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Abstract

In this paper, a new Constant—Rotation DCT processor
architecture using CORDIC techniques, CRDCT, is
proposed. This newly proposed DCT architecture is
composed of a linear array of identical CORDIC processing
elements. Since each processing element is identical, this
architecture is especially suitable for VLSI implementation
and the costs of design and implementation are reduced.
The breadboard implementation of 8—point
Constant—Rotation DCT is also given in this paper to verify
the correctness of the CRDCT.

1. Introduction

In the decade since the introduction of discrete cosine
transform (DCT) [1], it has found a number of applications
in image processing [2] and, more recently in speech
processing &] It has been shown that the DCT performs
very close to the statistically optimal Karhunen—Loeve
transform (KLT) for a large number of signal classes [4]553].
Therefore, many special architectures for computing T
have been invented. Since it is used mostly in various signal
processing applications, the DCT processors with real—time
computation capabilities are required urgently. Some DCT
architectures [6,7] were proposed to meet this requirement.

In the recent paper, a novel concurrent CORDIC
architecture [8] for computing DCT has been proposed by
the authors. Although the concurrent DCT architecture is
very attractive due to its high throughput rate; however, it
requires N/2 different COR%)IC processors. From the view
points of design and implementation, such an approach is
not cost—effective. In order to overcome this drawback, a
new constant—rotation DCT (CRDCT) architecture, based
on CORDIC techniques, is presented in this paper. Figure 1
shows the system block diagram of the architecture, and
Fig.2 shows the inner structure of the so—called "CRDCT
processor’. From Fig.2, it is clear that CRDCT processor is
composed of a linear array of identical PEs
(constant—rotation CORDIC processor) combined with
some ’accumulator—rtings’. Because all PEs are identical,
this design is especially suitable for pratical VLSI
implementation of high speed DCT chips.

This paper is organized as follows: Section II describes
the preliminary mathematical backgrounds ,called ’index
partitions’ [8]. Section III presents the CRDCT architecture.
The results of breadboard implementation of an 8—point
CRDCT processor is given in section IV. Conclusions and
discussions are presented in the final section. Proofs of
selected lemmas are given in Appendix.

II. The Index Partitions
The DCT of a real input sequence x(k) is defined by
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N—1
Y(n): 2¢ (n) z x(k)Cos[ 7|'(2k+1 )n ] (1)
—~ % 7N

where N is the transform length. The corresponding inverse
DCT (IDCT) is defined as

N—1
x(k) = ) c(n)Y(n)Cos| _7_(2_]2‘;_1)_’1_] @
k=0
where c(n) is given by
C(n) = 7___;_ ,for n=0 (3)
= 1 ,otherwise

In order to achieve high speed computation of DCT, a
specific index partition is performed. In what follows, we

assume that the transform length N equals to 2m, where m
is an integer, and demote n and k, respectively, as the
indices of output and input. The output index n is now
partitioned into m subsets as follows. Let ZN be the set

{0,1,....N—1}. The following lemma forms the basis of the
index partition given in corollary 1.

Lemma 1: The integer set Zy is the disjoint union of

the integer subsets,
Ai = {2i(2j+1) }

where jis in {0,1,...,2" 711 } and i in {0,...,m—2}, and

-1
Ay ={02""} (4)
then
m—1
Zny= U A
N i=0 1

where Ai n Aj is an empty set, for i#j.

For the ease of explanation, some functions and sets are
defined in the following. Let Wy and Ry denote the sets {

1,3,5,...,.2N~1 } and { 0,1,2,...,N/2—1 }, respectively. Let g
be a function defined from Zy; to Wy by

g(x)=2x+1 (5.a)
where x belongs to Zy, and fy bea function from WyxZy

to Ry by



fy(kn) =N — (kn mod N),if kn > N/2 (5.b)

= kn mod N ,otherwise

where k belongs to Wy and n belongs to Zy-

Corollary 1: The integer set Ry is the disjoint union of

the integer subsets,
B, = { 2i(2j+1) }

where jis in { 0,1,...,2% 3 2—1 } and i in { 0,..,m3 }

—2
Bm—2 =1 2 }
B, ={0} (6)
and
m—1
Ry= UB.,
N i=0 1

where B; n Bj is an empty set, for i#j.

