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ABSTRACT 

Finite slate transducer (FST), popularly used in natural 
language processing (NLP) area to represent the 
grammar rules and the characteristics of a language, 
has been extensively used as the core in large vocahu- 
liuy continuous speech recognition (LVCSR) in recent 
years. By means of FST, we can effectively compose 
the acoustic model, pronunciation lexicon, and lan- 
guage model to form a compact search space. In this 
paper, we present our approaches of developing a 
LVCSR decoder using FST as the core. In addition, the 
traditional one-pass tree-copy search algorithm is also 
described for comparison in terms of speed, memory 
requirements and achieved character accuracy. 

1 INTRODUCTION 
Automata theory has been developed with a long history, 

and relevant research is still ongoing due to its elegant frame- 
work and high efficiency. It has been widely used in natural 
language processing (NLP) area to model the grammar rules and 
characteristics of the language. The application of finite state 
automata on large vocabulary continuous speech recognition 
(LVCSR) was first introduced by M.Mohri[l], and a new con- 
cept of weighted-finite-state machine was introduced, including 
approaches of transforming the popularly used models such as 
HMM models and N-gram language models to finite state ma- 
chine[l][Z]. By means of the weighting scheme introduced, we 
can effectively integrate several probability likelihood functions 
in a finite state machine in a unified approach. We can then 
incorporate different sources of knowledge easier and reduce the 
complexity of the search space. Finite-state-transducer (FST) is 
an cxtension of finite state automata. A finite state machine can 
accept specific input strings (the set of strings accepted by a 
finite-state-machine is referred to as a %nguage") and a FST 
further has a string as output when it accepts strings. In the 
LVCSR system using FST as the core, we first compile three 
basic hiowledge sources (HMM acoustic models, pronunciation 
lexicon, n-gram language model) into three respective FSTs. By 
means of the composition algorithm, we can further integrate the 
three FSTs into a vast search network. A Viterhi search is then 
performed on this network and a best-matched path along with 
the recognized word sequence will be returned. 

In the rest of this paper, we first review traditional one-pass 
tree-copy search algorithm in Section 2. We then introduce our 
decoder based on FST in Section 3. The experiments and com- 
parison between the two different decoders in terms of speed, 
memory requirement and character accuracy are presented in 
Section 4. Finally, in Section 5 some discussions are given. 

2 ONE-PASS TREE-COPY SEARCH 

tree copy search algorithm. 
In this section, we briefly review the traditional one-pass 

In this algorithm, the search is implemented in a left-to- 
right, frame-synchronous fashion. We first compile a lexicon 
tree as shown in Fig.1, in which each arc represents a suh- 
syllabic HMM model and each path fmm the root to a leaf 
represents one or several word@) with the same pronunciation. 
The arcs visited by each path are the respective HMM models, 
of which each word is composed. in the process of searching, 
each active node may have several copies, where each copy 
represents a different language model history. The path from the 
root to an active node forms a partial path. If the active node is a 
leaf node, a new language model history is generated all the 
nodes having the same history are recombined and only the 
node with the highest score will survive while others pruned. 
Then from the new node having survived, we further generate a 
new tree copy or replace the respective existing tree root node, if 
the tree with specific history is already generated and the score 
of the new node having survived is higher than the existing one. 
It should be noted that we don't need to actually make several 
tree-copies at run-time, and the tree is just the data structure 
taken as a reference. In practice, only the active nodes need to 
be kept in the memory, where each active node represents a 
partial path. it should be also noted that the number of the nodes 
activated at each frame may increase rapidly, thus the total 
number of active nodes may increase exponentially. With lim- 
ited memory and computing power, we therefore need to further 
prune those active nodes with lowest scores. During pruning, we 
need to take the language model scores into account. At each 
node, there are one or several paths to go to different leaf 
node(s). We pick up the leaf among them which has the highest 
uni-gram language model score, and this score is the look-ahead 
language model score for the node. Each active node is then 
judged by the sum of their decoding score and the look-ahead 
language model score during pruning. 

