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Abstract 

Microarray technology and experiment can produce 

thousands or tens of thousands of gene expression 

measurement in a single cellular mRNA sample. Selecting 

a list of informative differential genes from these 

measurement data has been the central problem for 

microarray analysis. Many methods to identify 

informative genes have been proposed in the past. 

However, due to the complexity of biological systems, 

each proposed method seems to perform nicely in a 

particular data set or specific experiment. It remains a 

great challenge to come up with a selection method for a 

wider spectrum of experiments and a broader variety of 

data sets. In this paper, we take the approach of method 

combination using data fusion and rank-score graph 

which have been used successfully in other application 

domains such as information retrieval, pattern 

recognition and tracking, and molecular similarity search. 

Our method combination is efficient and flexible and can 

be extended  to become a general learning system for 

microarray gene expression analysis.

1. Introduction 

DNA microarrays are now capable of providing 

genome-wide measurements of gene expression across 

different conditions [1, 2]. One way to analyze these 

results is to determine observed significant differences 

and to select a list of most informative genes for further 

investigation [3]. Traditional statistical analyses such as 

pair t-test require replications of observation. However, 

since experiments using microarrays are costly and time 

consuming, most experiments are currently done without 

replications. Additionally, microarray data may contain a 

high level of noise due to its subtle nature. Therefore, the 

major challenge of microarray data analysis is to infer 

significant genes from the large number of measures 

given only a small number of samples. 

Various approaches have been developed to solve this 

issue. However, it is often pointed out that there is no 

single method which is always the best in every study. 

The outcomes of different methods may differ 

substantially. This discordance causes difficulties in the 

interpretation of the data set. Moreover, it is unclear 

which method should be applied to new unknown data 

sets. However, the prevailing phenomenon implies that a 

gene is significantly worth further analyzing, if it is 

identified as an informative one in most commonly used 

methods. Thus, combining meaningful results from 

different methods seems to be a promising approach. 

Recently, combination method and data fusion have 

been studied in a variety of different application domains 

such as information retrieval [9, 12, 18], pattern 

recognition [19], and molecular similarity searching [6]. 

There are basically at least two approaches to combine 

results from different methods. One is based on result 

intersection, where ones that are in results of all or most 

methods will be selected. The other is based on result 

integration, where score or rank of all methods integrate 

together using certain linear function or non-linear 

function to form a new score and ones with higher ranked 

measure will be selected. Method combination and data 

fusion fall under the second approach. 

In this paper, we apply method combination and data 

fusion to analyze large data set from microarray 

experiments. We examine and combine 2 sets of 6 

methods chosen from a total of 9 methods covering 5 

parametric and 4 nonparametric gene selection methods 

for identifying informative genes: unpaired t-Test [8], 

paired t-Test, Fisher [16], Golub [7], SAM [17], TNoM 

[3], Wilcoxon rank sum test [15], Park [14] and WEPO 
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[4]. Each of the methods and combinations were 

evaluated by using precision measure on two publicly 

available dataset: Notterman et al [13] and Kuriakose et al

[11] dataset. In each of the two sets of combination of 6 

methods, we explore all the possible 63 = 26-1 

combinations. We use the concept of a rank-score graph 

proposed in [9] to study the performance results of each 

of the two 63 combination experiments applied to the two 

data sets. Our experiments showed that method 

combination produces some very interesting patterns in 

the sense that certain combination does perform better 

than its individual part in microarray analyses. In many 

cases, genes selected by our combination approach are as 

informative as each of individual methods in the 

biological interpretation with the added advantages of 

efficiency and flexibility. Moreover, we observe that the 

combination of two heterogeneous and well-performing 

methods may achieve the best performance for microarray 

data. This phenomenon is in consistence with our 

previous research [5] and with those observed in other 

application domains (eg. [6, 12, 19]). 

The rest of this paper is organized as follows:  Section 

2 discusses our combination methods. Section 3 describes 

the experiments (using 2 sets of combining 6 methods 

from the 9 gene selection methods and two datasets) for 

comparing individual and combination selection methods. 