Since CORDIC processors [9,10] can be used to compute
sine and cosine functions simultaneously, the transform
kernels of DCT can be changed to pairs of these two
functions. The function fN defined in (5.b) is used to map

the input indices, say k, and output indices, n, to the
corresponding PE. Obviously, WN is the set of input

indices, ZN is the output indices set, and RN is the set of
PE’s identification address.

On the basis of the symmetric property of DCT given in
[8, eqn.(14)], Y(n) and Y{(N-n) is a sine—cosine function
pair. In fact, each sine—cosine function pair corresponds to
an accumulator pair. Hence, there are N/2 function pairs
and N/2 CORDIC processors are required. In the following
section, we will modify the concurrent CORDIC DCT
processor (8] into a more cost—effective one, the so—called
CRDCT processor.

III. The Constant—Rotation CORDIC DCT Architecture
According to the coordinate rotation concepts [9,10],
rotation by if equals to rotation by # i times successively.
This leads to the CRDCT architecture which cascades
identical CORDIC processors in the form of linear array.

A. System Overviews

Since Yﬁn) and Y(N-n) is a function pair [8], only the
first half of the output indices need to be considered.
Furthermore, the first half of the output index set, say
Zy /2 equals to Ryy. From Corollary 1, the output index set

ZN /2 can be decomposed into m subsets and one can obtain

the following lemma intuitively.
Lemma 2: For any x in WN and y in Bi’ and

fy(xy) =t
then ris also in Bi‘

From Lemma 2, each element in subset Bi can be
mapped to the same set Bi via the function fN' Since the set
ZN 2 denotes the output index set and RN denotes the

address of PE, the implication of Lemma 2 is that for any
given input with index x, the results of the y—th output
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accumulator pair, where y betongs to ui, are computed by
those PEs with address r in the same B,. Therefore, there
are m accumulator—rings in this architecture.

In order to meet the timing requirements of the
accumulator—rings, there is a side effect that both inputs
and outputs need permutations. The input and output
permutations are described in the following subsections,
respectively.

B. Input Reordering . .
From the symmetric properties of cosine and sine

functions, for each =n, the inputs x(k), x(N/2-k-1),
x%‘l /2+k5, and x(N—k—1) should be computed at the same
PE. Therefore, only the first quarter of input indices will be

considered. The rest part of input can be reordered
according to the symmetric properties. Hence, the input
index set is reduced to WN /4

The longest accumulator—ring is used to determine the
input sequence of CRDCT. Surprisingly, the first quarter of
input index set, say WN & and the largest subset, B, of

Ry, are equal. Now a binary operator oy is defined over B,
to form a cyclic group as follows:

Let GN={ By ; ey } be a group, where @y is a binary
operator defined over B0 and the definition of eN is given
by

x8yy =N —(xy mod N) , if xy > N/2 (8)

= xy ,otherwise

Table 1 shows the operations of ® 6 Since we want to

simplify the data transfers between these accumulators, the
data stored in these accumulators are shifted along the

ring—paths in each clock period. Thus for a given PE, the
operation table of group Gy must in the form as Table 2.

Note that Table 2 exhibits itself as a cyclic group [11].
Therefore, if one can find, at least, one generator in group
GN’ then the generator can generate the required input

sequence. Table 3 shows the case of N=16. The following
lemma shows that 3 is a generator of Gy and thus complete

the input ordering processes.

Lemma 3: 3 is a generator of group GN.

Proof: See Appendix—1.

Since the above consideration concerns only on the first
quarter of the input indices, the overall input sequence is
constructed using the symmetric property. The last step in
designing this architecture is to add some delay buffers in
appropriate PEs to ensure the correctness of the timing. An
example of 16—point CRDCT is given in Fig.3.