Fig.] An example of a tree lexicon 

3 FST-BASED SEARCH ALGORITHM 

3.1 FST and WFST 
An FST A can be represented as a six-tuple: 

< Q, n, F,C,A,6 > . Q is the set of all states in A, while n t Q is 
the initial slate and FC Q is the set of all final states. is the 
alphabet set of input strings, while A is the alphabet set of out- 
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put strings. Finally, S is the set of all possible transitions 
(Qxz + Qx A). In speech recognition task, a weight is further 
attached to each transition. A weighted FST (WFST) is exactly 
the same as FST, except that 6 is now the set of all possible 
transitions (Qx 3 Qx Ax K )  ,where K is the set of all possi- 
ble weights .A transition r = (s[t],i[r],d[r],o[r],w[t]) can be 
represented by an arc from the source state ~ [ r ]  to the destination 
state d[t] with input label i[r] and output label o[r] and a weight 
w[t].ln our task, ~ [ r ]  is the log probability score. 

A path in A is a sequence of consecutive transitions f l  in 
with d[tJ =i[r,+,],i=/, ,n-/.Transitions with an empty string E 
as the input label consumes no input. A successful path n= 
f I  r,, is the path fiom initial state i to afinar staie /E F. The 
input labels of the path n is the result of the concatenation of 
the input labels of its constituent transitions: 
i[ z ]=i[/,] i[t,,j,while the output labels is o[ z ]=o[t,j o[tJ 
similarly. The weight associated to n i s  the sum of the initial 
weight, the weights of its constituent transitions and the final 
weight of the state reached by n. 

Union operation plays an important role in the process of 
building the WFST for speech recognition. We can easily build 
small WFST pieces first, and through union operation we then 
bind them together to build the whole WFST. 

Fig2 An HMM model for the sub-syllabic unit /ail repre- 
sented by FST 

There are three main WFST models used in the speech rec- 
ognition task. They are the HMM acoustic model H,  the pronun- 
ciation lexicon model L,  and the n-gram language model G. In 
the following sections, we will give brief descriptions about the 
construction of these WFST models. 

3.2 HMM Acoustic Models 
HMM model is widely used in speech recognition. There is 

a specific probability density function for each state to model 
the statistics of the acoustic feature vectors for that state. There 
are also transition probabilities between states. 

Remember that the search space encoded in a WFST is the 
language accepted by the WFST, and the language is the set of 
all successful paths. When transforming a HMM model into a 
WFST, we have to shift the probability density function onto the 
arcs. That is, an HMM WFST is a mapping from the state prob- 
ability density function to the sub-syllabic acoustic model. Fig2 
is a WFST to describe the subsyllable HMM model /ai/, in 
which there are three left-to-right HMM states. The regular ex- 
pression language accepted by the WFST is b,%blfb;. The out- 
put label "ai" can be arbitrarily attached on either arc among the 
arcs between states. 

We can build a WFST for each sub-syllabic acoustic model 
in the same way. Then through the union operation, we can 
combine them together to from our HMM acoustic model H. At 
each final state of H, we additionally include an additional arc, 
with both input and output label E ,  retuming to the initial state. 

Fig.3 An example partial list of the tree lexicon in FSS 

3.3 Pronunciation Lexicon 
The pronunciation lexicon is used to describe the pronun- 

ciation sequence of sub-syllabic units for each word. We can 
follow the same steps as we build HMM acoustic models to 
build a linear pronunciation lexicon. We can also further com- 
pile the linear lexicon into a tree lexicon to make it more com- 
pact and save the memory. Fig.3 is an example partial list of a 
FST for tree pronunciation lexicon. 

3.4 N-gram Language Model 
The most popular language model so far is the stochastic 

n-gram language model. In n-gram language model, every word 
is assumed to be dependent only on its previous n-l words. Thus 
the probability of a word sequence with length N can be ap- 
nroximated as: 

where wj is the i-rh word in the se- 

ability p ( ~ ,  1 d;k+l) can be calculated from training data. 
However, the quantity of the corpus needed grow exponentially 
with the increase of n. The back-off smoothing method is usu- 
ally applied to compensate for the missing probability 
p(w, I ,&:+J if the panem w;."+, does not appear in the limited 

training corpus, i.e., p(wj 1 IV,':;+,) = p(w, 1 w;-;+,) , 
where 2 is a back-off weight (this back-off process can be 

repeated if 1,(:k+2 still does not appear in the corpus). In our 
system, n = 3, so it is a lrigram language model. 

