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Abstract 
As the number of people browsing the world-wide 

web increases explosively, workload of popular web 
servers also increases rapidly. A multicomputer sys- 
tem, that was designed f o r  1/0 intensisve applications 
has been found to be quite suitable for serving as a web 
server. The system is  composed of multiple clusters of 
multiprocessors interconnected by an  interconnection 
network. The interconnection network is an ATM- like 
cell-based switching network which can be restructured 
so that the system can be scaled up  to meet the in-  
creasing demands of web service. It is  also found that 
the multicomputer system can support video streams 
eflectiuely. Design of the system as well as porting of 
web servers on  to it will be discussed in this paper. 

1 Introduction 
Since the initial World-Wide Web prototype was 

developed in 1990, it grows rapidly and becomes the 
most popular system on the Internet in recent years 
[2]. According to the Internet Domain Survey con- 
ducted in January 1996, about 76,000 sys t em now 
have the registered domain name www. up from only 
600 in July, 1994 [9]. Due to the increasing demands 
of web requests, it becomes a critical issue for a web 
server of a popular site to offer high performance and 
guarantee high availability. A web server must be 
able to serve multiple simultaneous requests promptly 
even in its peak time. Besides, from the informa- 
tion providers’ point of view, the provided information 
of each server will accumulate as the time passes by. 
Therefore, it is desirable for a web server to be scal- 
able and to  support better information searching ca- 
pability. In the near future, supporting video streams 
will also become a basic requirement for a web server. 
Accordingly, highly-available, scalable machine with 
strong 1/0 capability will be necessary to run a web 
server. 

To address these issues, we are developing a world- 
wide web server on top of a multicomputer machine 
designed and implemented in our laboratory. The ma- 
chine uses a multistage switching network to connect 
multiple clusters of multiprocessors. Each processor 
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can either be a simple CPU module, or with individ- 
ual storage devices and/or network adapters attached 
depending on the needs of applications. As a result, 
multiple 1/0 devices can be accessed concurrently to 
provide higher 110 bandwidth than single-bus ma- 
chines. An ATM-like cell-based interconnection net- 
work is designed to support more predictable and more 
efficient inter-processor communication. In addition, 
its restructurable architecture also makes the machine 
scalable. The web server on the machine will identify 
different kinds of requests and assign them to the pro- 
cessors optimized to handle the type of requests. The 
web server can also work well as a proxy web server. 
Furthermore, with our multicomputer, a simple repli- 
cation strategy can be applied with little overhead to 
achieve high availability. 

In the following sections, we will describe the char- 
acteristics of existing W W W  systems and the avail- 
ability issues first. Some related works are also dis- 
cussed. Then, we present our multicomputer platform 
in Section 3. In Section 4, a general software struc- 
ture of a web server proposed for multicomputers like 
ours is depicted. An implementation of the server is 
discussed in Section 5. Section 6 draws conclusions. 

2 Issues of WWW Servers 
In World-Wide Web, user agents use the 

application-level stateless Hypertext Transfer Proto- 
col (HTTP) [3] to request documents or other kinds 
of objects from web servers (or from proxies/gateways 
to other Internet servers). In practice, a browser es- 
tablishes a T C P  connection to  a web server before 
requesting a document. After fetching a document, 
it disconnects the connection immediately. The web 
server will feed the browser the document or just redi- 
rect it to  contact other servers. A document may be 
a text file, either in plain format, in HTML, an im- 
age, or a motion-picture file. I t  also may be a virtual 
document, actual da ta  of which is generated on-the- 
fly. Most servers support Common Gateway Interface 
(CGI) for virtual documents. Database queries and 
search requests can be implemented by this mecha- 
nism. There is also an extension to HTTP called 
server-push to  handle dynamic documents consisting 
of multiple parts. Server-push allows implementation 
of simple animation, nevertheless it may occupy a con- 
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nection for a longer time. 
To reduce the network traffic, a browser may con- 

tact a local proxy server ( or caching server) for remote 
documents. The proxy server fetches remote docu- 
ments for the browsers and then keeps a copy in its 
local disk. Next time if some request wants the same 
document, it may directly feed the browser with the 
local copy [SI. 

