
A World-Wide Web Server on a Multicomputer System *

Chun-Hsing Wu, Chun-Chao Yeh, and Jie-Yong Juang
Dept. of Computer Science and Information Engineering

National Taiwan University
Taipei, Taiwan, 10617

Fax: 8 8 6- 2- 3 6 28 16 7
Email: juang@csie.ntu.edu.tw

Abstract
As the number of people browsing the world-wide

web increases explosively, workload of popular web
servers also increases rapidly. A multicomputer sys-
tem, that was designed f o r 1/0 intensisve applications
has been found to be quite suitable for serving as a web
server. The system is composed of multiple clusters of
multiprocessors interconnected by an interconnection
network. The interconnection network is an ATM- like
cell-based switching network which can be restructured
so that the system can be scaled up to meet the in-
creasing demands of web service. It is also found that
the multicomputer system can support video streams
eflectiuely. Design of the system as well as porting of
web servers on to it will be discussed in this paper.

1 Introduction
Since the initial World-Wide Web prototype was

developed in 1990, it grows rapidly and becomes the
most popular system on the Internet in recent years
[2]. According to the Internet Domain Survey con-
ducted in January 1996, about 76,000 sys t em now
have the registered domain name www. up from only
600 in July, 1994 [9]. Due to the increasing demands
of web requests, it becomes a critical issue for a web
server of a popular site to offer high performance and
guarantee high availability. A web server must be
able to serve multiple simultaneous requests promptly
even in its peak time. Besides, from the informa-
tion providers’ point of view, the provided information
of each server will accumulate as the time passes by.
Therefore, it is desirable for a web server to be scal-
able and to support better information searching ca-
pability. In the near future, supporting video streams
will also become a basic requirement for a web server.
Accordingly, highly-available, scalable machine with
strong 1/0 capability will be necessary to run a web
server.

To address these issues, we are developing a world-
wide web server on top of a multicomputer machine
designed and implemented in our laboratory. The ma-
chine uses a multistage switching network to connect
multiple clusters of multiprocessors. Each processor

*This work was partially supported by the National Science
Council under grants NSC84-2221-E-002-004, and NSC85-2221-
E-002-029.

can either be a simple CPU module, or with individ-
ual storage devices and/or network adapters attached
depending on the needs of applications. As a result,
multiple 1/0 devices can be accessed concurrently to
provide higher 110 bandwidth than single-bus ma-
chines. An ATM-like cell-based interconnection net-
work is designed to support more predictable and more
efficient inter-processor communication. In addition,
its restructurable architecture also makes the machine
scalable. The web server on the machine will identify
different kinds of requests and assign them to the pro-
cessors optimized to handle the type of requests. The
web server can also work well as a proxy web server.
Furthermore, with our multicomputer, a simple repli-
cation strategy can be applied with little overhead to
achieve high availability.

In the following sections, we will describe the char-
acteristics of existing W W W systems and the avail-
ability issues first. Some related works are also dis-
cussed. Then, we present our multicomputer platform
in Section 3. In Section 4, a general software struc-
ture of a web server proposed for multicomputers like
ours is depicted. An implementation of the server is
discussed in Section 5. Section 6 draws conclusions.

2 Issues of WWW Servers
In World-Wide Web, user agents use the

application-level stateless Hypertext Transfer Proto-
col (HTTP) [3] to request documents or other kinds
of objects from web servers (or from proxies/gateways
to other Internet servers). In practice, a browser es-
tablishes a T C P connection to a web server before
requesting a document. After fetching a document,
it disconnects the connection immediately. The web
server will feed the browser the document or just redi-
rect it to contact other servers. A document may be
a text file, either in plain format, in HTML, an im-
age, or a motion-picture file. I t also may be a virtual
document, actual da ta of which is generated on-the-
fly. Most servers support Common Gateway Interface
(CGI) for virtual documents. Database queries and
search requests can be implemented by this mecha-
nism. There is also an extension to HTTP called
server-push to handle dynamic documents consisting
of multiple parts. Server-push allows implementation
of simple animation, nevertheless it may occupy a con-

522
1087-4089/96 $5.00 0 1996 IEEE

nection for a longer time.
To reduce the network traffic, a browser may con-

tact a local proxy server (or caching server) for remote
documents. The proxy server fetches remote docu-
ments for the browsers and then keeps a copy in its
local disk. Next time if some request wants the same
document, it may directly feed the browser with the
local copy [SI.

