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Abstract 

This paper investigates the robustness of model reference 
adaptive control(MRAC) of a class of uncertain dynamical sys- 
tem using state information. The controller structure used here 
is quite standard in the literature of adaptive control, and the 
parameter update law adopted here incorporates some magnified 
leakage term like the well-known o-modification[ll]. But unlike 
MRAC of systems with only 1/0 measurement, the scheme pre- 
sented here can be robust to arbitrarily high level of matched un- 
certainties(besides its robustness to some degree of mismatched 
uncertainties). It is also worthwhile to point out that such 
scheme differs from those proposed in the literature of (adaptive) 
robust control is that the strong robustness is obtained under no 
high-gain condition and hence there is no phenomenon for the 
possibility of saturating the input channel. Furthermore, the 
present adaptive controller remains to have asymptotic tracking 
capability in the ideal case, which is hardly obtained by conven- 
tional (adaptive) robust controller under practical design. 

1 Introduction 

The control of uncertain systems has attracted the attention 
of system theorists for a long time. By this we mean that the 
system or, to be more precise, the model of the system, contains 
uncertain elements which may be nonlinear and/or time-varying 
and are unknown or imperfectly known. Furthermore, the con- 
trol input may be contaminated by measurement error. Under 
such a circumstance, one tries to design a control such that the 
plant has certain satisfactory properties. 

Recently, robustness of uncertain systems with matched un- 

certainties were proved by Chen and Leitmann [2], where the 
matched uncertainty with arbitrarily large strength is shown sta- 
bilizable by a fixed robust control law. They also showed that 
in the absence of matching assumptions the proposed control 
law remains a stabilizing one provided the uncertainty is small 
enough. While in the adaptive literature, Coreless and Leitman- 
n [4] first construct a class of saturation-type adaptive robust 
controllers with state measurement error. The control gain is 
tuned adaptively to deal with the unknown uncertainty bound. 
In Chen [l] and Wu et al. [8], adaptive control algorithms uti- 
lizing concave function are presented to overcome the unknown 
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uncertainty bound. In the absence of input uncertainty, two 

new classes of adaptive robust control schemes were developed 
by Chen [3]. Both uncertain dynamics and measurement noise 
are considered but at the price that the tracking error(state) 
~ ( t )  does not converge to the origin even in the absence of those 
non-idealities. 

In this paper, we present a model reference adaptive control 
(MRAC) scheme which is robust to different types of uncertain- 
ties. The proposed adaptive controller adopted the standard 
structure [6] with a parameter update law augmented by some 
magnified leakage term similar to the well-known a-modification 
[ll]. This kind of modified update law is not new to the literature 
of MRAC with only 110 information, i.e., state is not accessi- 
ble. Therefore, the present scheme is shown to similarly possess 
the robustness to both matched and mismatched system uncer- 
tainties, which can be nonlinear and time-varying unlike [7], and 
the capability of asymptotic convergence when in the ideal case. 
Furthermore, the residual set of the tracking error(state) is such 
that the magnitude of the limiting time-average of the squared 
error is of the order of the levels of uncertainties and some design 

constant uo inside the leakage term. But, here what is better for 
the present scheme is its robustness to arbitrarily high level of 
matched uncertainties, which is hardly obtained in the literature 
of MRAC[6][11]. It is, however, worthwhile to point out that the 
proceeding feature is obtained under no high-gain condition like 
what has usually been assumed explicitly or implicitly[l][3][8]. 

As a result, the control force does not have any indication to be 
large for possible saturation problem. 

The layout of this paper is as follows : The first section is 
the introduction. The problem of the adaptive tracking control 

of the uncertain plants is formulated in section 2. The design 
and analysis of robust model reference adaptive control system 
is presented in section 3. Section 4 is the simulation. Section 5 

is the conclusion. 