According to several trace analysis studies [4, 1, 51, 
small documents are accessed more frequently than 
large documents. This observation is consisteriit with 
the general web page design rule to $eep the front page 
small. Most documents are read-only or not modified 
frequently comparing with ordinary files. For those 
virtual documents generated by database access, they 
usually invoke search queries which niay involvle large 
volume of read-only files. In summary, small files are 
accessed in most simple connections, and read-only 
file access contributes to  most disk activities. The 
phenomena yields another opportunity for optimizing 
a web server. 

In a web server, disk write access is performed 
mainly in log operation, and in caching remote doc- 
uments in local disks in case of a proxy server. 
Disk write in these cases is usually write-once, arid 
the cached remote documents are always discardable. 
These features make the traditional weak consistency 
model of network file systems suitable for a web server 
and alleviate the consistency overhead in replicating 
files. Besides these, the link inform.ation in a hyper- 
text document may give a hint t1ia.t indicates which 
files will be requested soon. The link: information rnay 
be used to design a more effective b’uffer replacement 
algorithm than that in a general file system. 

Many browsers are multi-threaded. They are able 
to simultaneously send multiple requests for in-lined 
images within a HTML document. It can increase 
the concurrency of a web server, but it also reduces 
the nuniber of users that  a web server can serve dur- 
ing peak time. Besides, a request .may occupy T C P  
connection for a long period of time if it’s request- 
ing for a large file or is connected from a low-speed 
network. For a proxy server, it will need more connec- 
tion capability to  serve local proxy clients and fetch 
remote documents while no cached file is available. 
However, there is limitation on the available connec- 
tions of a server due to the shortage of operating sys- 
tem resources such as limited T C P  ports, mbuf, pro- 
cess table, etc. Fine-tuning the system will solve the 
problem, but will not solve it definitely. 

Existing rsedirection mechanism in HTTP p-rotocol 
can be adopted to improve the availability and scala- 
bility [3]. Requests received by a central web nrachine 
can be redirected to a pool of web machines. This 
approach alleviates the workload of the central web 
machine, but it incurs network and. connectiori over- 
head in redirection. In addition, t h e  central web ma- 
chine may still be the hot-spot of the machine groups. 
Furthermore, the same document returned by two dif- 
ferent machines in the groups will be considered by 
clients or proxy servers as two different copies. It 
makes the global caching scheme ineffective. 

In the design of NCSA’s scalable web server [6], a 
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Round-Robin DNS approach is designed for distribut- 
ing requests among a cluster of web servers, which 
share the same alias host name. The authoritative 
DNS server in the cluster acts as avirtual router to dis- 
tribute requests by rotating through the web servers 
that  are alternately mapped to the shared alias name. 
This design eliminates the single point of failure, and 
it can dynamically increases the capacity of the vir- 
tual server. However, result of the name resolving 
will be cached in a client’s local name server for a 
period of time. Any further resolving request to the 
same local name server, even from different clients, 
will reuse it before the mapping is expired. This may 
make the load distribution among the server cluster 
uneven. One method proposed to alleviate this effect 
is to shorten the time-to-live value for each resolv- 
ing result, and then the name servers of clients will 
query again soon, but the DNS queries will increase 
the global traffic. 

In the design of our proposed web server, it dis- 
tributes the requests transparently and more evenly 
among several clusters of multiprocessors. It also can 
tolerate single point of failures. Before describing the 
design of the web server, we present the multicomputer 
architecture first. 

3 The NTU Cost-effective Multicom- 
puter Clusters 

In this section we present a cost-effective rnulticom- 
puter architecture, called SIGMA (System-Integrated 
Growable Multicomputer Architecture) , developed a t  
National Taiwan University. The goal of the project 
was to develop a clustered machines to offer better 
cost-performance ratio than conventional supercom- 
puters. In stead of using expensive custom design ap- 
proach, the NTU SIGMA machine is developed with 
off-the-shelf components. It leverages the latest micro- 
processor technologies, and integrate computing com- 
ponents together with a proprietary interconnection 
network. 

3.1 Architecture overview 
Figure 1 shows an example of SIGMA multicom- 

puter architecture with 64-node connection. The sys- 
tem consists of two major entities: computing nodes 
and network subsystem. The computing node can be 
as simple as a CPU module, or can be a complete com- 
puter with proper 1/0 capabilities. The network sub- 
system is a multistage interconnection network(M1N). 
For instance, in Figure 1, the MIN is a three-stage 
Clos networ%[7], in which each stage consists of six- 
teen four-by-four switching elements. Each comput- 
ing node contains a SIGMA Network Interface(SN1) 
to connect its bus interface to a port of the MIN. 