According to several trace analysis studies [4, 1, 51,
small documents are accessed more frequently than
large documents. This observation is consisteriit with
the general web page design rule to $eep the front page
small. Most documents are read-only or not modified
frequently comparing with ordinary files. For those
virtual documents generated by database access, they
usually invoke search queries which niay involvle large
volume of read-only files. In summary, small files are
accessed in most simple connections, and read-only
file access contributes to most disk activities. The
phenomena yields another opportunity for optimizing
a web server.

In a web server, disk write access is performed
mainly in log operation, and in caching remote doc-
uments in local disks in case of a proxy server.
Disk write in these cases is usually write-once, arid
the cached remote documents are always discardable.
These features make the traditional weak consistency
model of network file systems suitable for a web server
and alleviate the consistency overhead in replicating
files. Besides these, the link inform.ation in a hyper-
text document may give a hint t1ia.t indicates which
files will be requested soon. The link: information rnay
be used to design a more effective b’uffer replacement
algorithm than that in a general file system.

Many browsers are multi-threaded. They are able
to simultaneously send multiple requests for in-lined
images within a HTML document. It can increase
the concurrency of a web server, but it also reduces
the nuniber of users that a web server can serve dur-
ing peak time. Besides, a request .may occupy T C P
connection for a long period of time if it’s request-
ing for a large file or is connected from a low-speed
network. For a proxy server, it will need more connec-
tion capability to serve local proxy clients and fetch
remote documents while no cached file is available.
However, there is limitation on the available connec-
tions of a server due to the shortage of operating sys-
tem resources such as limited T C P ports, mbuf, pro-
cess table, etc. Fine-tuning the system will solve the
problem, but will not solve it definitely.

Existing rsedirection mechanism in HTTP p-rotocol
can be adopted to improve the availability and scala-
bility [3]. Requests received by a central web nrachine
can be redirected to a pool of web machines. This
approach alleviates the workload of the central web
machine, but it incurs network and. connectiori over-
head in redirection. In addition, t h e central web ma-
chine may still be the hot-spot of the machine groups.
Furthermore, the same document returned by two dif-
ferent machines in the groups will be considered by
clients or proxy servers as two different copies. It
makes the global caching scheme ineffective.

In the design of NCSA’s scalable web server [6], a

523

Round-Robin DNS approach is designed for distribut-
ing requests among a cluster of web servers, which
share the same alias host name. The authoritative
DNS server in the cluster acts as avirtual router to dis-
tribute requests by rotating through the web servers
that are alternately mapped to the shared alias name.
This design eliminates the single point of failure, and
it can dynamically increases the capacity of the vir-
tual server. However, result of the name resolving
will be cached in a client’s local name server for a
period of time. Any further resolving request to the
same local name server, even from different clients,
will reuse it before the mapping is expired. This may
make the load distribution among the server cluster
uneven. One method proposed to alleviate this effect
is to shorten the time-to-live value for each resolv-
ing result, and then the name servers of clients will
query again soon, but the DNS queries will increase
the global traffic.

In the design of our proposed web server, it dis-
tributes the requests transparently and more evenly
among several clusters of multiprocessors. It also can
tolerate single point of failures. Before describing the
design of the web server, we present the multicomputer
architecture first.

3 The NTU Cost-effective Multicom-
puter Clusters

In this section we present a cost-effective rnulticom-
puter architecture, called SIGMA (System-Integrated
Growable Multicomputer Architecture) , developed a t
National Taiwan University. The goal of the project
was to develop a clustered machines to offer better
cost-performance ratio than conventional supercom-
puters. In stead of using expensive custom design ap-
proach, the NTU SIGMA machine is developed with
off-the-shelf components. It leverages the latest micro-
processor technologies, and integrate computing com-
ponents together with a proprietary interconnection
network.

