weights .A transition r = (s[t],i[r],d[r],o[r],w[t]) can be
represented by an arc from the source state ~ [r] to the destination
state d[t] with input label i[r] and output label o[r] and a weight
w[t].ln our task, ~ [r] is the log probability score.

A path in A is a sequence of consecutive transitions f l in
with d[tJ =i[r,+,],i=/, ,n-/.Transitions with an empty string E
as the input label consumes no input. A successful path n=
f I r,, is the path fiom initial state i to afinar staie /E F. The
input labels of the path n is the result of the concatenation of
the input labels of its constituent transitions:
i[z]=i[/,] i[t,,j,while the output labels is o[z]=o[t,j o[tJ
similarly. The weight associated to n i s the sum of the initial
weight, the weights of its constituent transitions and the final
weight of the state reached by n.

Union operation plays an important role in the process of
building the WFST for speech recognition. We can easily build
small WFST pieces first, and through union operation we then
bind them together to build the whole WFST.

Fig2 An HMM model for the sub-syllabic unit /ail repre-
sented by FST

There are three main WFST models used in the speech rec-
ognition task. They are the HMM acoustic model H, the pronun-
ciation lexicon model L, and the n-gram language model G. In
the following sections, we will give brief descriptions about the
construction of these WFST models.

3.2 HMM Acoustic Models
HMM model is widely used in speech recognition. There is

a specific probability density function for each state to model
the statistics of the acoustic feature vectors for that state. There
are also transition probabilities between states.

Remember that the search space encoded in a WFST is the
language accepted by the WFST, and the language is the set of
all successful paths. When transforming a HMM model into a
WFST, we have to shift the probability density function onto the
arcs. That is, an HMM WFST is a mapping from the state prob-
ability density function to the sub-syllabic acoustic model. Fig2
is a WFST to describe the subsyllable HMM model /ai/, in
which there are three left-to-right HMM states. The regular ex-
pression language accepted by the WFST is b,%blfb;. The out-
put label "ai" can be arbitrarily attached on either arc among the
arcs between states.

We can build a WFST for each sub-syllabic acoustic model
in the same way. Then through the union operation, we can
combine them together to from our HMM acoustic model H. At
each final state of H, we additionally include an additional arc,
with both input and output label E , retuming to the initial state.

Fig.3 An example partial list of the tree lexicon in FSS

3.3 Pronunciation Lexicon
The pronunciation lexicon is used to describe the pronun-

ciation sequence of sub-syllabic units for each word. We can
follow the same steps as we build HMM acoustic models to
build a linear pronunciation lexicon. We can also further com-
pile the linear lexicon into a tree lexicon to make it more com-
pact and save the memory. Fig.3 is an example partial list of a
FST for tree pronunciation lexicon.

3.4 N-gram Language Model
The most popular language model so far is the stochastic

n-gram language model. In n-gram language model, every word
is assumed to be dependent only on its previous n-l words. Thus
the probability of a word sequence with length N can be ap-
nroximated as:

where wj is the i-rh word in the se-

ability p (~ , 1 d;k+l) can be calculated from training data.
However, the quantity of the corpus needed grow exponentially
with the increase of n. The back-off smoothing method is usu-
ally applied to compensate for the missing probability
p(w, I ,&:+J if the panem w;."+, does not appear in the limited

training corpus, i.e., p(wj 1 IV,':;+,) = p(w, 1 w;-;+,) ,
where 2 is a back-off weight (this back-off process can be

repeated if 1,(:k+2 still does not appear in the corpus). In our
system, n = 3, so it is a lrigram language model.

Fig.4 is a simplified WFST example with n = 2. We can
note that in the WFST for the n-gram language model, every
state is annotated by m words, 0 5 m S n - 1, a s the word his-
tory. Also, we use E transition to apply the back-off method
mentioned above. After the introduction of E transitions, an
input sequence of words might have more than one mccessful
purhs. For example, in Fig.4 if the input string is ab, then we
will have two successful paths: ab, a E b, and their respective

off weight. Since in the search proces$ Viterbi search is applied,
we thus can further assume that the path with back-off weight
should always have lower score than the one without back-off
weight. Therefore, in the search process we can only get

quence, w;::,, = (W,."+,,W,."+2 ,..., w#- ,), and each Prob-

,--,
",;:A,

wekhtings p(o)-p(bio),p(o).a,-p(bja), witha-ahack-

p(a)-p(bla) butneverp(a).ao .p(bIa).