Fig.4 is a simplified WFST example with n = 2. We can 
note that in the WFST for the n-gram language model, every 
state is annotated by m words, 0 5 m S n - 1, a s  the word his- 
tory. Also, we use E transition to apply the back-off method 
mentioned above. After the introduction of E transitions, an 
input sequence of words might have more than one mccessful 
purhs. For example, in Fig.4 if the input string is ab, then we 
will have two successful paths: ab, a E b, and their respective 

off weight. Since in the search proces$ Viterbi search is applied, 
we thus can further assume that the path with back-off weight 
should always have lower score than the one without back-off 
weight. Therefore, in the search process we can only get 

quence, w;::,, = (W,."+,,W,."+2 ,..., w#- ,  ), and each Prob- 

,--, 
",;:A, 

wekhtings p(o)-p(bio),p(o).a,-p(bja), witha-ahack- 

p(a)-p(bla) butneverp(a).ao .p(bIa).  

3.5 Composition Operation 
Given hvo WFSTs A and B, the composition operation 

takes the output labels of A as the input labels of B and con- 
struct a new WFST C, denoted as C = A 0 B .  Each state of C 
is composed of a state of A and a state of B, and each successful 
path p of C is composed of a path po of A and a path pb of 9, 
with i[pl=i[pJ,o[pJ~i[p~,o[p~l~o[pl.  and w[pl=w[pJ+ 
w[pJ. Table.1 is the complete composition algorithm. We need 
to especially note that if there are E transitions existing in both 
A and B, as illustrated in FigS, there will be several possible 
concatenation sequence ofp. and p b  to form the path p of C. For 
example, in Fig2 if we try to go from state 4 , 1 >  of C to state 
<3,2> of C, there are 5 different routes: 
I . <  1,l >-x 42 >-x 2,2 >+< 3,2 > 
2.< 1,1>-+< 2,l >-x 2,2 >-K 3,2 > 
3. c: 1,1 >+< 2,l >-x 3,l >-x 3,2 > 
4. < 1,l >-K 2,2 >--1< 3,2 > 
5.  < 1,1>+< 2,1>--1< 3,2 > 
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These 5 different routes all have exactly the same score, and we 
need to have further mechanism in the algorithm to pick up one 
of them. 

HMMmodelH 
Pronunciation 

lexicon L 

Fig.4 An example of a bi-gram FSA language model 

# o f  
transitions # of states 

343 589 ' 
349,432 287,920 

Fig.5 WFST A and WFST B with null transitions 

Beamwidth(104) 
Real-time 

factor One-Pass - 
Tree-Copy Character Search accuracy 

Tzy 

S<>MPOSE<A, B) 
I: Let A = ( Q e 3  &, F,, C,, A,, 6,) 
2: T A : ~  R = (Qs, it,, Fb, Et,, A,, 6s) 
3: i -+= (ia2 ;it.) 

8: F+Y)  
G:  += E, 
7: A += Atz 
8: d (r 8 

d: Q t {i) 

0: 

11: 
12: 
1~3: 
14: 

I& 
Io: P P U (sa 1 40) 
17: end if 

1 9  6 - + = d U T  
20: 
21: 
22. 
23: end if 
24: end for 
25: end while 
as: return (9, i, 3; E, A: 6) 

Table.1 Algorithm for Compositionoperation 

1 0  s t {i) 
while s # v) do 

(ya,yh) t= all e l c r r L e l z t  i n  s 

c2 e= cz U (<i<., Qd 
C= -9 \ (q-,  qa) 

if qn E Fa and g b  E 2?, then 

18: 7' + T I C A N S ( q - ,  q h ,  sa, 6s) 
for all <qL,q;} E T' do 

if <y:z,y&) 6 Q then 
s -+= s U <&* 9;) 

3.6 Viterbi Beam Search 
After we have composed the three WFSTs together, the 

HMM niodel H, the pronunciation Lexicon L and the language 
model G, we have S := H o L o G , we can implement viterbi 
beam search on S. Given S =C Q,n, F ,C,  A, 6 >, state q 