3.1 Architecture overview
Figure 1 shows an example of SIGMA multicom-

puter architecture with 64-node connection. The sys-
tem consists of two major entities: computing nodes
and network subsystem. The computing node can be
as simple as a CPU module, or can be a complete com-
puter with proper 1/0 capabilities. The network sub-
system is a multistage interconnection network(M1N).
For instance, in Figure 1, the MIN is a three-stage
Clos networ%[7], in which each stage consists of six-
teen four-by-four switching elements. Each comput-
ing node contains a SIGMA Network Interface(SN1)
to connect its bus interface to a port of the MIN.

3.2 SIGMA computing nodes
Ehch computing node consists of a CPU module

and some optional 1/0 modules. Connection between
modules is via a standard 1/0 bus, arid thus a vast
array of commodity I/O adapters can be used in the
node[lO]. Each node is physically separated from each
others. Communication between nodes is achieved by

SIGMA cell-communication networkiSCCN1
SIGMA-nodes r I

I 64x64 MIN I

Figure 1: The SIGMA multicomputer architecture -
A 64-node example

message passing through the internal network subsys-
tern. Messages can also be delivered through conven-
tional LANrLocal Area Network) facility if LAN de-
vices are plugged into the nodes. The distributed na-
ture of the architecture allows the system to survive
device failures. All nodes are not necessary to be the
same. Heterogeneous nodes can be in the system. Al-
though most of system devices are separated located,
system resources can be shared effectively through the
communication facilities, the MIN or the plugged-in
LANs.

3.3 SIGMA cell communication network
The network subsystem, SIGMA Cell Communi-

cation Network(SCCN), consists of two major parts:
SIGMA network interface(SNI), and a cell switching
network. A message is chopped into small fixed-sized
data entities(cells), before it goes into the switching
network, and the cells are reassembled a t the desti-
nation nodes. The SNI take charges of 1. network
protocol conversion (data partition/reassembling), 2.
data buffering, 3. cell header checking/generating, 4.
network link serialization/de-serialization, 5 . cell re-
transmission and link level flow control. In case of
transmitting, packets are irijected into SNI through
the bus interface. Then, they are converted into cells
and stored in cell trarisrriitting buffer. As soon as cells
go into the buffer, they will be fetched out and serial-
ized for sending through the network immediately, cell
by cell, whenever the requested channels are available.
Upon receiving, similar operation steps in reverse di-
rection will be performed on the cells. To overlay
computing (protocol processing) and communication
(cell sending/receiving), we use dual port RAM as cell
buffer in the SNI. Also, we allow transmitting buffer
and receiving buffer be rrianipulated concurrently. In
addition, SCCN is a self-routing network based on

(external)

. :

. : . . / .

. :

. : .

. j .
((;;hi 7

1
,,i.”’ 9 j

S I G - n o d e s : .______._._..______..______ i

/netowk SIGMA c e l l (SCCN) communication

: S C C N - L ~ ,

Figure 2: A configuration of SIGMA multicomputer
system with 64 nodes

the destination information carried in the cell header.
Cells in the network can therefore be routed individ-
ually.
3.4 Cluster-based multicomputer system

The SIGMA multicomputer system is designed not
only for parallel computing, but also for interactive
computing. Therefore, each node occupies larger
spaces than that in MPP(Massive1y Parallel Proces-
sor) systems. It is hard to put too many nodes all
together in a PCB board. One common solution is to
partition nodes into several clusters. In SIGMA multi-
computer system, each cluster consists of several pro-
cessor nodes and a on-board interconnection network
with an architecture similar to that shown in Figure 1
but with fewer stages. Figure 2 shows an example of
partitioning a system of sixty-four nodes network into
sixteen clusters, with four nodes in each cluster.
3.5 Features of SIGMA multicomputer