2 Problem Formulation 

Let the class of plants to be controlled here be described as 
follows : 
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where x E R" is the state vector, U E R" is the vector of control 
inputs, Ao(., .) : R" x R+ 4 R"'" and B(.,.) : R" x R+ + WXm 
are C'(continuous1y differentiable) with respect to both I and 
t ,  and for any control U = u(z,t) which is also C' with respect 
to both x and t the solution trajectory exists. Now suppose the 

control task is to drive the system (2.1) to follow the following 

reference model : 

where x, E R" denotes the reference state, r E Rm denotes the 
vector of reference exogenous inputs, and (A,,,, B,,,) is a stabi- 
lizable pair such that A,,, itself is a Hurwitz matrix. Then, the 
problem to be solved here is clearly how to design the vector of 
plant inputs U such that the control task can be fulfilled, namely, 

x(t) + xm(t) as closely possible when t + 00 

This problem is generally hard t.o solve and can be made more 
tractable if the following assumptions about (2.1) are satisfied : 

The system (2.1) can be rearranged in the following form : 

wherep1,p2 E R+,plAAI(x,t) and plABI(x,t)uaregen- 
erally termed as mismatched uncertainties whereas p2BmA 
A4x, t)  is generally called matched uncertainties, and B' E 
Px" is not known a priori so that B,B*z represents the 
parametric uncertainty (in contrast with the former non- 
parametric uncertainties with levels yl and p2, respective- 

ly). 

The upper bound on IlO'lll is assumed to be known apriori 
as Oms=( II.lI1 denotes the one-norm of the argument vector 
or the induced one-norm of the argument matrix). 

The nonlinear time-varying Uncertainties in (2.3) satisfy 
the following cone-bounded conditions : 

for some gi 2 0, i = 1,2 , .  . . ,5, where 1 )  . 1 1  denotes either 
the matrix norm or the Euclidean vector norm depending 
on its argument. 

This new form (2.3) with the system properties (2.4) implies 
that the system behavior of the original plant in fact is domi- 
nated by that of a linear plant : 

provided p1 and pz are small, or equivalently that (2.5) is the 
nominal model of the original plant (2.1). 

Remarks : 

It should not be difficult to rewrite (2.1) into the form 
(2.3). In general, we can first linearize (2.1) around the 
origin to obtain 

~ = A I + B u  

where A = ~ J z . = o , t = o  and B = -1==o,t=o. SUP- 
pose that (A, 8 )  is a controllable pair, then there exists a 

matrix IC E PXn such that A -  BK = A, is a Hurwitz 
matrix. If we further define B, = B, then the linearized 
system is indeed (2.5) with 0' = IC. 

In thesecond, let Ao(x,t)z-Az = jllAA1(2,t)+pZBmAAz 

( q t )  and Bo(z,t)  - B = plABl(x,t) ,  we readily obtain 
(2.3). It is noteworthy that AAl(z,t),AAZ(s, t ) ,  and AB1 
(x, t )  can be arbitarily fast time-varying with the inequal- 
ities (2.4) being satisfied. 

(2) One should note that BmPz is actually one kind of matched 
uncertainty. Therefore, the expressions @.I)? (2.3), (2.5) 
implicitly imply that (A, + B,,,B')s represents the maxi- 
mum parameterizable information available from Ao(E, t) 
so that p2 (level of matched uncertainty) can normally be 
kept small. 

Based on the expression (2.3) of the plant, we can derive the 

error system conforming the control task by subtracting (2.2) 
from (2.3), namely, 

1 = A,e + B,(u + B'x - r + pzAA?(z, t)) 