3.2 SIGMA computing nodes 
Ehch computing node consists of a CPU module 

and some optional 1/0 modules. Connection between 
modules is via a standard 1/0 bus, arid thus a vast 
array of commodity I/O adapters can be used in the 
node[lO]. Each node is physically separated from each 
others. Communication between nodes is achieved by 
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Figure 1: The SIGMA multicomputer architecture - 
A 64-node example 

message passing through the internal network subsys- 
tern. Messages can also be delivered through conven- 
tional LANrLocal Area Network) facility if LAN de- 
vices are plugged into the nodes. The distributed na- 
ture of the architecture allows the system to survive 
device failures. All nodes are not necessary to be the 
same. Heterogeneous nodes can be in the system. Al- 
though most of system devices are separated located, 
system resources can be shared effectively through the 
communication facilities, the MIN or the plugged-in 
LANs. 

3.3 SIGMA cell communication network 
The network subsystem, SIGMA Cell Communi- 

cation Network(SCCN), consists of two major parts: 
SIGMA network interface(SNI), and a cell switching 
network. A message is chopped into small fixed-sized 
data  entities(cells), before it goes into the switching 
network, and the cells are reassembled a t  the desti- 
nation nodes. The SNI take charges of 1. network 
protocol conversion (data partition/reassembling), 2. 
data  buffering, 3. cell header checking/generating, 4. 
network link serialization/de-serialization, 5 .  cell re- 
transmission and link level flow control. In case of 
transmitting, packets are irijected into SNI through 
the bus interface. Then, they are converted into cells 
and stored in cell trarisrriitting buffer. As soon as cells 
go into the buffer, they will be fetched out and serial- 
ized for sending through the network immediately, cell 
by cell, whenever the requested channels are available. 
Upon receiving, similar operation steps in reverse di- 
rection will be performed on the cells. To overlay 
computing (protocol processing) and communication 
(cell sending/receiving), we use dual port RAM as cell 
buffer in the SNI. Also, we allow transmitting buffer 
and receiving buffer be rrianipulated concurrently. In 
addition, SCCN is a self-routing network based on 
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Figure 2: A configuration of SIGMA multicomputer 
system with 64 nodes 

the destination information carried in the cell header. 
Cells in the network can therefore be routed individ- 
ually. 
3.4 Cluster-based multicomputer system 

The SIGMA multicomputer system is designed not 
only for parallel computing, but also for interactive 
computing. Therefore, each node occupies larger 
spaces than that in MPP(Massive1y Parallel Proces- 
sor) systems. It is hard to  put too many nodes all 
together in a PCB board. One common solution is to 
partition nodes into several clusters. In SIGMA multi- 
computer system, each cluster consists of several pro- 
cessor nodes and a on-board interconnection network 
with an architecture similar to that  shown in Figure 1 
but with fewer stages. Figure 2 shows an example of 
partitioning a system of sixty-four nodes network into 
sixteen clusters, with four nodes in each cluster. 
3.5 Features of SIGMA multicomputer 

Some features of the SIGMA multicomputer make 
SIGMA machine feasible to run a web server, although 
it can be applied to  other applications as well. First, 
the system is expansible (scalable). To meet huge sys- 
tem resource demands of large scale web servers, size 
of a SIGMA machine is allowed to be incrementally 
increased. Upgrading of SIGMA system can be made 
on module-by-module basis. For instance, one can 
simply insert one CPU module to  enhance comput- 
ing power, instead of adding a whole computer(1ike 
PC/Workstation) to the system as it is needed in 
the case of PC/workstation clusters with conven- 
tional LAN interconnection. Besides, customized in- 

machine 
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terconnection network of the SIGMA machine pro- 
vides higher bandwidth and better system resource 
sharing. Second, the system allows concurrent 1/0 
operations. Different from scientific computing, Web 
service is more I/O-oriented, especially in disk 1/O and 
networking. The SIGMA machine is a share-nothing 
architecture. Each node of it would be attached to 
disk modules and network modules. Consequently, it 
provides not only large aggregated computing power 
and system memory, but also large bandwidth of disk 
and network I/O. In addition, design of the SIGMA 
interconnection network also providles efficient com- 
munications to facilitate concurrent I/O. 