Some features of the SIGMA multicomputer make
SIGMA machine feasible to run a web server, although
it can be applied to other applications as well. First,
the system is expansible (scalable). To meet huge sys-
tem resource demands of large scale web servers, size
of a SIGMA machine is allowed to be incrementally
increased. Upgrading of SIGMA system can be made
on module-by-module basis. For instance, one can
simply insert one CPU module to enhance comput-
ing power, instead of adding a whole computer(1ike
PC/Workstation) to the system as it is needed in
the case of PC/workstation clusters with conven-
tional LAN interconnection. Besides, customized in-

machine

524

terconnection network of the SIGMA machine pro-
vides higher bandwidth and better system resource
sharing. Second, the system allows concurrent 1/0
operations. Different from scientific computing, Web
service is more I/O-oriented, especially in disk 1/O and
networking. The SIGMA machine is a share-nothing
architecture. Each node of it would be attached to
disk modules and network modules. Consequently, it
provides not only large aggregated computing power
and system memory, but also large bandwidth of disk
and network I/O. In addition, design of the SIGMA
interconnection network also providles efficient com-
munications to facilitate concurrent I/O.

3.5.1 hardware flow control

Flow-control supported at the hardware level con-
tribute to the fast message-passing communication
in SIGMA. It prevents data loss due to receiving
buffer overflow (in hubs or in destination nodes). For
a connection-oriented communication, any da ta loss
would require re-transmission of the packet. This
would waste bandwidth and cause significant commu-
nication delay. Although higher level flow-control pro-
tocols such as TCP/IP window-based flow-control can
also alleviate the problems, it incurs larger overhead,
and moreover it "avoids" the da ta loss problem, but
not guarantees to "prevent" the problem from hap-
pening.

3.5.2 cell-swit ching communication

Another important feature is the cell-switching. Cell
size in SIGMA is fixed at 64 bytes lasng. Four blytes of
the cell is designated as cell header:, two of them are
hardware hea.der, and the other two are cell adaption
layer header. Sixty bytes of da ta pa,yload can carry a
complete ATM cell (53 bytes) or a minimum length of
IP packet over Ethernet(6O bytes) which covers large
portion of small control packets(e.g., ICMP, ARP,
RARP packets) used in TCP/IP protocols. Sixty-
byte packet fits one SIGMA cell without any waste,
while it woulld need two ATM cells to carry such a
packet. Also', we support multicasting in the hard-
ware. Current version of SIGMA cell-switching net-
work can achieve multicasting within a cluster (four
nodes), and broadcasting(t0 all nodles) in the system.
To respond to a urgent packet quickly, an emergency
bit in the cell header can be set and will be identi-
fied by the hardware for immediate :processing. Other
benefits from cell switching versus packet switching
are summariaed as follows:

0 simple architecture: Comparing with variable
length(packet-based) architecture, cell-based ar-
chitecture is simpler. Simplicity of the architec-
ture results in better performance. It not only
simplifies control logics but also eases the man-
agement of random access buffers.

0 latency improvement: Small packet can interleave
with large packets. As an example shown in Fig-
ure 4, small packets like p 2 and p 5 can be sent out

+control E) nodes 0 hub [cell data +data

Figure 3: Worm-hole effects of transmitting a packet
across multiple switching hubs

quickly by interleaving with other large packets.
These packets may be blocked by the large pack-
ets in case of packet-switched communication. in
case of pack. Furthermore, transmission of large
packets can benefit from worm-hole effects of the
network as shown in Figure 3.

0 more predictable transmitting time: Characteris-
tics of cell-interleaving(Figure 4) in SIGMA net-
work subsystem make it more like a TDMA (Time
Division Multiple Access) network where network
bandwidth is divided into a set of time slots. Con-
sequently, the time to transmit a S-byte packet
can be limited to N * S / B , where N is the number
of nodes, and B is network bandwidth. Bounded
transmitting time is important for real-time ap-
plications such as providing real-time video/audio
streams in Web servers.

