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Abstract

In this paper, we study the necessary and sufficient condition for linearly separable subsets
and then propose an optimal dimension expansion procedure that makes any mapping to be
performed by perceptrons learnable by error-correction procedure. For n-bit parity check
problems, it is shown that only one additional dimension is augmented to make them solvable by
single-layer perceptrons. Other applications such as for decoding error-correcting codes are also
considered.

1. Introduction

The theorem that error-correction procedure can learn linearly separable subsets in finite
steps has been proved early before 1965 [1]. However, for subsets that are not linearly
separable, perceptrons are not guaranteed to converge, nor can we be sure that the pattern set
being trained is linearly separable if it did not converge after some long learning steps.
Furthermore, Minsky and Papert [2] showed that single-layer perceptrons is inadequate to solve
the parity check problems, which on the other hand is quite simple by modern digital circuits.
These factors contribute partly to a situation that single-layer perceptrons do not receive much
attention until recently.

In this paper, we study the necessary and sufficient condition for linearly separable subsets
and then propose a optimal dimension expansion procedure to make any mapping linearly
separable. Such a procedure provides an immediate advantage that we do not really need a hidden
layer to perform certain mappings, and are thus free to worry about getting trapped in local
minima while applying backpropagation-like learning processes.

To begin with, suppose we have a finite set C of distinct patterns, C = {X; | X; € R?, i=1,
2, ..., K}. Let the patterns of C be classified in such a way that each pattern in C belongs to only
one of r categories. Or we can think that each pattern in C maps to one of r distinct values.
Consider the case of r=2 and assign the two distinct values to be 1 and —1. We collect those
patterns mapping to 1 in C* and the remaining in C-. Formally, define

Ct=(kIXy—>1,forall Xy € C) (1a)

C-= (k1 Xy —>-1, for all X € C} (1b)
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where '—>' denotes "is mapped to". The two subset C+ and C~ defined in the above is linearly
separable [1] if and only if there exists a weight vector W € Rn and a threshold t € R such that
WTX, -t>0, forallke C* (2a)
and WTXy -t<0, forallke C- (2b)
If each pattern X; in C maps to a bipolar pattern, say Y, Yye{l,-1}m k=1, .., K, we write
Cit = (k| Xy —> yki = 1, forall Xy € C} (3a)

Ci = (k| Xy —> yyq =-1, forall Xy € C} (3b)
where yy is the ith component of Yy,andi=1,2,..,m.

In the rest of this paper, the scalar values are denoted by lower-case letters, while vectors
and matrices are represented by capital letters. In the next section, we develop the dimension
expansion procedure for obtaining linearly separable subsets. In section 3, applications of the
procedure are shown. The final section presents our concluding remarks.

2. The Optimal Dimension Expansion Procedure
The behavior of a single-layer perceptrons with n inputs and m outputs can be expressed as
zy; = sgn (2 ) @
ap; = X TW; - t; S)
where W; is the ith column of weight matrix W, t; is the ith component of threshold vector T, i
=1, 2, ..., m, and sgn is the sign function: sgn(a) = 1 if a > 0, sgn(a) = —1if a <0. (Note the
binary Hopfield model's motion equation can also be described by (4) and (5). Hence the
discussion below also includes recurrent networks.) For the clarity of the ensuing discussion,
vectors Xy and W; are augmented by one additional dimension (referred to as index 0) to
accomodate the thresholds in the above equations, i.e., Xxo = —1 and wjp = t;, and also for
simplicity the dimension of Xy and W; are still regarded as n, for all k and i. Now, rewrite Eqns.
(4) and (5) in a more compact form
Zy = Sgn (W;TXy) ©
and we say that X is mapped to Zy, Xy —> Zy, by the perceptrons.

Now let us concentrate on some output unit i. By multiplying each Xy with yy;, and let

U (@) = yxiXy, we can construct a Kxn matrix UG) with each row the transpose of Uy (i), k=1,
2, ..., K. Hence the inequalities in (2) can be rewritten as
U@w;>0 Q)

Let B; be a Kx1 vector and each of its component be positive, denoted as B; € (R*)X. Then by
definition, C;*+ and C;- is linearly separable if and only if there exists a B; such that
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U@)W; =B; t))
, in other words, C;+ and C;- is linearly separable if and only if B; belongs to the intersection of
the column space of U(i) and (R*)K, where the column space of U(i) is a n-dimensional
subspace contained in or expanding the K-dimensional vector space.
We now consider the solution of W;. Provided that such B; exists, the solution for W; in
(8) is exactly
W; = (UG)TUG)) TUG)TB; ©)
for K2n and U(i) being of full rank [3). For K< n, W; can be obtained by setting wiji =0,
removing jth column vector of U(i) which is not linearly independent to other column vectors,
and solving the resultant equations.
Note that a sufficient condition for (8) to hold is that one of the column vector of U(i)
belongs to (R+)K. This condition will be used in the below algorithm for dimension expansion.
Since, as we have mentioned, error-corretion procedure can only learn linearly separable
subsets, one has to make them separable before applying the learning procedure if they are not.

This is done by transforming a mapping X, —> Y, Xye R0, Yy e {1,-1}m k=1,2,..,K,
into X*y —> Yy, where X*,T = [X, T D T] is an expanded vector from Xy and Dy. The vector
Dy, is obtained by the following algorithm.

step 1 Leti=1; Dy = 0; (initially set Dy to be a vector of length 0)
step 2 XTI =[XT,k=12..,K;
step 3 Cit = (k| X*—> yy; = 1, for all X*; }

Ci={k| X* > yy; = ~1, for all X* }
step 4 If Ci* and Cy~ is not linearly separable, then do
step 4.1 DT = [DiT ¢;yyl k=1,2,..,K, c; : any positive number;
(augment Dy, by one dimension)

step 5 X4 =[X T DiT]; i=i+1; ifi>mthenstop else go to step 3.