3.5.1 hardware flow control 

Flow-control supported at the hardware level con- 
tribute to the fast message-passing communication 
in SIGMA. It prevents data loss due to receiving 
buffer overflow (in hubs or in destination nodes). For 
a connection-oriented communication, any da ta  loss 
would require re-transmission of the packet. This 
would waste bandwidth and cause significant commu- 
nication delay. Although higher level flow-control pro- 
tocols such as TCP/IP  window-based flow-control can 
also alleviate the problems, it incurs larger overhead, 
and moreover it "avoids" the da ta  loss problem, but 
not guarantees to  "prevent" the problem from hap- 
pening. 

3.5.2 cell-swit ching communication 

Another important feature is the cell-switching. Cell 
size in SIGMA is fixed at 64 bytes lasng. Four blytes of 
the cell is designated as cell header:, two of them are 
hardware hea.der, and the other two are cell adaption 
layer header. Sixty bytes of da ta  pa,yload can carry a 
complete ATM cell (53 bytes) or a minimum length of 
IP packet over Ethernet(6O bytes) which covers large 
portion of small control packets(e.g., ICMP, ARP, 
RARP packets) used in TCP/IP  protocols. Sixty- 
byte packet fits one SIGMA cell without any waste, 
while it woulld need two ATM cells to carry such a 
packet. Also', we support multicasting in the hard- 
ware. Current version of SIGMA cell-switching net- 
work can achieve multicasting within a cluster (four 
nodes), and broadcasting(t0 all nodles) in the system. 
To respond to a urgent packet quickly, an emergency 
bit in the cell header can be set and will be identi- 
fied by the hardware for immediate :processing. Other 
benefits from cell switching versus packet switching 
are summariaed as follows: 

0 simple architecture: Comparing with variable 
length(packet-based) architecture, cell-based ar- 
chitecture is simpler. Simplicity of the architec- 
ture results in better performance. It not only 
simplifies control logics but also eases the man- 
agement of random access buffers. 

0 latency improvement: Small packet can interleave 
with large packets. As an example shown in Fig- 
ure 4, small packets like p 2  and p 5  can be sent out 

+control E) nodes 0 hub [ cell data +data 

Figure 3: Worm-hole effects of transmitting a packet 
across multiple switching hubs 

quickly by interleaving with other large packets. 
These packets may be blocked by the large pack- 
ets in case of packet-switched communication. in 
case of pack. Furthermore, transmission of large 
packets can benefit from worm-hole effects of the 
network as shown in Figure 3. 

0 more predictable transmitting time: Characteris- 
tics of cell-interleaving(Figure 4) in SIGMA net- 
work subsystem make it more like a TDMA (Time 
Division Multiple Access) network where network 
bandwidth is divided into a set of time slots. Con- 
sequently, the time to  transmit a S-byte packet 
can be limited to N * S / B ,  where N is the number 
of nodes, and B is network bandwidth. Bounded 
transmitting time is important for real-time ap- 
plications such as providing real-time video/audio 
streams in Web servers. 

3.5.3 Cell pre-sink 
To reduce communication latency, a cell pre-sink 
scheme was applied, which asks all nodes in a clus- 
ter receive(sink) all cells transmitted to the  cluster in 
advance before the cells are determined which nodes 
they should go to exactly by the routing logics. Once 
the routing tags of the cells are resolved, all nodes in 
the clusters will be notified if they are the right desti- 
nations. If yes, it continues to receive the rest of the 
data, segments of the cells; if not, it just flushes the 
pre-sink data of the cells and gets ready for next cells. 
As a result, data can be sent at a full speed without 
any delay due to routing tag processing. 

4 Software Configuration of the Web 
Server on SIGMA 

Since the SIGMA multicomputer is flexible in 1/0 
device arrangement, it allows a large variety of soft- 
ware configurations for a web server. We propose a 
configuration based on the world-wide web's run-time 
behavior to take advantages of SIGMA architecture. 

The proposed software configuration of our web 
server is shown in Fig. 5 .  It is composed of several 
manager groups, each of which consists of several com- 
puting nodes. Number of nodes in each group depends 
on the workload of the web server and can be scaled up 
or down when it is necessary. Note that a computing 
node may run more than one kind of mangers at the 
same time. Communication between two managers is 
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Figure 4: Cell interleaving 

via the SIGMA SCCN switching network. However. 
request managers, stream managers and proxy man- 
agers, may also have connection to external LANs. 
Caching can be done more effectively with this archi- 
tecture since each computing node is assigned with a 
specific task (or tasks) and it is easier to design ef- 
fective caching schemes based on locality properties of 
individual tasks. 