Section 4 presents the result. Section 5 contains 

conclusions and suggests future research directions. 

2. Method Combination 

The proposed approach consists of two stages: the rank 

stage and the combination stage. In the first stage (rank 

stage), all genes in the interested dataset are ranked 

according to each of the selected methods. In this regard, 

each gene in the collection is assigned a score (which can 

be a measurement of variance, deviation, correlation, or 

probability) depending on a specific method. A ranking of 

the genes in the data set results from sorting them by their 

scores. The second stage (combination stage) is the 

process of combining the rank list obtained from the first 

stage.  

When combining 2 or more ranked lists, we use the 

average rank combination. In other words, suppose we 

have N ranked lists Ri, Ni ,...,2,1 and M genes 

gj, Mj ,...,2,1 . For each gene gj, we calculate a score 

which is the combined average ranking of that gene, 
N

i

jij NgRgf
1

1 /)()( . Sorting )( jgf into ascending order 

gives rise to a new ranking R* which is the resulting 

combined ranks. See [6, 18] for more details on 

combination method and data fusion. 

3. Experiments 

In the experiments, the combination method was 

applied to combine different gene selection methods. We 

then use a metric called precision to evaluate the 

performance on two different available datasets:  

Notterman et al [13] and Kuriakose et al [11] dataset. It 

measures how informative the selected genes are with 

respect to their established biological interpretations. We 

used the known informative genes in these datasets that 

have previously been proposed and confirmed to some 

extent by these authors to compute precision. In the 

following, we describe the datasets, precision calculation 

and gene selection methods in more detail. 

3.1. Data Sets 

In the following, we describe the two datasets used in 

the experiments: DS1: Notterman et al [13], and DS2: 

Kuriakose et al [11].

DS1: Adenocarcinoma data set;

The expression profile associated with this data set was 

collected by Notterman et al [13]. The Notterman team 

obtained 18 paired colon adenocarcinoma normal tissue 

samples from the Cooperative Human Tissue Network. 

The experiment was performed with the Human 6500 

GeneChip Set (Affymetrix oligonucleotide array). The 

data set consists of 7457 genes and 18 paired samples, in 

which 18 are labeled “carcinoma” and 18 are labeled 

“normal”. Additionally, Notterman et al. applied 4-fold 

relative expression to choose informative genes and 66 

genes (1.78% of those detected) had been picked with 

significant difference between tumor tissue and the 

normal samples. 11 of them were confirmed by reverse 

transcription-PCR (RT-PCR), which were used to 

measure the precision of each gene selection method and 

combination methods. 

DS2: Head and Neck Squamous Cell Carcinoma 

(HNSCC) data set;

In the study Kuriakose et al [11] of head and neck 

squamous cell carcinoma (HNSCC), RNA’s extracted 

from 22 paired samples of HNSCC and normal tissue 

from the same clones were hybridized to the Affymetrics 

U95A chip. Forty two differentially expressed probe sets 

(18 up-regulated and 24 down-regulated) were selected 

for further validation by hierarchical clustering, multiple 

probe-set concordance, target-submit agreement, and RT-

PCR analysis. 

3.2. Precision of known informative genes 

One reasonable way to evaluate a gene selection 

method is to measure the precision of known informative 

genes that were previously confirmed to be among the top 

selected genes. The precision we used is defined 
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as

G

R

i

GRP

G

i i),(
, where R is a ranking list, Ri is 

the top n elements in the ranking which include i genes in 

G, and G is a list of known informative genes.  

3.3. Gene selection methods 

In this paper, the following selection methods to 

identify information genes are considered: (A) unpaired t-

test [8], (B) paired t-Test, (C) Fisher [16], (D) Golub et al 

[7], (E) SAM [17], (F) TNoM [3], (G) Wilcoxon rank 

sum test [15], (H) Park et al [14], and (I) WEPO [4]. The 

first 5 are of parametric nature while the last 4 are non-

parametric.  