3.5 Composition Operation
Given hvo WFSTs A and B, the composition operation

takes the output labels of A as the input labels of B and con-
struct a new WFST C, denoted as C = A 0 B . Each state of C
is composed of a state of A and a state of B, and each successful
path p of C is composed of a path po of A and a path pb of 9,
with i[pl=i[pJ,o[pJ~i[p~,o[p~l~o[pl. and w[pl=w[pJ+
w[pJ. Table.1 is the complete composition algorithm. We need
to especially note that if there are E transitions existing in both
A and B, as illustrated in FigS, there will be several possible
concatenation sequence ofp. and p b to form the path p of C. For
example, in Fig2 if we try to go from state 4 , 1 > of C to state
<3,2> of C, there are 5 different routes:
I . < 1,l >-x 42 >-x 2,2 >+< 3,2 >
2.< 1,1>-+< 2,l >-x 2,2 >-K 3,2 >
3. c: 1,1 >+< 2,l >-x 3,l >-x 3,2 >
4. < 1,l >-K 2,2 >--1< 3,2 >
5. < 1,1>+< 2,1>--1< 3,2 >

6

These 5 different routes all have exactly the same score, and we
need to have further mechanism in the algorithm to pick up one
of them.

HMMmodelH
Pronunciation

lexicon L

Fig.4 An example of a bi-gram FSA language model

o f
transitions # of states

343 589 '
349,432 287,920

Fig.5 WFST A and WFST B with null transitions

Beamwidth(104)
Real-time

factor One-Pass -
Tree-Copy Character Search accuracy

Tzy

S<>MPOSE<A, B)
I: Let A = (Q e 3 &, F,, C,, A,, 6,)
2: T A : ~ R = (Qs, it,, Fb, Et,, A,, 6s)
3: i -+= (ia2 ;it.)

8: F+Y)
G: += E,
7: A += Atz
8: d (r 8

d: Q t {i)

0:

11:
12:
1~3:
14:

I&
Io: P P U (sa 1 40)
17: end if

1 9 6 - + = d U T
20:
21:
22.
23: end if
24: end for
25: end while
as: return (9, i, 3; E, A: 6)

Table.1 Algorithm for Compositionoperation

1 0 s t {i)
while s # v) do

(ya,yh) t= all e l c r r L e l z t i n s

c2 e= cz U (<i<., Qd
C= -9 \ (q-, qa)

if qn E Fa and g b E 2?, then

18: 7' + T I C A N S (q - , q h , sa, 6s)
for all <qL,q;} E T' do

if <y:z,y&) 6 Q then
s -+= s U <&* 9;)

3.6 Viterbi Beam Search
After we have composed the three WFSTs together, the

HMM niodel H, the pronunciation Lexicon L and the language
model G, we have S := H o L o G , we can implement viterbi
beam search on S. Given S =C Q,n, F ,C, A, 6 >, state q

E Q, input label 06 1 , output label XE A , respective pdf
B, f o r o , a feature vector 0, at time I , we can compute the best
score of state q at timet, S(q,r), as:

min S(q',l - I)+ B,,(o,)+w, s(q,r) = 8(<',d=(q,x,".l

where w is the transition weight from q' to 4 .
when t = 0,

10 I1 12 13 14 15 16

1.4 1.82 2.43 3.29 4.56 6.36 8.82

81.6 82.7 83.2 83.4 83.6 83.8 83.8

662 725 856 1049 1281 1558 1737

where and represent active and inactive respectively. At
each timet, we call a state q with S(q,f) # 0 an ucfive state. At
time 0, only the initial state is activated, and along with the tran-
sition within the WFST, the number of activated states increases
rapidly. With limited computing power, we can't keep all the
activated states when the number of them becomes too big. We
can apply the m e beam pruning strategy as we did in the one-
pass search to keep those smes with highest S(q,l) only.

FST-based
search

4 EXPERIMENTS

In this section, we campare the efficiencies of tbe two de-
coders, the one with one-pass tree capy search and the one with
WFST, in terms of speed and memory requirements along with
achieved character accuracies.