+pi(AAi(z,t)  + A B i ( 2 , t ) ~ )  (2.6) 
A where e = x - xm will be referred to  as error state. Now, we 

can restate the problem in the context of robust model refer- 
ence adaptive control as follows : devise a continuous control 
law U = u(b,x,t), where b is an estimate of B', as well as a pa- 
rameter update law 4 = O ( b , x ,  t) so that e ( t )  approaches zero 
asymptotically in the ideal case, i.e., p1 = pz = 0, and e ( t )  con- 
verges to a small residue set asymptotically when p1 and pz are 
not zero but generally small, i.e., the control has to be robust to 
the existence of nonparametric uncertainties. Furthermore, the 
limiting time average of the squared error satisfies 

where IC is an increasing function with p1,  p2, and uo separately, 
and K(O,O,O) = 0. 
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3 Robust Model Reference 
Adaptive Control 

Under the problem formulation in the previous section, it is 
quite natural to devise the control law as : 

using certainty equivalence principle [6]. By this design, we em- 
phasize that this is really a continuous control so long as the 
parameter update law is well specified and the reference inputs 
are themselves continuous. 

Now, let the parameter update law be chosen as : 

4 = -(e - e*) = @ ( 6 , x , t )  = -BlfPexT - du 
. d -  

(3.2) 

where P E Rnxn is a positive definite matrix satisfying the Lya- 
punov equation $(A;P+PA,) = -& for some positive definite 
matrix &, and U = d i u g ( u l , ~ ~ ~ , u , )  with 

= { uo(l+ 11e1111x11) otherwise 

dt 

0 if ~ll i i l l l  I nemor,i = 1 , 2 , . . . , n  
7 

(3.3) 
where 0, denotes the i-th column of e .  

To investigate the effectiveness of this adaptive control, we 
adopt the popular Lyapunov analysis, i.e., by constructing a Lya- 
punov function V(e, 4) as follows : 

V(e, 4) = - 2 Y eTPe + T~(J+))  (3-4) 

and then evaluating its time derivative along the solution trajec- 
tories of (2.6), (3.2). The investigation will first be performed in 
the ideal case in which the error system (2.6) will become 

(3.5) d = Ame - Bm4x 

50 that the time derivative of (3.4) becomes : 

1 V(e, 4) = [;e'(AfP + PA,)e - eTPBm4x 

+Tr[dT(-B;PexT - du)] 

= -eTQe - Tr[4*64 
n 

5 -PIIeIIz - CUi(IIPiIIz - IIdiIIlIIerIIi), (3.6) 

where q = A,i,(Q) and 0; denotes the i-th column of 0'. It is 
clear from (3.3) that 

i=l 

ui(IIdiI12 - IIjiIIlIIef 111) 2 :lldiIIi(IIe îIIi - nIlerIIi) (3.7) 
and, hence, (3.6) satisfies V 5 -qllellz. Then, boundedness of 

all signals is clear, and the asymptotic convergence of the error 
state to the origin can be concluded via Barbdat's lemma [6]. 

But in the presence of nonparametric uncertainties, (2.6) be- 
comes 

e = Arne - Bmdz + pzBmAAZ(x, t )  

+ ~ i ( A A i ( x , t )  + A B i ( x , t ) ~ ) ,  (3.8) 



where K1 = suptzo - k l ( x ,  pi ,  pp ,  Om,,, t) and ( ,  represent the i-th 
column of C. From (3.9), there exist 71,72 > 0 such that 

v I -71v + 72v; + vi,  (3.16) 

where 

to derive the following 

(3.20) 

where Kp = suptzo ICz(*, p l ,  p2,uo, t )  and Nz is the subset of N 
such that Nl and Nz are disjointed and NI U NZ = N. For 

convenience of presentation, we define 

to further reduce (3.20) to 

Now, we can conclude from (3.16) and (3.21) that the value of V 
defined in (3.9) will eventually fall into a residual interval [0, &I, 
where & = max[R1, Rz] with Rz = (q)', and hence 
that the global stability of the adaptive system is established. 
Now, we are in a position to present the main results of this 
paper in the following theorem : 

Main Theorem : There exist pi > 0 such that for all p1 E 

[O,p;)  and under the adaptive control law (3.1)-(3.3), all sig- 
nals in the closed-loop systems (2.6) remain globally uniformly 
bounded. In addition, the state tracking error will converge to 
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the residual set 

1 to+T 
Re = {e ' Flo l l e ( T ) l I Z d T  5 1{3(k1,P2rcO)} 

(3.22) 
where K3 is a positive function of the order pl,  pz,  and oo, i.e., 
Z(3 is an increasing function with itl, i iz,  and 00 separately, and 
1C3(O,0 ,O)  = 0. Moreover, in the absence of uncertainties, the 
state tracking error will converge to zero asymptotically. 