4.1 Load sharing among request man- 

While a request arrives a t  the server, it is received 
by a request manager. Instead of using a single request 
manager, multiple request managers are asked to re- 
ceive requests simultaneously. A distributed decision 
method is used to distribute workload evenly among 
them. In our design, all request managers share the 
s a n e  IF’ address. When a request packet arrives a t  a 
computing node where a request manager is running, 
the low-level network module will peek off its source 
IP address, and then apply a distributed decision al- 
gorithm to determine whether to receive the packet or 
not. It will be accepted directly by one of them and re- 
jected by others. The distributed decision algorithm is 
implemented in the driver. So when an HTTP request 
is forwarded up to the high-level request manager, it’s 
destined. Only one request manager will receive the 
request, others will not even see the request. This 
method reduces the overhead of the computing nodes. 
Note that,  in the connection with broadcast networks 

agers 

LAN I 

I ILoad Sfafus Massages I/ 
# 

Storage Managers Reouesrs Request 
Managers 

I I JFomarded Requests 

Figure 5 :  Software configuration of a world-wide web 
server on SIGMA multicomputer 

such as Ethernet, the computing nodes sharing the 
same IP  will also share the same physical network ad- 
dress. 

4.2 Load redistribution 
Three load redistribution strategies are used in our 

design to improve the web server performance. The 
first one is for the request manager to directly serve 
the request locally, the second is to redirect the re- 
quest to another one, and the last is asking another 
computing node for help. These three strategies are 
applied to three different kinds of requests of differ- 
ent natures. Requests for small documents are bet- 
ter be served directly because the documents are of- 
ten cached in the request manager’s memory buffers. 
Requests for large files such as video streams usually 
take longer time t,o process, and processing of some re- 
quests will need to generate a virtual document such 
as database query results. Request managers will redi- 
rect the client sending these kinds of requests to some 
stream manager for help. This approach will alleviate 
the workload of request managers and improve the 
availability. The third strategy is good for proxy re- 
quests. Most current browsers are not able to redi- 
rect proxy requests. Moreover, it’s difficult to trans- 
parently create another TCP connection between the 
client and another node to replace the existing C Q ~ -  
nection (between the client and the request manager). 
Thus, a request manager must handle all proxy re- 
quests (requests to remote sites) by itself. This is fine 
if the requested documents are cached. If not, the re- 
quest manager will create a n  extra  TCP connection 
to the remote server t o  fetch the document. Usually, 
these two connections may stay for a long time. TCP 
connections are valuable resources in a web server, and 
should be used more effectively. To solve this prob- 
lem, a request manager will route the request to a 
proxy manager if a local copy is not available. If, for- 
tunately, the requested remote document is cached in 
the proxy manager, it  will directly return the docu- 
ment to the request manager. Otherwise, it is the 
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proxy manager’s duty to fetch the remote document. 
The remote IP address is used as the hash key so that 
all proxy requests to the same remote site are handled 
by the same proxy manager. Furthermore, the proxy 
manager can prefetch or clean the cached documents 
from the hyperlink information of the documents for 
optimization. By carefully applying these three strate- 
gies, the machine’s performance and availability could 
be enhanced optimistically. 
4.3 Video stream service 

If all requests l o  the same video are served by 
the same stream manager, it will haxe better locality. 
However, this may cause a problem. when a popu- 
lar video program solicits a large number of requests 
in the same ]period. The load will not be distributed 
evenly among the stream manager groups. So, the 
hashing algorithm in a request manager will first redi- 
rect all requests for the same videlo program to  the 
same stream manager, and each stream manager will 
periodically broadcast its loading status to the request 
managers. Once the number of requests to a stream 
manager is larger than a threshold, request managers 
will then take the source IP address into considera- 
tion to choose a second stream manager. In addi- 
tion to supporting load distribution, a status message 
can also act as a probe message to  check whether a 
request manager or a stream manager is still alive. 
Status broadcasting can be implemented by the low- 
level multicast mechanism of the !3IGMA switching 
network. 

In SIGMA, accessing remote memories is faster 
than accessing local disks. To improve the perfor- 
mance of video stream service, a large file is parti- 
tioned into pieces and stored in a set of stripped stor- 
age managers. While a video file is requested, all of the 
stripped storage managers will access their local disks 
concurrently and then return the video program to 
the agent via a single stream manager. Each stripped 
storage manager simply keeps pieces of the file and 
they can access disks concurrently. So the total time 
to request a whole video file can be reduced. 
4.4 Storage managers 

There are three kinds of storage managers in the 
system, namely cache storage managers, general stor- 
age managers, and stripped storage managers. They 
work together with proxy managers, request man- 
agers, and stream managers respectively, and main- 
tain remote documents, local files, and video files cor- 
respondingly. A SIGMA computing node running one 
of these managers should have locall disks attached. 

