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Abstract - [n this paper, we propose several generic
algorithms that can construct svmmetric and asymmetric
teversible variable length codes (RVLCs). RVLCs, adopted
in emerging video coding standards such as MPEG-4 and
H.263+, can be used to enhance the corresponding error
resilience capability in the presence of transmission bit
errors. Experimental results show that the proposed
symmetric RVLC algorithm can produce codes with shorter
average codeword lengths and shorter maximum codeword
lengths. And the proposed asymmetric RVLC algorithms
will generate codes with cither shorter average codeword
lengths or shorter maximum codeword lengths, as compared
to the existing approaches.
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[. INTRODUCTION

Variable length codes (VLCs) have been used as entropy
coding in almost all image and video coding standards (such
as JPEG [1], H.261 [2], H.263 [3]. MPEG-1 [4]. MPEG-2 [3]
and MPEG-4 [6]). VLCs are known by their ability of
achieving high compression efficiency; however. they are
very sensitive to errors due to their variable codeword length
nature. Even one single bit error wifl induce the problem ot
error propagations. such that the data received after the bit
error position become useless and result in a serious problem
for any VLC-involved applications. RVLCs. which can be
decoded in either the forward or backward direction, are
developed in order to lessen the effect of error propagation.
The MPEG-4 video standard includes an optional RVLC that
can be used for quantizing the DCT coefficients. In H.263+
Annex D and H.263++ Annex V, RVLCs are used to encode
motion-vector data and header data. respectively.

There are two types of RVLCs, one is the symmetric RVLC
and the other is the asymmetric one. The symmetric RVLC
shares the same codeword table when decoding in both the
forward and backward directions. because the codewords are
symmetric. On the other hand. two codeword tables are
necessary for decoding the asymmetric RVLC. Thus, the
memory requirement of the symmetric RVLC is less than
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that of the asymmetric RVLC. However, the asymmetric
RVLC always provides better efficiency (in terms of average
codeword length) than the symmetric one, because the
codeword selection can be more flexible.

RVLCs have been extensively studied in recent decades.
Fraenkel et al. [7] presented necessary conditions for the
existence of RVLCs together with an algorithm to construct
a complete RVLC for a given set of codeword lengths.
Takishima et al. [8] proposed an algorithm (for convenience
it is called the Takishima’s algorithm in short) for
constructing symmetric and asymmetric RVLCs from a
given Huffmran code [9]. Tsai and Wu [10, 11] proposed a
more efficient symmetric RVLC construction algorithm
based on Takishima's algorithm. Tsai and Wu's algorithm
differs from Takishima's algorithm in the codeword selection
mechanism. Wen and Villasenor [12] presented an RVLC
construction method that is used to obtain reversible codes
with the same length distribution as the Golomb-Rice codes
and exp-Golomb codes.

Recently, Tseng and Chang [13] presented a backiracking
based algorithm that can construct symmetric RVLCs,
effectively. The experimental results show that their
algorithm can generate even beiter codes than those of
previous methods. Tseng and Chang's algorithm provides
shorter average codeword length than Tsai and Wu's
algoritbm on the Canterbury Corpus file set (will be
addressed later), with the exception of the tile “kennedy.xls”.
This inspires us to develop a new algorithm to generate more
efficient RVLCs.

In the following, we will present one method for
constructing the symmetric RVLC and two methods for
asymmetric RVLC. And then some comparisons between the
existing RVLC construction algorithms and the proposed
ones are made. This paper is organized as follows. In
Section 2, related works and details of proposed algorithms
are addressed. Experimental results are shown in Section 3.
Our conclusions are drawn in Section 4.

1. THE PROPOSED GENERIC ALGORITHMS FOR
CONSTRUCTIING RVLCS

Since the proposed RVLC construction algorithms are
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derived and extended basing on Tseng and Changs
Symmetric RVLC Algorithm, we tirst review their symmetric
RVLC construction approach, briefly.

Assume the source data has n symbols and they are
represented by (a@;, an.... &) in decreasing order of
probability P(a;), where P(a) is the probability of the data
symbol a;. The desired RVLC can be expressed as a
codeword list with n-tuple (C, C», ..., G,), where C; is the
codewerd of symbol a,. Tseng and Chang’s algorithm tries to
minimize a bounding function (i.e. the average codeword
length) B(Cy. Cs ..., Cy). which is defined as

where L(C)) is the length of codeword C;.

Definition 1— Symmetrical Children: In a tull binary tree,
the symmetrical children of node X are defined by all of the
first symmetrical codewords on paths from mode X to leaf
nodes.