0 

Proof : Please refer to [lo]. 

with rl = 10, andrz = -10. Simulation plots are depicted in 
Fig. 1 where satisfactory tracking performance is shown. 

Another physical example in (31 for the control of pendulum 
motion is given as : 

E ( t )  = A z ( t )  + Bu(t)  + (f - A z ( t ) )  

with z ( t )  = [zl(t),z2(t)lT, where 

1 A = [  ! ) 2  ! 3 ] . B = [ ; ] J = [  -sZn(z)-q(t)cos(z) 
x2 

k m ( t )  = A z , ( t )  

Remarks : 
The precondition for the global stability of the adaptive 
system is that p1 must be small enough, which implies 
that the mismatched uncertainties have to be small. How- 
ever, there is no constraint on the strength of the matched 
uncertainties. Therefore, the matched uncertainties can 
not destroy the global stability of the closed-loop system 
while the parameter update law is turned on. Neverthe- 
less, the larger the matched uncertainties are, the larger 
pz and, hence, r are and so that the tracking performance 
degrades because the size of the residual set grows. 

and q ( t )  = random[-l,l]. Since the controller in [3] is only for 
regulation, we choose the reference model to be 

(2) The magnified leakage term in adaptation law (3.2) pulls 
the drifted parameters back can generally avoid the prob- 
lem of instability, which is very similar to the case of M- 
RAC systems with only 1/0 measurements. Notwithstand- 
ing this, it may lead to conservative bounds associated with 
(3.20) and, perhaps, the adaptive system may have fluctu- 
ating transient. Since the bound obtained by Lyapunov 
function analysis is usually not as tight as the one the 
adaptive system actually has, we claim that the transient 
behavior of the proposed scheme is anticipated to be good 
as will be observed in the illustrative simulated examples 
in the next section. 

4 Simulation Examples 

To illustrate effectiveness of the scheme proposed in this pa- 

per, we consider the following system with some nonlinear un- 
certain dynamics : 

where pi = 0.01 and pz = 10. A simple reference model is chosen 
as: 

and the Lyapunov matrix P to be 

5 1  

P = [ i  r ]  
The control force used in the scheme in [3](Fig.(2.d)) is ap- 

parently larger than the one used in the scheme proposed here 
(Fig.(Z.c)) since the former is witch high gain nature. In Fig.(2.a) 
and Fig.(2.b), the trajectories of the states resulting from the 
present scheme are depicted in solid line whereas those resulting 
from the scheme in [3] are in dashed line. Although applying the 
smaller control force, the present scheme in this paper seems to 

yield slightly faster transient response. 

5 Conclusion 

This paper presents an MRAC for a class of dynamical sys- 
tems with nonlinear timevarying uncertainties. Under the as- 
sumption of state accessibility, the robustness against input, mis- 
matched, and arbitrarily high level of matched uncertainties is 
shown. Further, the present control retains the capability of 
asymptotic convergence of the tracking error (state) in the ideal 
case. But in the presence of uncertainties, the residual tracking 
error is such that the limiting time-average of its square is of the 
order of the level of uncertainties and the design constant 00. S- 
ince no high gain concept is adopted in the presented scheme, the 
control force is generally more acceptable than those generated 
by the schemes in [1][3][8], which is supported by the numerical 
simulation provided in the end. Ongoing research will concen- 
trate on the development of the observer-based adaptive robust 
control scheme for a more practical environment for implemen- 
tation. 
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