C. eorderin

Once the input sequence order is determined, the
output sequence is also determined. Because the output
sequence of each ring can be found from Table 2, it is
obviously that output sequence is also gemerated by a
generator. Thus, 3 is used to generate the output sequence,
too. The function hi is first degned as follows.




hy(x) = 2'x 9)

The output sequences of accumula_xtor—rings associated

with the index set B; is hi(SJ under ®y), for
=0,1,...,20 27,

For example, the 16—point CRDCT processor consists

of 4 sets of accumulators. The output order corresponds to

By is ho(aJ under ®,¢), for j=0,1,2,3, i.e. { 1,3,7,5 }, and so
forth. Thus, refer to Fig.3, these accumulators can be
assembled according to their locations. Because the

accumulators appear in pairs, the order of the final results is
{1,15,2,14,3,13,4,12,7,9,6,10,5,11,0,8 }.

IV. The Breadboard Implementation
Since the newly proposed CRDCT architecture is
suitable for implementation, an 8-point CRDCT is
implemented in breadboards. The block diagram of this
implementation is shown in Fig.4. The input device is a 4x4
keypad with hexadecimal number. The output devices are
7-segment LED displays.

This implementation takes 8—bits input data and
produces 8-bits output DCT coefficients. The internal
precision for computation is 12-bits. The breadboard
implementation proves that the round off error is within
1/256. Each CORDIC processor is identical and with
rotation angle 1416, the picture of a CORDIC PE is given
in Fig.5. The block diagram of the designed CORDIC
processor is shown in Fig.6.

The approximating values of Cos[r/16] and Singr/ 16]
are 251/256 and 50/256, respectively. Only MSI and SSI are
used in this implementation, such as inverters, adders,
multiplexers, aud registers. Each CORDIC processor is
constructed by 64 TTL chips. The overall breadboard
implementation is shown in Fig.7. The theoretical maximum
clock rate is about 12MHz and the maximum working clock
rate is SMHz.

V. Conclusions and Discussions

In this paper, a new CORDIC—based DCT processor,
CRDCT, is proposed. This new DCT processor is composed
of a linear array of identical CORDIC processors combined
with some ’accumulator-rings’. Because each PE is
identical, the cost of design and implementation are
reduced. The breadboard implementation verifies the
correctness of the proposed approach.

Appendix—1
Proof of Lemma 3:

We will prove the lemma by proving Z’»"S(Nﬁ)_1 =-1
mod N/2, where ¢(.) is Euler’s ¢ function. Since €N is

similar to the operation mod N/2 and (N/2—1)2 =1 (mod
N/2), then the proof will be 3"/® = N/2 — 1. Note that
aN/8 _ (1+ 2)N/8 and the expansion of the formula is:

N8 (14 g)N/8

(N2 /) (N/B-2)]3 +
(N/4)(N/8-1)(N/8—2)(N/8=3)/3 + ... + 2

N/4 + (N/4)(N/8-1)+

N/8

Consider the expansion under the operation oy, we first
take modulo N. The expansion becomes
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14 22m5 91 (g N)
=1-2""1 (mod N)
= 9™ 41 (mod N) > N/2

Thus, '
CATAJI YO )
=N/2-1=-1,
and the proof is complete.
®16 1 3 5 7
1 1 3 5 7
3 3 7 1 5
5 5 1 7 3
7 7 5 3 1
Table 1.
T e a b c
e e a b c
a a b c e
b b c e a
[ c e a b
where b is a2 and ¢ is a3
Table 2.
®16 1 3 7T 5
1 1 3 7 5
3 3 7 5 1
7 7 5 1 3
5 5 1 3 7
Table 3.
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Fig.3 A 16-point Constant-Rotation DCT Architecture
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Figur: 4. The block-diagram of the CRDCT Breadboird Implementation
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Figure 6 A specific CORDIC processor with rotation angie ;‘6
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Figure 7. The overall breadboard implementation.
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