The M? Hierarchical Multiprocessor *

Yen-Jen Oyang, David Jinsung Sheu,
Chih-Yuan Cheng, and Cheng-Zen Yang

Department of Computer Science
and Information Engineering
National Taiwan University
Taipei, Taiwan

Abstract

This paper discusses the design and development of
a bus-based hierarchical multiprocessor named M?.
The primary design goal of the M? is to derive a
multiprocessor architecture that features much higher
degree of scalability than the shared-memory shared-
bus architecture and exploits parallelism at both
medium- and coarse-grain levels. If compared with
other hierarchical multiprocessors, the M? is distinc-
tive in its memory configuration, which is aimed at
avoiding severe inter-CPU interference due to page-
swapping events. If compared with a group of multi-
processors connected by a local area network, the M?
enjoys higher scalability due to higher bandwidth of
the backplane bus.

1 Introduction

The shared-memory shared-bus architecture has been
prevalent in multiprocessor design in recent years due
to its hardware simplicity and simple programming
model. However, the shared-memory shared-bus ar-
chitecture also suffers a serious disadvantage of very
limited scalability, generally up to tens of CPUs, due
to limited bandwidth of the shared bus. Motivated
by this observation, computer architects have been
actively investigating novel multiprocessor architec-

*This research was sponsored by National Science Council
of R.O.C. under grant NSC 81-0408-E-002-17

41

0-8186-2760-3/92 $03.00 © 1992 IEEE

tures that feature higher degree of scalability than
the shared-memory shared-bus architecture [1,2]. In
this paper, we will present our approach concerning
this active issue. We named the prototype machine
we have been developing the M? hierarchical multi-
Processor.

The architecture of the M? is derived with ac-
knowledging a pragmatic correspondence between the
granularity of parallel processing and the level of re-
source sharing among parallel hardware units. Figure
1 illustrates the observed pragmatic correspondence.
Based on this observation, the M? is designed with
two levels of multiprocessing hierarchy. At the first
level of the hierarchy, the shared-memory shared-bus
scheme is employed. At the second level of the hi-
erarchy, a physically distributed with no remote ac-
cess memory organization is employed. Through the
employing of the hierarchical structure and memory
organizations, the M? design achieves three major
goals:

1. Derive a multiprocessor architecture that fea-
tures much higher degree of scalability than the
shared-memory shared-bus architecture and ex-
ploits parallelism at both medium- and coarse-
grain levels.

2. Effectively exploit the high degree of integration
capacity made available by recent advances in
VLSI and packaging technologies.

3. Match the architecture of modern multiprocessor

Granularity of Level of resource

parallel processing sharing
Coarse Disk
Memory
Medium
Cache
Fine Register

Figure 1: Pragmatic correspondence between the
granularity of parallel processing and the level of re-
source sharing among parallel hardware units

operating systems.

In the following part of this paper, we will elabo-
rate the architecture and design decisions of the M?
in section 2. Then, in section 3, we will describe a
prototype M? that we have been developing. Finally,
we will conclude our discussion in section 4.

2 The M? Architecture and
Design Decisions

2.1 Overview of the M? Architecture

Figure 2 depicts the block diagram of the M? hierar-
chical multiprocessor. The M? architecture consists
of two levels of multiprocessing hierarchy. At the first
level of the hierarchy, multiple CPUs, each with a pri-
vate cache, and a shared cluster memory are placed
on a printed-circuit board and connected through an
on-board snooping bus to form a CPU cluster. In
the M2, the shared cluster memory in a CPU clus-
ter serves as the main memory to the CPUs in the
cluster. Therefore, structure-wise, there is no differ-
ence between a M2 CPU cluster and a conventional
shared-memory shared-bus multiprocessor.

The second level of the M2 hierarchy is made up
of multiple CPU clusters connected through a back-
plane message-passing bus. At this level of hierarchy,

42

memory is distributed in both physical and logical
senses. That is, the memory of a cluster is accessible
only to the cluster itself and is not accessible to other
clusters. Communication between clusters is carried
out through passing messages.