3.5.3 Cell pre-sink
To reduce communication latency, a cell pre-sink
scheme was applied, which asks all nodes in a clus-
ter receive(sink) all cells transmitted to the cluster in
advance before the cells are determined which nodes
they should go to exactly by the routing logics. Once
the routing tags of the cells are resolved, all nodes in
the clusters will be notified if they are the right desti-
nations. If yes, it continues to receive the rest of the
data, segments of the cells; if not, it just flushes the
pre-sink data of the cells and gets ready for next cells.
As a result, data can be sent at a full speed without
any delay due to routing tag processing.

4 Software Configuration of the Web
Server on SIGMA

Since the SIGMA multicomputer is flexible in 1/0
device arrangement, it allows a large variety of soft-
ware configurations for a web server. We propose a
configuration based on the world-wide web's run-time
behavior to take advantages of SIGMA architecture.

The proposed software configuration of our web
server is shown in Fig. 5 . It is composed of several
manager groups, each of which consists of several com-
puting nodes. Number of nodes in each group depends
on the workload of the web server and can be scaled up
or down when it is necessary. Note that a computing
node may run more than one kind of mangers at the
same time. Communication between two managers is

525

9 9

P I P 2 P3 P 4 P5

an example of packets transmission
(five nodes, each with a packet of size pi1

T D ~ T D Z TD3 TD4 TD5

o- time

case (a) : packet-switching

TD 2 TD5 TD3 TD4 TD1

0- 2 8 12 time

case (b) : cell-switching

Tpi: completion time for packet i

Figure 4: Cell interleaving

via the SIGMA SCCN switching network. However.
request managers, stream managers and proxy man-
agers, may also have connection to external LANs.
Caching can be done more effectively with this archi-
tecture since each computing node is assigned with a
specific task (or tasks) and it is easier to design ef-
fective caching schemes based on locality properties of
individual tasks.

4.1 Load sharing among request man-

While a request arrives a t the server, it is received
by a request manager. Instead of using a single request
manager, multiple request managers are asked to re-
ceive requests simultaneously. A distributed decision
method is used to distribute workload evenly among
them. In our design, all request managers share the
s a n e IF’ address. When a request packet arrives a t a
computing node where a request manager is running,
the low-level network module will peek off its source
IP address, and then apply a distributed decision al-
gorithm to determine whether to receive the packet or
not. It will be accepted directly by one of them and re-
jected by others. The distributed decision algorithm is
implemented in the driver. So when an HTTP request
is forwarded up to the high-level request manager, it’s
destined. Only one request manager will receive the
request, others will not even see the request. This
method reduces the overhead of the computing nodes.
Note that, in the connection with broadcast networks

agers

LAN I

I ILoad Sfafus Massages I/

Storage Managers Reouesrs Request
Managers

I I JFomarded Requests

Figure 5 : Software configuration of a world-wide web
server on SIGMA multicomputer

such as Ethernet, the computing nodes sharing the
same IP will also share the same physical network ad-
dress.

4.2 Load redistribution
Three load redistribution strategies are used in our

design to improve the web server performance. The
first one is for the request manager to directly serve
the request locally, the second is to redirect the re-
quest to another one, and the last is asking another
computing node for help. These three strategies are
applied to three different kinds of requests of differ-
ent natures. Requests for small documents are bet-
ter be served directly because the documents are of-
ten cached in the request manager’s memory buffers.
Requests for large files such as video streams usually
take longer time t,o process, and processing of some re-
quests will need to generate a virtual document such
as database query results. Request managers will redi-
rect the client sending these kinds of requests to some
stream manager for help. This approach will alleviate
the workload of request managers and improve the
availability. The third strategy is good for proxy re-
quests. Most current browsers are not able to redi-
rect proxy requests. Moreover, it’s difficult to trans-
parently create another TCP connection between the
client and another node to replace the existing C Q ~ -
nection (between the client and the request manager).
Thus, a request manager must handle all proxy re-
quests (requests to remote sites) by itself. This is fine
if the requested documents are cached. If not, the re-
quest manager will create a n extra TCP connection
to the remote server t o fetch the document. Usually,
these two connections may stay for a long time. TCP
connections are valuable resources in a web server, and
should be used more effectively. To solve this prob-
lem, a request manager will route the request to a
proxy manager if a local copy is not available. If, for-
tunately, the requested remote document is cached in
the proxy manager, it will directly return the docu-
ment to the request manager. Otherwise, it is the