E Q, input label 06 1 , output label XE A , respective pdf 
B, f o r o ,  a feature vector 0, at time I ,  we can compute the best 
score of state q at timet, S(q,r), as: 

min S(q',l - I )+  B,,(o,)+w, s(q,r) = 8(<',d=(q,x,".l 

where w is the transition weight from q' to 4 . 
when t = 0, 

10 I1 12 13 14 15 16 

1.4 1.82 2.43 3.29 4.56 6.36 8.82 

81.6 82.7 83.2 83.4 83.6 83.8 83.8 

662 725 856 1049 1281 1558 1737 

where and represent active and inactive respectively. At 
each timet, we call a state q with S(q,f) # 0 an ucfive state. At 
time 0, only the initial state is activated, and along with the tran- 
sition within the WFST, the number of activated states increases 
rapidly. With limited computing power, we can't keep all the 
activated states when the number of them becomes too big. We 
can apply the m e  beam pruning strategy as we did in the one- 
pass search to keep those smes with highest S(q,l) only. 

FST-based 
search 

4 EXPERIMENTS 

In this section, we campare the efficiencies of tbe two de- 
coders, the one with one-pass tree capy search and the one with 
WFST, in terms of speed and memory requirements along with 
achieved character accuracies. 

The acoustic models consist of 151 initial-final sub-syliabic 
units, including I12 Initials, 38 Finals, and a silence. The acous- 
tic features we used is 39-dimentiona1, including 13 MFCCs and 
delta and delta delta MFCCs. The 60K-word trigram language 
model is estimated on a 40M-character corpus of news from the 
Central News Agency at Taipei for year 1997-1999, smoothed 
with Good-Turing discounting by SRI Language Modeling 
Toolkit. The test set consists of 100 Mandain broadcast news 
collected from News98 Radio Station at Taipei in September 
2002. The total length is 0.7 hours. The experiments are imple- 
mented on a computer with AMD Opteron 246 CPU and 8 GB 
RAM. 

Table 2 is the number of states and arcs of the WFST, and 
Table 3 is the comparison of the running time, characYex accu- 
racy, and memory usage of the two search programs with differ- 
ent Viterhi beam widths. The comparison between them may be 
better examined by the two C U N e S  in Fig5.and Fig.6. We can see 
that at the same running time, the character accuracy of the 
WFST approach is always higher than the traditional one, while 
the growth rate of the memory usage is lower. 

,,"LO, 

0.74 1.04 1.45 2.03 2.74 3.69 4.80 

78.0 81.3 83.1 84.2 84.8 85.2 85.3 

752 779 802 824 838 850 868 

factor 

accuracy 

(ME3 - 

I Tri-'an- I 1,529,442 1 11,430,683 I puaee model G - ~ - ~  I H o L 0 G- 1 19,696,373 1 29,700,249 1 
Table2 Number of states and transitions used in WFST 
in the experiment 

Table.3 Comparison ofthe two decoders 
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5 DISCUSSIONS 

In this paper, we propose a miniature system to integrate 
different element models, H, L, G, for large vocabulary speech 
recognition, and we found it has comparable or better perform- 
ance. M.Mohri further proposed some methods to promote 
FST‘s efficiency, such as the algorithms for determination [3], 
minimization [4]. E -removal [4], and weight pushing [6]. Given 
a non-deterministic WFST A, we can find an equivalent deter- 
ministic WFST B aRer the determination process. A determinis- 
tic WFST has fewer active states than non-deterministic one. 
After minimization, we can further find an equivalent C with 
minimal states. These algorithms all can help us further reduce 
the vast search space and have the decoder find the best path in a 
shorter time. Since not all non-deterministic WFSTs can he 
determined, C.Alluzen [7] proposed an optimization algorithm 
lo transfer a non-determinable WFST A to an equivalent B but 
determinable. D.Caseiro [8] also proposed a method to lower the 
large number of memories required in the process of determina- 
tion. With these algorithms implemented, it is believed the sys- 
tem performances can be funher improved. 
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