The acoustic models consist of 151 initial-final sub-syliabic
units, including I12 Initials, 38 Finals, and a silence. The acous-
tic features we used is 39-dimentiona1, including 13 MFCCs and
delta and delta delta MFCCs. The 60K-word trigram language
model is estimated on a 40M-character corpus of news from the
Central News Agency at Taipei for year 1997-1999, smoothed
with Good-Turing discounting by SRI Language Modeling
Toolkit. The test set consists of 100 Mandain broadcast news
collected from News98 Radio Station at Taipei in September
2002. The total length is 0.7 hours. The experiments are imple-
mented on a computer with AMD Opteron 246 CPU and 8 GB
RAM.

Table 2 is the number of states and arcs of the WFST, and
Table 3 is the comparison of the running time, characYex accu-
racy, and memory usage of the two search programs with differ-
ent Viterhi beam widths. The comparison between them may be
better examined by the two C U N e S in Fig5.and Fig.6. We can see
that at the same running time, the character accuracy of the
WFST approach is always higher than the traditional one, while
the growth rate of the memory usage is lower.

,,"LO,

0.74 1.04 1.45 2.03 2.74 3.69 4.80

78.0 81.3 83.1 84.2 84.8 85.2 85.3

752 779 802 824 838 850 868

factor

accuracy

(ME3 -

I Tri-'an- I 1,529,442 1 11,430,683 I puaee model G - ~ - ~ I H o L 0 G- 1 19,696,373 1 29,700,249 1
Table2 Number of states and transitions used in WFST
in the experiment

Table.3 Comparison ofthe two decoders

7

REFERENCES

IO

’ I

------.------ [I] Mehryar Mohri, Fernando Pereira, and Michael Riley,
“Weighted automata in text and speech processing,” in Extended
Finife State Models of Language: Proceedings of the ECA1’96
Workshop, Andras Komai.Ed., 1996,pp. 46-50.
121 M e b a r Mohri, “Finite-state transducers in language and

o(-

I .

[3] Mehryar Mohri, “On some applications of finite-state su-
tomata theory to natural language processing,” Journal of Na-
tional Language Engineering, vo1.2 pp. 1-20, 1996. mg , , , , , , ,

speech processing,” Computational Linguistics, vo1.>3,no. 2, 1 DD. - - 269-311.1997.

1-

‘PBU - .p-‘ [SI Mehryar Mohri, “Generic epsilon-removal and input epsi-
lon-normalization alogorithms for weighted transducers,” in
International Jounol ofFoundations ofcomuuler Science, vol.

_,--
f.,’

. .
13, no. 1, pp. 129-143; 2002.
[6] Mehryar Mohri and Michael Riley, “A weighted pushing
algorithm for large vocabulary speech recognition,” in Proceed-
ings of Eurospeech, 2001.
171 Cvril Allauzen and Mehrvar Mohri. “Generalized ootimiza-

./’
/- ?rm -

i ./” /”
/”

[~m
. _ .
tion algorithm for speech recognition transducers,” in Proceed-
ings ofICASSP, 2003.

am [S] Diamantina Caseiro and Isabel Tmncoso, “Using dynamic
WFST composition for recognizing broadcast news,” in Pro-

r.n.7.

Fig.6 Comparison on memory usages between the two
decoders

5 DISCUSSIONS

In this paper, we propose a miniature system to integrate
different element models, H, L, G, for large vocabulary speech
recognition, and we found it has comparable or better perform-
ance. M.Mohri further proposed some methods to promote
FST‘s efficiency, such as the algorithms for determination [3],
minimization [4]. E -removal [4], and weight pushing [6]. Given
a non-deterministic WFST A, we can find an equivalent deter-
ministic WFST B aRer the determination process. A determinis-
tic WFST has fewer active states than non-deterministic one.
After minimization, we can further find an equivalent C with
minimal states. These algorithms all can help us further reduce
the vast search space and have the decoder find the best path in a
shorter time. Since not all non-deterministic WFSTs can he
determined, C.Alluzen [7] proposed an optimization algorithm
lo transfer a non-determinable WFST A to an equivalent B but
determinable. D.Caseiro [8] also proposed a method to lower the
large number of memories required in the process of determina-
tion. With these algorithms implemented, it is believed the sys-
tem performances can be funher improved.

8