In the M2, also connected to the backplane
message-passing bus are 1/O controllers. The 1/0
controllers and the CPU clusters operate under a
client-server model. Some I/O controllers, e.g. disk
controllers, are associated with a large memory which
serves as the disk/file cache. In such cases, the mem-
ory in the CPU cluster and the memory associated
with the I/O controller constitute a two-level disk/file
cache. Data consistence between the memories in
the CPU clusters and I/O controllers is maintained
through executing a directory-based coherence pro-
tocol.

2.2 Architectural Features and Design
Considerations

This subsection elaborates the main features and de-
sign considerations of the M 2 architecture. If com-
pared with other hierarchical muitiprocessors [3.4],
the M? is distinctive in its memory organization at
the second level of the hierarchy. In the MZ, a physi-
cally distributed with no remote access memory orga-
nization is employed. This design is aimed at avoid-
ing severe page-swapping-induced inter-CPU interfer-
ence. If a shared memory scheme was adopted at the
second level of the hierarchy, no matter whether the
memory is physically distributed or not, then every
CPU in the system would have to be notified with
every page-swapping event occurring in the shared
memory so that the CPU would flush the cache blocks
that are cached in its private cache from the page be-
ing swapped out and update its TLB (Translation
Lookaside Buffer) contents accordingly. Since the
page-swapping-induced inter-CPU interference grows
linearly with the number of CPUs that share memory,
it was determined that a physically distributed with
no remote access memory scheme should be employed
at the second level of the M2 hierarchy.
Nevertheless, the presence of the page-swapping-
induced inter-CPU interference does not means a
shared-memory design should not be used in any
case. The shared-memory architecture is still a fa-
vorite scheme up to certain extent because the sever-

CPU Cluster 1 CPU Cluster M
CPU | wowwa | cPu CPU | acan cPU
Private | " Private Private : Private
Cache Cache " | _______. Cache Cache
- JorvBoard Snooping Bus} | on-Bodrd Snooping Bus
Shared Cluster e Gircui—] Shared Cluster
int ircuit Me i
Memory mory
Backplane Message-Passing Bus
< >
Memory as
the 2nd-ievel
disk/file cache 1o
Controller
1o
Controller

Figure 2: Block diagram of the M? hierarchical multiprocessor

ity of the page-swapping-induced interference is a lin-
ear function of the number of CPUs that share mem-
ory. Therefore, it was decided to employ the shared-
memory shared-bus structure at the first level of the
M? hierarchy.

In the M2, a CPU cluster is to be built on a
printed-circuit board. This is aimed at effectively ex-
ploiting the high degree of integration capacity made
available by recent advances in VLSI and packag-
ing technologies. As of today, 2 to 4 CPUs can
be incorporated in one CPU cluster. With contin-
uous improving of VLSI and packaging technologies,
a typical-size printed-circuit board will eventually be
able to accommodate 10 to 20 CPUs. It is unlikely
that the number will go much further due to the lim-
itation imposed by the bandwidth of the shared bus.

One important observation on the structure of the

43

M? is that it is basically the same as a group of mul-
tiprocessors connected through a local area network.
However, the M? is superior in system scalability
since a backplane bus offers much higher communica-
tion bandwidth than a local area network. For exam-
ple, a 256-bit Futurebus+ can transfer up to 3.2 giga-
bytes, equivalent to 25.6 gigabits, of data per second.
On the other hand, a FDDI network, as of today, can
transfer 100 megabits of data per second and may be
upgraded to 200 megabits per second in the near fu-
ture, which is still orders of magnitude smaller than
the bandwidth of the Futurebus+.

As far as the scalability of the M? architecture is
concerned, there are two limiting factors as discussed
in the following.