The above algorithm is tantamount to augment the matrix U(i) in (8) by a column vector in (R¥)K
s0 as to make (8) solvable. As to the test for linear separability, one can refer to [4]

This algorithm is similar to the one in [5], where it is proposed for recurrent networks and
temporal mapping for bipolar input vectors (vectors in {1, -1}M). it is conjectured in [5] that the
algorithm adds only minimal number of units needed to legalize a mapping, i.e., to transform a
mapping such that a single-layer perceptrons is able to perform. However, the following example
shows there is the case that it may fail.

Example: An illegal mapping with 3 inputs and 2 outputs is shown below.




a L,np—->a, n ¢-,-H->00, 1, ¢L,-1,1)-=> a n, 1,1,-H->Qa, 1),

1,1, 1) = (-1,-1), (-1,-1,-1) > (-1,-1), (1, 1,-1) > a,-n, a,-1, Hn-=>q,-n.
After running the expansion procedure, two bits are added to each of the input patterns and the
resultant patterns are (assume c; in step 4.1 is 1 for all i)

a,1,1, 1, 1, (1,-1,-1, 1, 1, ¢1,-1,1,1,1),¢L 1,1, 1, 1),

1, 1,1,-1,-1), ¢1,-1,-1,-1,-1), (1, 1,-1, 1, -1), (1, -1, L, 1, -1)
respectively. It can be shown that a perceptron with 5 inputs and 2 outputs is able to perform the
mapping. However, if the second output bit is examined and tested for linear separability before
the first one, then only one bit is addded to make the mapping legal. In this case, the result is

1,1,1,1,d,-1,-1,1),¢1,-1,1,1),¢-1 1,-1, 1),

-1,1,1,-1), 1, -1,-1,-1), (1, 1, -1,-1), (1, -1, 1, -1).

This example shows that the number of bits added to legalize a mapping has to do with the
sequence that the output bits are examined. So an optimal expansion procedure would try all
possible sequences of examining the output bits and see which results in minimum dimensions.

Remark I: the maximum augmented dimension in the above algorithm is m, the number of
output units, i.e., the dimension of X*y is no larger than n+m, no matter how many pattern pairs
there are.

Remark 2: Suppose X*y is of dimension n+m, then X*j is just the concatenation of Xy and

Yy, ie., X* = [X,T, YT, if all c; in step 4.1 are 1.

3. Applications
3.1 N-bit Parity Problem

Remark 1 implies that for the n-bit parity problem (where a n-bit input maps to an one-bit
output indicating whether the input vector contains an odd number of 1 or not), by augmenting
only one additional dimension, the perceptrons can learn to perform the parity checking, which is
otherwise impossible for single-layer perceptrons to handle. For example, a 2-bit parity problem
can be described by the following mapping:

1L,H=>1, ,-)->-1, (1, )->-1, ¢-1,-)->1
It is obviously that there exists no weight vector and threshold such that it is separable. After
expanding the input vectors using the aforecited procedure, it becomes

a1,n->1 1-1,-)=>-1, ¢1,1,-)=>-1, ¢-1,-1, ) —>1
By randomly setting the initial weight and threshold to 0.2, -0.3, 0.1) and -0.1, respectively,
and training the perceptrons according to the error-correction leaming rule [1] (i.e., delta rule [6])

Wi(s+1) = Wj(s) + ¢ (Yki — zxi) Xk (10a)

t; (s+1) = t; (8) — ¢ (Vi — Zii) (10b)
where s is the iteration index and c is the positive step size, the final weight and threshold after
convergence are (-0.8, 0.7, 1.1) and 0.9, respectively (¢ = 0.5 in this example). Consequently,
an addition in one more input unit saves n hidden units as required by the simulations in [6] [7].
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3.2 An Error Control Code Decoder

Consider the problem of decoding a systematic code [8]. A codeword X in a systematic
code is composed of information word Yy and parity word Py, in the form of X, T = [Y; T P T},
where Xy is of dimension n, Yy is m and Py is r. At the receiving end, the codeword Xy is
decoded into Yy despite of error noise, say one bit error. A single-layer perceptrons is expected
to perform such mapping Xy —> Yy, for k = 1, 2, ... (n+1)2™. (2™ codewords and n error
pattern for each codeword, suppose we are concerning only correcting one bit error, and that the
perceptrons learns both the correct codewords and the erroneous ones) However, if the mapping
is not linearly separable, the mapping may fail even there is no noise. In this case, the received
codeword X, T is expanded into X*, T = [Y, T P, T Y;T], and then the perceptrons is trained to
perform the mapping. The mapping X*, T —> Y, T is legal from remark 2.

4. Conclusion

We have shown a necessary and sufficient condition for linearly separable subsets. This
condition is quite clear and useful under the geometrical interpretation. Based on the geometrical
interpretation, we develop an optimal dimension expansion procedure to linearly separate the
ensemble subsets. Two possible applications of the proposed procedure are illustrated. For those
mappings whose domains contain finite and fixed points, the expansion procedure allows a
single-layer perceptrons to perform the mapping exactly after learning the training set by
error-correction procedure, without resorting to multilayered perceptrons and much time-
consuming backpropagation algorithms.
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