Figure 1 shows an example, in which black nodes represent
symmetric codewords. The symmetrica! children of B(*17)
are DCI17), G(101"), and K('1001%). The symmetrical
chitdren of C(*007) is E(*0007).

Figure 1. A sample code tree.

If we replace codeword C; with its symmetrical children, we
will obtain a new codeword list. The main idea of Tseng and
Chang’s algorithm is that if the bounding tunction of this
new list is smaller than that of the original list. then the
replacement operation is carried out and the target list is
replaced with the new list.

According to Tseng and Chang’s experimental results,
backtracking based algorithm usually provides shorter
average codeword length than that of the Tsai and Wu's,
However. the not-all-win fact of Tseng and Chang's
algorithm. as shown in the last row of Table 1, implies that
there {s some room for us to design even more cfficient
RVLC construction algorithms. We suggest another idea
different from Tseng and Chang’s in the codeword
replacement. In their algorithm, when a codeword Ci is to be
replaced. it is replaced with its children. (i.e. codewords that
have Ci as their prefix) In our proposed idea. when a
codeword Ci is to be removed from the list. in addition te
Ci's children, we also traverse other parts of the code tree

and add valid codewords into the target list.

Before the first algorithm is specified, we explain some
related terms in the following.

Let the average codeword length of the target list before Ci
is removed be L., and let the L’ be the average codeword
length of the target list atter Ci is removed.

Definition 2—Remove C; condition: if | = arg min L',
E
K
and L < L,, then we remove C; from our original
candidates list (C,, Cs, ... Cp).

A.Symmetric RVLC Construction algorithms
Algorithm-| — The Greedy Symmeiric RVLC Algorithm:

Stepl: The target list starts with a single codeword =17,

Step2:  For each symmetric codeword at level i (i>1) :
Assign the available symmetric cedewords to the
target list based on the increasing order of
codeword length,

Stepd: [f there exists a codeword in the target list
satisfying the Remove C; condition, defined in
definition 2. remove that codeword and proceed
with other valid candidates.

Step4:  Repeat Step2 and Step3 until there is no codeword

satisfying the Remove C; condition.
B.Asymmetric RVLC Construction Algorithms

The proposed symmetric algorithms proceed with other
valid candidates instead of replacing with the symmetrical
children when a codeword is removed (as was done in Tseng
and Chang’s approach). This idea can be extended to the
asymmetric case directly. A corresponding greedy algorithm
for constructing the asymmetric RVLC can be detived.

Unfortunately, empirical results do not provide us good
results for compressing the Canterbury Cerpus file set, with
the exception of the files “ptt3”, “sum” and “kennedy.xls™.
After some investigations, we find that these three files
having the following common characteristics:

may [t @
yA—2= .03 -
= X flap

Y]

where § = lay, as, ..., g, is the alphabet set of the file and
fla,) represents the counts of appearance of the symbol a;.
Hence, we propose a new algorithm that assigns ditferent
initial codewords to the target list based on the ratio. 7,
detined in Egn.(2). This new algorithm can be described as
follows:

Algorithm-2 — The Greedv Asymmetric RVLC Algorithm
based on the ratio of the highest frequency of the symbol to
the overall frequency of occurrence of the file set
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Stepl: The target list starts with a single codeword “ 1™ if
7> 0.3 or 00" if y £ 0.3 where 7 is the ratio of
the highest frequency of the symbol to the total

frequency of the file set (defined in Eqn.{2)).

Step2:  For each asymmetric codeword at-level i (i>1, if * 1
is selected at Stepl:or, 1> 2, it °00" is selected at

Stepl) :

Assign the available asymmetrical codewords to the
target list based on the increasing order of
codeword length.

Step3: If there exists a codeword in the target list
satisfying the condition of Remove C; cendition,
remove that codeword and proceed with other valid

candidates.

Stepd: Repeat Step2 and Step3 until there is no codeword

satistying the Remove C/ condition.

In addition to the two algorithms mentioned above, we have
developed another asymmetric RVLC algorithm, which is
generalizations of Tseng and Chang’s method and the
proposed symmetric RVLC algorithms (Algorithm-1) in the
asymmetrical case. Before explaining the details of the third
algorithm, we introduce some terms used in it, first.

Definition 3— Asymmetrical Children: In a full binary tree,
the asymmetrical children of node X in the target list L are
defined by all of the first codewords, which are affix-free
with respect to the list L. on paths from node X to leaf
nodes.