1. The first limiting factor is the physical dimension
of the message-passing backplane bus. Nowa-

days, a typical message-passing backplane bus,
e.g. the Multibus II [5] and Futurebus [6], can
accommodate 20 or so printed-circuit boards. If
each CPU cluster, which is to be implemented
on a single printed-circuit board, contains 10 to
20 CPUs, then the total number of CPUs that a
M? system can accommodate could be as high
as 200 to 400 CPUs. Here, the assumption of in-
corporating 10 to 20 CPUs on one printed-circuit
board will be feasible in next several years as the
new generation of VLSI and packaging technolo-
gies offers higher degree of integration capacity.

2. The second limiting factor is the bandwidth of
the backplane bus. In order to determine its ef-
fect, one must first figure out the average amount
of traffic a CPU would introduce on the back-
plane bus. If it is assumed that the number
of 1/0 transactions issued by a CPU per unit
of time grows linearly with the CPU processing
power [7], then, according to the statistical data
collected by Smith [8], a 50-MIPS CPU would is-
sue about 1000 I/O transactions per second. If it
is further assumed that 60% to 80% of I/O trans-
actions hit the file cache implemented in the clus-
ter memory, which is a typical ratio according to
studies on file cache behavior [9,10], and that the
file cache uses 16-KByte blocks, then each CPU
would introduce 3.2 to 12.8 megabytes of traf-
fic on the backplane bus per second. Given this
value and that a 256-bit Futurebus+ can transfer
up to 3.2 gigabytes of data per second, one can
expect that the scale of a M? system can be up
to hundreds of CPUs with respect to the limita-
tion imposed by the bandwidth of the backplane
bus.

The analyses above suggest that a M 2 gystem can
accommodate hundreds of CPUs, which is an order
of magnitude larger than the typical scale of a shared-
memory shared-bus multiprocessor.

The last note on the M? architecture is that there
is a natural match between the M? architecture and
the architecture of the Mach operating system [11].
In the Mach, threads within a task are sharing-
resource light-weight parallel entities. In the M2, the
CPU cluster, with multiple CPUs and a shared mem-
ory, provides a good execution platform for multiple-
thread tasks. At the higher level, Mach tasks, the

heavy-weight parallel entities, can be dispatched to
M2 CPU clusters for parallel execution.

3 Development of a Prototype
M2

This section discusses a prototype M2 system cur-
rently under development. The hardware design of
the system is presented in 3.1 while the operating
system issues are elaborated in 3.2.

3.1 Hardware Design

Figure 3 shows the hardware block diagram of the
prototype M2 system. In the prototype machine, the
Multibus II [5] is employed as the backplane message-
passing bus and each CPU cluster comprises 2 Sparc
CPUs [12] along with a 64-megabyte cluster mem-
ory. The CPUs and the cluster memory are actually
placed on two separate boards, the CPU board and
the memory board. The CPU board comprises the
CPUs, floating point coprocessors, cache controllers,
cache memories, and message-passing control logic.
The memory board comprises the memory controller
and memory chips. The CPU board and the mem-
ory board are connected through a local bus separate
from the Multibus II.

Figure 3(b) shows the block diagram of the CPU
board. The major functional blocks on the CPU
board are designed around an on-board 64-bit MBus
[13]. Placed on the upper half of the board is the Cy-
press CYM6002K CPU module [14]. The CYM6002K
consists of 2 Sparc CPUs along with their floating-
point coprocessors, cache controllers, and cache mem-
ories. Placed on the lower half of the board is the
message-passing control logic. The message-passing
control logic is mainly made up of three microcon-
trollers, an Intel 82389 message-passing coprocessor
(MPC) [15], an Intel 82380 DMA controller, and an
Intel 8751 microcontroller. The detailed design of
the message-passing control logic is elaborated in the
MPC User’s Manual from Intel Corporation [15].