Except for cached remote documents, local docu- 
ments and video files are replicated so that serving 
requests can continue even when disk failures occur. 
Some of the reasons not to  replicate remote documents 
are: 

1. Remote documents can be fetched again later 
after the cache storage manager recovers from 
crashes. 

2. Leaving more disk spaces for caching other remote 
documents results in better cache hit rate. 

Figure 6: An implementation of the proposed world- 
wide web server on an eight-node SIGMA multicom- 
puter 

3. Replicating files dynamically incurs some over- 

At present, replicating local files and video files is done 
by ii simple file duplication scheme since web files are 
rarely modified by requests and inconsistency during 
the period of file transfer can be tolerated. 

5 Implementation 
In  this section we present an implementation of 

the proposed world-wide web server on an eight- 
node SIGMA multicomputer. The server is composed 
of t,wo mirrored clusters as shown in Fig. 6. Re- 
quest managers, proxy managers and stream managers 
run in association with corresponding general storage 
managers, cache storage managers, and stripped stor- 
age managers. There are two stripped storage man- 
agers in each cluster so that  a large file can be seg- 
mented into two stripes. Local files are replicated 
in different clusters. Currently we are porting the 
reference library and the HTTP server released by 
the World-Wide Web Consortium onto our eight-node 
SIGMA prototype. Each node runs FreeBSD Unix. 
All nodes are also connected to an Ethernet LAN ex- 
cept for the ones dedicated to stripped storage man- 
agers. 

Since the nodes running Request Manager A and 
Request Manager B have the same IP address and 
physical Ethernet address, all incoming packets des- 
tined to the shared IP address will reach both Ether- 

head. 
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net drivers. The drivers have been hacked to support 
distributed decision method. In the current imple- 
mentation, they only accept the packets with the least 
significant bits of the IP address match their unique 
node ID. The number of bits to  be checked depends on 
the number of request managers in the system. In this 
way, all incoming requests are dispatched to Request 
Manager A and Request Manager B intrinsically. 

A request is routed to one of three manager groups, 
and there are two managers in each group that can ac- 
cept and serve requests concurrently. A video request, 
on the other hand, will be served by two stripped 
storage managers concurrently. This arrangement can 
achieve high degree of load sharing and improve the 
system availability. 

In addition to serving requests concurrently and 
accessing disks in parallel, request managers are de- 
signed to utilize time locality. Small general docu- 
ments are requested more frequently, and they tend to 
be cached in the memories of request managers. Large 
files or video streanis won’t be cached by request man- 
agers; they are redirected to stream managers. Stream 
managers with replicated stripped storage managers 
are designed to explore space locality. Large disk 
block, sequential block placement and prefetching disk 
blocks for read are implemented in the file system of 
stripped storage managers. 

The system can be scaled up in different ways to 
adopt the change of request distribution. If the total 
number of requests increases, more computing nodes 
can be added to run as request managers. If proxy 
service becomes heavy, we should add more comput- 
ing nodes to run proxy managers and cache storage 
managers. If demands for video stream service in- 
crease, more computing nodes for stream managers 
arid stripped storage managers are required. On the 
other hand, the system can also be scaled down grace- 
fully when a manager or a cluster of‘ nodes fails to 
work. The system will be able to continue to work 
with degraded performance. 

6 Summary and Conclusions 
In this paper we demonstrate that  Internet com- 

puting is a suitable application of a multicomputer 
system. The proposed web server is composed of sev- 
eral groups of different managers. Each manager is ar- 
ranged to run on one node of the multiprocessor clus- 
ters. Using a distributed decision method and hash- 
ing algorithms for dispatching request and redistribut- 
ing workload, computing nodes can share workload, 
concurrently handle requests, tolerate single point of 
failure, and act as a virtual server transparently to 
clients. By optimizing the processing of the three 
kinds of requests independently, performance of the 
web server can also be improved significantly, even for 
video streams and caching remote documents. Thus, 
we believe that a scalable multicomputer like ours is 
suitable for serving as a web server. 
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