In our study, we use two sets of 6 selection methods 

M1: (A), (C), (D), (F), (G), and (I), and M2: (A), (B), (E), 

(G), (H) and (I). Each of the M1 and M2 consists of both 

parametric and non-parametric selection methods. 

4. Results 

For each of the 2 data sets DS1 and DS2, we 

considered 2 sets M1 and M2 of 6 selection methods 

mentioned above to compute scores for each gene. Three 

experiments E1, E2, and E3 (E1: DS1+M1, E2: DS2+M1, 

and E3: DS2+M2) are conducted. In each experiment, all 

possible 63 combinations are considered and rank-score 

graphs are drawn. 

Figure 1 demonstrates the precision of rankings for 

each individual and combination methods on the two 

datasets. Table 1 provides the detail of the corresponding 

rankings coded in Figure 1 for each experiment. The 

rankings are arranged with their number of methods 

combined and then the goodness of the corresponding 

precision. Figure 2 exhibits the rank-score graph of each 

individual method in these experiments. 

In Figure 1, we see that the non-parametric methods 

almost outperform the parametric ones in each experiment. 

However, as we mentioned above, there is no “super star” 

methods. For example, Wilcoxon (G) is the best one for 

dataset DS1 when using precision measure and performs 

better than TNoM (F), but the reverse occurs for dataset 

DS2. 

Nevertheless, Figure 1 displays a more exciting result 

that the performance of a combination of several methods 

is better than the worst case of each individual. As the 

number of methods combined increases, the minimum 

precision of rankings with the same number of methods 

combined increases, but the maximum drops when the 

number used is greater than two. The precision reaches 

the peak, which is higher than the one of any individual 

method, when combining two proper methods in each 

experiment. Moreover, the combination methods perform 

better if the individuals used are better in Table 2. A good 

instance can be found in the experiment shown in Figure 

1 (c), where Wilcoxon (G), Park (H) and WEPO (I) are 

the top 1, 2, and 3 respectively when we use individual 

methods to rank. When combining two methods, the 

combination of any two of method G, H, and I are still the 

top ones. The same situation holds even enlarging the 

number of methods combined. The combination of G, H, 

and I is the best when combining three methods. Then, 

SAM (E) is included when combining four methods, and 

it is the top 4 on its own. Unpaired t-Test (A) is the next 

one to be added when combining five. Finally, paired t-

Test (B) is added, since its performance is the worst. 

Similar phenomenon happens in the other two 

experiments. 

Furthermore, by observing the rank-score graph in 

Figure 2, we found that the combination of two 

heterogeneous and well-performing methods will achieve 

better performance. Take dataset DS1 as an example. The 

combination of WEPO (I) and TNoM (F) resulted in the 

highest precision. The combination of WEPO (I) and 

Wilcoxon (G) is the next, and then follows the one of 

TNoM (F) and Wilcoxon (G). In Figure 2, the distance 

between the curve of I and of F/G is longer than that 

between F and G. In other words, method I is more 

different to F than F to G on the rank-score graph. The 

power of heterogeneous combination is also observed on 

each experiment. 

5. Discussion and Conclusion 

We have demonstrated that the combination method is a 

robust and efficient approach for microarray data analyses.

From Figure 1, it is clear that no single gene selection 

method, at least until now, performs effectively across 

different data sets (and experiments) in different 

application domains. Results obtained in this paper using 

the combination methods shows that a combination 

approach almost always performs better than the less 

efficient individual, and in many cases, better than both in 

the cases of 2-combination. More significantly, the 

combination of two heterogeneous and well-performing 

methods achieves the best performance than any 

individual one in all tested datasets. All of this evidence 

indicates that method combination is highly likely to be a 

viable approach for microarray gene expression analysis 

on any dataset. 

There are several other advantages of our combination 

methods for microarray data analyses. We mention only 

two characteristics: efficiency and flexibility. Sorting a 

list of n genes with assigned scores takes n*logn steps. 

Moreover, combination of m rank lists should take no 

more than m*n*logn steps. Calculation in the method 

combination becomes simple and easy to understand. 
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Selection of efficient and effective combinations would 

facilitate fast process and operation. 