3.2 Operating System

The prototype M2 will run the Mach operating sys-
tem [11]. On the prototype M 2 Mach tasks are dis-

CPU Cluster 1

L iCPU
- Board

~ Memory

CPU Cluster N

CPU:. . : Mamory :
‘Board Board

Local Bus Local Bus
Multibus Il iPSB Bus
(a) System Configuration
Cypress CYM 6002K
Sparc CPU Module
4>

<<
t 64-Bit MBus

Logic

Message Passing

L

v

To iPSB

v

To Memory Board

(b) The CPU Board

Figure 3: Hardware Block Diagram of the prototype M 2

45

patched to CPU clusters in their entirety. In other
words, the threads within a task are dispatched only
to the CPUs of the cluster that the task is dispatched
to and will not spread to other CPU clusters. The
reason to adopt this strategy is that, as mentioned
earlier, the CPU cluster provides a natural execution
platform for multiple-thread tasks. For tasks that
are dispatched to different CPU clusters, the inter-
task communication is carried out over the backplane
message-passing facility.

4 Conclusion

In this paper, we discussed the major architectural
features of the M? hierarchical multiprocessor and
the reasons behind the design decisions. The design
of the M2 achieves three major goals:

1. Derive a multiprocessor architecture that fea-
tures much higher degree of scalability than the
shared-memory shared-bus architecture and ex-
ploits parallelism at both medium- and coarse-
grain levels.

2. Effectively exploit the high degree of integration
capacity made available by recent advances in
VLSI and packaging technologies.

3. Match the architecture of modern multiprocessor
operating systems.

References

[1] P. Stenstrom, “A Survey of Cache Coherence
Schemes for Multiprocessors”, IEEE Computer,
June, 1990.

[2] S. Thakkar etal., “New Directions in Scalable
Shared-Memory Multiprocessor Architectures”,
IEEE Computer, June, 1990.

[3] A. W. Wilson, “Hierarchical Cache/Bus Archi-
tecture for Shared Memory Multiprocessors”,
Proc. of the 14th Annual International Sympo-
sium on Computer Architecture, 1987.

[4] D. Cheriton, H. A. Goosen, and P. D. Boyle,
“Paradigm: A Highly Scalable Shared-Memory
Multicomputer Architecture”, IEEE Computer,
Feb., 1991.

[5] Intel Corporation, Multibus II Bus Architec-
ture Specification Handbook, Intel Corporation,
1984.

(6] IEEE, IEEE Standard Backplane Bus Specifica-
tion for Multiprocessor Architectures: Future-
bus, IEEE Standard 896.1, 1987.

[7) G. M. Amdahl, “Storage and IO Parameters and
System Potential”, Proc. of the IEEE Computer
Group Conference, 1970.

[8] “Disk Cache — Miss Ratio Analysis and Design
Considerations”, ACM Trans. on Computer Sys-
tems, Vol. 3, No. 3, Aug., 1985.

[9] J. L. Hennessy and D. A. Patterson, Computer
Architecture: A Quantitative Approach, Mor-
gan Kaufmann Publishers, San Mateo, Califor-
nia, 1990.

[10] M. G. Baker, J. H. Hartman, M. D. Kupfer, K.
W. Shirriff, and J. K. Ousterhout, “Measure-
ments of a Distributed File System”, Proc. of
the 13th ACM Symposium on Operating Sys-
tem Principles, Pacific Grove, California, Octo-
ber, 1991.

[11] A. TevanianJr., “Architecture-Independent Vir-
tual Memory Management for Parallel and Dis-
tributed Environments: The Mach Approach”,
Ph.D. Thesis , Dept. of Computer Science,
Carnegie-Mellon University, 1987.

[12] Cypress Semiconductor, Sparc RISC User’s
Guide, Cypress Semiconductor, 1990.

[13] Cypress Semiconductor, Sparc MBus Interface
Specification, Cypress Semiconductor, 1991.

[14] Cypress Semiconductor, CYM6002K Dual CPU
SparcCore Module, Cypress Semiconductor,
1991.

(15] Intel Corporation, MPC User’s Manual, Intel
Corporation, 1986.