526

proxy manager’s duty to fetch the remote document.
The remote IP address is used as the hash key so that
all proxy requests to the same remote site are handled
by the same proxy manager. Furthermore, the proxy
manager can prefetch or clean the cached documents
from the hyperlink information of the documents for
optimization. By carefully applying these three strate-
gies, the machine’s performance and availability could
be enhanced optimistically.
4.3 Video stream service

If all requests l o the same video are served by
the same stream manager, it will haxe better locality.
However, this may cause a problem. when a popu-
lar video program solicits a large number of requests
in the same]period. The load will not be distributed
evenly among the stream manager groups. So, the
hashing algorithm in a request manager will first redi-
rect all requests for the same videlo program to the
same stream manager, and each stream manager will
periodically broadcast its loading status to the request
managers. Once the number of requests to a stream
manager is larger than a threshold, request managers
will then take the source IP address into considera-
tion to choose a second stream manager. In addi-
tion to supporting load distribution, a status message
can also act as a probe message to check whether a
request manager or a stream manager is still alive.
Status broadcasting can be implemented by the low-
level multicast mechanism of the !3IGMA switching
network.

In SIGMA, accessing remote memories is faster
than accessing local disks. To improve the perfor-
mance of video stream service, a large file is parti-
tioned into pieces and stored in a set of stripped stor-
age managers. While a video file is requested, all of the
stripped storage managers will access their local disks
concurrently and then return the video program to
the agent via a single stream manager. Each stripped
storage manager simply keeps pieces of the file and
they can access disks concurrently. So the total time
to request a whole video file can be reduced.
4.4 Storage managers

There are three kinds of storage managers in the
system, namely cache storage managers, general stor-
age managers, and stripped storage managers. They
work together with proxy managers, request man-
agers, and stream managers respectively, and main-
tain remote documents, local files, and video files cor-
respondingly. A SIGMA computing node running one
of these managers should have locall disks attached.

Except for cached remote documents, local docu-
ments and video files are replicated so that serving
requests can continue even when disk failures occur.
Some of the reasons not to replicate remote documents
are:

1. Remote documents can be fetched again later
after the cache storage manager recovers from
crashes.

2. Leaving more disk spaces for caching other remote
documents results in better cache hit rate.

Figure 6: An implementation of the proposed world-
wide web server on an eight-node SIGMA multicom-
puter

3. Replicating files dynamically incurs some over-

At present, replicating local files and video files is done
by ii simple file duplication scheme since web files are
rarely modified by requests and inconsistency during
the period of file transfer can be tolerated.

5 Implementation
In this section we present an implementation of

the proposed world-wide web server on an eight-
node SIGMA multicomputer. The server is composed
of t,wo mirrored clusters as shown in Fig. 6. Re-
quest managers, proxy managers and stream managers
run in association with corresponding general storage
managers, cache storage managers, and stripped stor-
age managers. There are two stripped storage man-
agers in each cluster so that a large file can be seg-
mented into two stripes. Local files are replicated
in different clusters. Currently we are porting the
reference library and the HTTP server released by
the World-Wide Web Consortium onto our eight-node
SIGMA prototype. Each node runs FreeBSD Unix.
All nodes are also connected to an Ethernet LAN ex-
cept for the ones dedicated to stripped storage man-
agers.

Since the nodes running Request Manager A and
Request Manager B have the same IP address and
physical Ethernet address, all incoming packets des-
tined to the shared IP address will reach both Ether-

head.

527

net drivers. The drivers have been hacked to support
distributed decision method. In the current imple-
mentation, they only accept the packets with the least
significant bits of the IP address match their unique
node ID. The number of bits to be checked depends on
the number of request managers in the system. In this
way, all incoming requests are dispatched to Request
Manager A and Request Manager B intrinsically.