Figure 2 shows an example. in which black nodes represent
the codewords in the target list. The asymmetrical children
of A(*07) are B(*007), C(*010°), and D(*0117).

Figure 2. Another sample code tree.
Based on definitions 2 and 3. the second algorithm for
constructing the asymmetric RVLC can be depicted as

follows.

Algorithm-3 — The Greedy Asymmetric RVLC Algorithm
Based on Replacing Codewords with Their Children:

Stepl: The target list starts with a single codeword “1".
Step2:  For each codeword at level i {i>1}:
Assign the available codewords to the target list
based on the increasing order of codeword length.
Step3: I there exists a codeword in the target list

satisfying the Remove C; condition, defined in
definition 2, replace this codeword with its
asymmetrical children.

Step4:  Repeat Step2 and Step3 until there is no codeword

satistying the Remove C; condition.

IIl. EXPERIMENTAL RESULTS

The proposed algorithms have been tested on the English
alphabet set and the file set taken from Canterbury Corpus
{available in hitp-//eorpus.canterbury.ac.nz/). The
Canterbury Corpus file set was developed specifically for
testing new compression algorithms. The files were selected
based on their ability to provide representative performance
results.

The major contribution of our work is that the proposed
approaches can be applied to construct both efficient
symmetric and asymmetric RVLCs. Furthermore, our
algorithms, like Tsai and Wu's approaches [10, 11], can also
avoid the codeword variation problem, as compared with
Takishima's approach. In other words, the proposed
algorithms will generate both unique symmetric and
asymmetric RYLCs, for the same given source.

Table | respectively shows the maximum codeword lengths
and the average codeword lengths of various RVLC
algorithms for compressing different source files. It can be.
seen, from Table 1, that Algorithm-1 produces shorter
maximum codeword lengths than Tsai and Wu’s. And
Algorithm-1 always produces symmetric RVLCs with
shorter or equal average codeword length than Tseng and
Chang’s. The proposed asymmetric algorithm (Algorithm-2)
produces shorter maximum asymmetrical codeword lengths
than those of the Tsai and Wu's asymmetric approach only in
4 (out of 11} cases and shorter average codeword lengths in
8 (out of Ll) cases. Algorithm-3 always produces the
shortest maximum codeword lengths among the three
asymmetric algorithms.

Table 2 presents the symmetric and asymmetric codewords
obtained by applying different construction algorithms to the
given English alphabet set, respectively. Moreover, the
corresponding average codeword lengths and the maximum
codeword lengths are also inciuded. In the symmetrical case.
our algorithms provide the same average codeword lengths
and the maximum codeword lengths as those obtained by
Tseng and Chang’s algorithm, but the order of codewords is
different, In the asymmetrical case, our algorithms either
provide shorter average codeword lengths or shorter
maximum codeword lengths than those obtained by Tsai and
Wu’s approach.

IV. CONCLUSION

Several generic and efficient construction algorithms for
symmetric and asymmetric RVLCs are proposed in this
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paper. The major advantage of the proposed algorithms is
their better coding efficiency (in terms of average codeword
length). Besides, the proposed algorithms do not have the
codeword variation problem.