The proposed method is independent of each gene 

selection method. Individual selection method can be both 

parametric and nonparametric. Combination methods can 

use rank or score combination. In this paper we only use 

rank combination. Moreover, rank combination allows 

individuals the choice of using consensus building or 

voting, while score combination facilitates the options of 

using various linear, non-linear, or weighted combinations. 

Compared to other methods such as clustering association, 

or self-organized maps, method combination is more 

flexible as the outputs of both stages of the combination 

process are rank lists for the collection of genes. 

The proposed method can be adapted to different 

application domains which may call for different 

combination algorithms. One of our long-term goals is to 

construct a system which can learn from the environments 

and phenomena in its application domain, and then evolve 

to become a more intelligent expert system in that 

particular domain. 

In this paper, we described the method combination 

and have taken up our investigation using average linear 

combination of rankings to combine two or more gene 

ranking methods. Future work will explore other ways to 

combine different gene ranking methods. In other 

direction but closely related to the current study, Hsu and 

Palumbo [10] consider the rank space as a Cayley graph 

and examine how data fusion and method combination 

work in that graphical model. 
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Figure 1. Precision v.s. combination in 3 experiments, E1, E2, and E3. (a) E1 = DS1 + M1, (b) E2 = DS2 + M1, and (c) E3 

= DS2 + M2.
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Table 1.  The corresponding combination of methods coded in Figure 1. The columns record results from the experiment 

described in Figure 1 (a), (b), and (c), respectively.

Index E1:DS1+M1 E2:DS2+M1 E3:DS2+M2 Index E1:DS1+M1 E2:DS2+M1 E3:DS2+M2

1 A A B 33 CFG FCD IGB 

2 C C A 34 AGI GFA IEA 

3 D I E 35 CGI GFC GAH

4 F D I 36 AFI IFA IGA 

5 I G H 37 CFI IFC IAH 

6 G F G 38 DFG IGD GEH 

7 AC AC BA 39 DFI GFD IEH 

8 AD IC BE 40 DGI IFD IGE 

9 CD IA BH 41 FGI IGF IGH 

10 AF CD GB 42 ACDF IGAC BEAH 

11 CF AD EA 43 ACDG GACD GBEA 

12 AG GC IB 44 ACDI IACD IBEA 

13 CG GA AH 45 ACFG IGAD GBAH

14 AI FC GA 46 ACFI IGCD IGBA 

15 CI FA IA 47 ADFG FACD IBAH 

16 DF GD EH 48 CDFG GFAC GBEH 

17 DG ID GE 49 ACGI IFAC IBEH 

18 DI IG IE 50 ADGI GFAD IGBE 

19 FG FD GH 51 CDGI GFCD GEAH

20 GI IF IH 52 ADFI IFAD IGBH 

21 FI GF IG 53 CDFI IFCD IGEA 

22 ACD GAC BEA 54 AFGI IGFA IEAH 

23 FAC ACD BAH 55 CFGI IGFC IGAH 

24 ACG IAC GBA 56 DFGI IGFD IGEH 

25 ADF GAD IBA 57 ACDFI IGACD GBEAH 

26 CDF GCD BEH 58 ACDGI IFACD IBEAH 

27 ADG FAC GBE 59 ACDFG GFACD IGBEA 

28 CDG IAD IBE 60 ACFGI IGFAC IGBAH 

29 ACI ICD GBH 61 ADFGI IGFAD IGBEH 

30 ADI IGA EAH 62 CDFGI IGFCD IGEAH 

31 CDI IGC GEA 63 ACDFGI IGFACD IGBEAH 

32 ACG FAD IBH 

(a) (b)

(A) unpaired t-test, (B) paired t-Test, (C) Fisher, (D) Golub et al, (E) SAM, (F) TNoM, (G) Wilcoxon rank sum test, (H) Park et al, and 

(I) WEPO.
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(c)

Figure 3. rank-score graphs of each gene selection 

method in three experiments. The denotations of (a), (b) 

and (c) are the same as the ones of Figure 1. 
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