A request is routed to one of three manager groups,
and there are two managers in each group that can ac-
cept and serve requests concurrently. A video request,
on the other hand, will be served by two stripped
storage managers concurrently. This arrangement can
achieve high degree of load sharing and improve the
system availability.

In addition to serving requests concurrently and
accessing disks in parallel, request managers are de-
signed to utilize time locality. Small general docu-
ments are requested more frequently, and they tend to
be cached in the memories of request managers. Large
files or video streanis won’t be cached by request man-
agers; they are redirected to stream managers. Stream
managers with replicated stripped storage managers
are designed to explore space locality. Large disk
block, sequential block placement and prefetching disk
blocks for read are implemented in the file system of
stripped storage managers.

The system can be scaled up in different ways to
adopt the change of request distribution. If the total
number of requests increases, more computing nodes
can be added to run as request managers. If proxy
service becomes heavy, we should add more comput-
ing nodes to run proxy managers and cache storage
managers. If demands for video stream service in-
crease, more computing nodes for stream managers
arid stripped storage managers are required. On the
other hand, the system can also be scaled down grace-
fully when a manager or a cluster of‘ nodes fails to
work. The system will be able to continue to work
with degraded performance.

6 Summary and Conclusions
In this paper we demonstrate that Internet com-

puting is a suitable application of a multicomputer
system. The proposed web server is composed of sev-
eral groups of different managers. Each manager is ar-
ranged to run on one node of the multiprocessor clus-
ters. Using a distributed decision method and hash-
ing algorithms for dispatching request and redistribut-
ing workload, computing nodes can share workload,
concurrently handle requests, tolerate single point of
failure, and act as a virtual server transparently to
clients. By optimizing the processing of the three
kinds of requests independently, performance of the
web server can also be improved significantly, even for
video streams and caching remote documents. Thus,
we believe that a scalable multicomputer like ours is
suitable for serving as a web server.

References
[l] M. Abrams, C. R. Standridge, G. Abdulla, S.

Williams, and E. A. Fox, “Caching Proxies:

Limitations and Potentials,” Fourth International
World Wide Web Conference, 1995.

T. Berners-Lee, R. Cailliau, J. Groff’, and B. Poller-
mann, “World-Wide Web: The Information Uni-
verse,” Electronic Networking: Research, Applica-
tions, and Policy, Vol. 1, No.2, 1992.

T. Berners-Lee, R. Fielding, and H. Frystyk, ”Hy-
pertext Transfer Protocol - HTTP/l.O,” Internet
Draft, Nov. 1995.

H. Braun, and K. Claffy, “Web Traffic characteri-
zation: an assessment of the impact of caching doc-
uments from NCSA’s web server,’: Second World
Wide Web Conference, Oct. 1994.

R.J. Clark, and M.H. Ammar, “Providing Scalable
Web Service Using Multicast Delivery,” Second In-
ternational Workshop on Services in Distributed
and Networked Environments, 1995.

E.D. Katz, M. Butler, and R. McGrath, ”A Scal-
able HTTP Server: The NCSA Prototype,” Com-
puter Networks and ISDN Systems, Vol. 27, No. 2,
1994.

Y. J. Lin, J . M. Ho, C. C. Yeh, and J. Y. Juang,
“Design of a Switching Module for Large-scale
ATM Switch,” International Conference on Paral-
lel and Distributed Systems, Taiwan, pp. 399-408,
1993.

A. Luotonen, and Kevin Altis, “World-Wide Web
Proxies,” First International World Wide Web
Conference, 1994.

Network Wizards, “Internet Domain Survey,”
UR L:http://www. nw. com/zone/ W W W/top . html,
January 1996.

[lo] C. C. Yeh, J. T. Lin, W. C. Kao, C. H. Wu,
and J. Y. Juang, ” A Multicomputer Server for
I/O-Intensive Applications,” 12th I A S T E D Inter-
national Conference on Applied Informatics, Aus-
tria, 1995.

528