According to the experimental results. the proposed
algorithms can provide either shorter average codeword
lengths or shorter maximum codeword lengths. Under
certain circumstances, such as limited hardware capacity
[14], the maximum codeword length often plays a more
important role than the average codeword length. There is
still & broad range of strategies available in deciding which
codewords to be removed, and turther improvement of
average codeword length or maximum codeword length may
be possible. We will continue investigating into the design of
more efficient RVLC construction algorithms.
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Table 1. Comparisons of the maximum codeword lengths and the average codeword lengths of
different RVLC construction algerithms for compressing different source files.
Svmmetric RVLC Asvimmetric RVLC
. Number of [Huttman Code| Tsai and Tseng and Tsai and
Fite Codewords Wu's Cha%ltz's Algo-1 Wu’'s Algo-2 Algo-3
avg |max| avg |max| aveg |max| ave |max| avg [max| avg |max| avg |max
asyoulik.ixt 68 4.84465 | 15 [5.27886[ 15 |5.21025| 12 [5.21025] 12 |5.01142] 15 |5.00954| 15 |5.13624] 11
alice29.txt 74 461244 | 16 [5.01398] 16 [4.93155] 12 [4.93155] §2 [4.80326] 17 [4.68871| 18 |4.86762| 11
xargs. | 74 4.92382 1 12 [5.39863[ 12 [5.33996| 12 |5.33996] 12 [5.07334| 13 [5.16087| 15 [5.27537] 11
grammar.Isp 76 4.66434 | 12 {5.04757[ 12 [5.01774] 12 i5.01774] 12 {4.85461] 12 [4.78581| 17 [ 4.9613} 11
plrabn12.txt 81 4.57534 | 19 [4.94473| 19 |4.89527| 14 |4.89527| 14 [4.80659( 19 [4.64910| 17 |4.84043] 11
leetl0.txt 84 469712 | 16 [5.12232] 16 |5.01682( 13 |5.01682) 13 [4.87868| 16 |4.74177| 17 |4.93372[ 11
cp.html 86 526716} 14 [5.858391 14 [5.81173 | 12 [5.81473} 12 |5.371131 14 [5.77080, 16 | 5.7438[ 11
tields.c 90 504090 | 13 {5.47596] 13 15.46332] 12 |5.46332] 12 |5.26987| 13 |5.20278] 13 [5.36233| 11
ptt3 139 1.66091 | 17 [1.77735] 17 1 1.75992{ 16 {1.75992| 16 [1.71814] 17 {1.70401] 15 [1.72843] 13
Sum 2535 5.36504 | 14 |6.10683| L3 |6.03917[ 15 [6.03917] 15 [5.49767| 13 |6.01870( 15 [5.78372| 13
kennedy.xls 236 3.539337 | 12 [4.25681] 17 |427200( |7 [4.21058] 17 13.89401] 13 |3.85384| 14 [3.86296| 14
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Table 2. Comparisons of the maximum codeword lengths and the average codeword lengths of different RVLC
construction algorithms for compressing the English alphabet set.

Symmetric RVLC Asymmetric RVLC
Alphabet OCCUI’TI_:H‘CC Huffman Tsai and | Tseng and Tsai and
Probability Code Wa's Chang's Alg.1 Wa's Alog. 2 Alog. 3

E 0.14878570 001 010 000 010 000 000 016

T 0.09354149 {110 101 010 101 111 100 101

A 0.08833733 [0101 0110 101 000 0101 101 000

o) 0.07245769 (0110 1001 111 111 1010 0010 111

R 0.06872164 (0111 0000 0110 o11¢ 0010 0011 0110

N 0.06498532 1001 1111 1001 1001 110} 0110 100t

H 0.03831331 [1010 01110 00100 o111¢ 0100 0111 01110

[ 0.05644515 (1011 10001 01110 10001 1011 1110 10001

S 0.05537763 (1111 00100 10001 00100 0110 111 00100

D 0.04376834 100000 oL 11011 11011 11001 01001 11011

L 0.04123298 (00001 011110 001100 011110 10011 01010 011110

U 0.02762209 100011 100001 011110 100004 01110 01011 1000601

P 0.02575393 101000 001100 160001 001100 10001 11001 001100

F 0.02455297 10100t 110011 110011 110011 001100 11010 110011

M 0.02361889 |11100 0111110 0010100 |0111110 _Jo11110 11011 0111110

C 0.02081665 |[11101 1000001 0011190 1600001 J10000% 010001 1000001

W 0.01868161 000100 0010100 |O111110  [0310100 15001001 110001 0010100

G 0.01521216 |100000 1101011 1000001 |0G11100 j0011100 _ JO100001 0011100

Y 0.01521216 |100001 0011100 1100011 |1100011 J1100011 1100061 1100011

B 0.01267680 [1000E0 1100011 1101011 |1101011  JO111L10 01000001 1101011

\i 0.01160928 [1000%1 0001000 [00111100 10T1LLL1O 3000001 11300601 01111119

K 0.00867360 0001011 1110111 QLULLILLIO (10000001 f00111100  [010000001 _ {10000001

X 0.00146784 00010100 JOILLILI0  [10000001 00111100 J11000011 110000001 100101100

I 0.00080064 |000101010 JOLTLILII0 }11000011 [11000011 J1001010G1 |0100000001 ;00110100

Q 0.00080064 |000101011QJO1T1LLILT1I0 (011113110 |O11111110J00T1101001|1100000001 (00111100

Z 0.00053376 10001010% 1111000000001 ]100000001 [100000001]1001011100{01000000001|1100001 1
Average Codeword Length |4.15572284]4.60728399|4.46463681] 4.4633 ]4.30677804| 4.18734808 | 4.4633
Maximum Codeword Length 10 10 9 8 10 11 8
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