An Upper-Bound Algorithm for Gate-level Delay Analysis

Sunshin Lu and Feipei Lai

Department of Computer Science
National Taiwan University
Taipei, Taiwan, R. O. C.
Tel: 02-3630231-ext 3230

Abstract

"An upper-bound algorithm for gate-level delay analysis
dynamically updates path timing information. When conflicting
logic value occurs, the algorithm switches to the most promising
path according to the updated path delay. The execution time has
been greatly shortened by reducing the number of paths to be
traced.

1. Introduction

The number of gates in a chip increase dramatically due to
the fast progress in semiconductor technology. Since the design of
digital circuit becomes more and more expensive and difficult, pro-
duct verifications can never be over emphasized. There are three
major parts of product verification, functional design verification,
physical design verification, and timing verification. Timing
verification is validating the path delays (from primary input or
storage elements to primary output or storage elements) to ensure
that they are within the specified delay range.

Most earlier works of timing analysis can be roughly divided
into the following two approaches:
1. Block oriented algorithm {1-4].
2. Path enumeration algorithm [5-8].

Path enumeration algorithm enumerates all the possible paths in the
digital networks and calculates the delay of each path. The com-
plexity of this algorithm is O (e") and n is number of nodes in the
digital network. The path found by this algorithm is not neces-
sarily sensitive.

Block oriented algorithm is a PERT (Performance Evaluation
Review Technique) based algorithm for finding critical path. The
complexity of this algorithm is O (n), where n is number of nodes
in the digital network. Though it is fast, the path found by this
algorithm could be too conservative. The reason is that it does not
consider the functional relations between signals; therefore, it may
find a path that would never be activated.

As the critical path found by block oriented algorithm is not
necessarily activated, there are some algorithms that consider the
functional relationships between signals in order to find a more
accurate critical path. In this paper, we proposed an algorithm that
uses the results obtained from block oriented algorithm to select the
most promising critical path for performing functional analysis.

232

2. Upper-Bound Algorithm

We know that the delay analysis concems if there is a path
which is too short or too long that would not meet the timing
requirements. As the short path is easy to fix up, we will focus on
the long path. Given a digital network, we perform the block
oriented algorithm from inputs to outputs. We can find critical
path by checking the delays of the output nodes. If the critical
path is not too long then the digital network will work properly.
However, it is seldom the case, so by performing the functional
analysis, we can see whether the critical path is sensitive or not.

Let us describe our data structure and algorithm briefly now.
The analyzed circuit can be viewed as a network. We first perform
the PERT analysis of the analyzed circuit from primary inputs to
primary outputs and we will get the maximum delay (max_in(p))
from primary inputs to each node p in the circuit. We will treat
each primary output nodes separately as we know that the critical
path starts from one of the primary input nodes and ends at one of
the primary output nodes. Upper-bound algorithm will dynamically
update the maximum delay of each node in the network. We will
create a network for a primary output node if it has the maximum
delay among all primary output nodes. For example, in Figure 1(a)
J, K, and I are primary output nodes. The number below each
node is the maximum delay from primary inputs to that node. The
delay value, 11, of node J is maximum so a network is created for
it (Figure 1(b)). After performing functional analysis of the net-
work created for nodc J the maximum delay of node J is updated
from 11 to 8 and the delay node K, 10, becomes the maximum.
The numbers in parentheses (Figure 1(b)) are the updated max-
imum delay from primary inputs to that node. This time a network
(Figure 1(c)) is created for node X and we perform functional
analysis for that network. This process will be continued until we
succeed in finding the critical path by performing functional
analysis.

For each primary output node, there is a critical path starts
from some primary input node and ends at it while performing the
functional analysis on a network of primary output node J, we
start from node J and trace back to the primary input nodes. As
critical path is traced back from some primary output node J, we
say that the critical path is led by node J. The most important part
of our algorithm is the procedure which will dynamically update
the maximum delay of each node when the functional analysis was
blocked. The following example can explain how this
works. A network created for primary output node Q is
Figure 2(a), the critical path being traced is node 0, N, K, « ‘.
The number below the name of each node is the maximum uelay
from primary inputs. Node P, @, and R are primary outputs;
node A, B, and C are primary inputs. The next node to be
included in the critical path is D. If the functional analysis fails

when node D is included then the maximum delay of the nodes
(Q. N, K, and H) in the critical path must be updated. In Figure
2(b) the maximum delay of node H changed from § to 5 as its
maximum input node changed from node D (maximum delay 5) to
node E (maximum delay 2). Dotted line means the node had been
visited before. Maximum delay of node K must be updated from
11 to 9 as its maximum input delay had been changed from 810 6.
The maximum delay of node N should be changed from 14 to 13
and node O changed from 16 to 15 for the same reason. Note that
the maximum input node of node N had changed from node K to
node J and node K has the new maximum input node G; such
nodes, as K and G, we call them scparaie nodes. If separate
nodes exist, then we define tail node to be the separate node with
the maximum delay; otherwise, tail node is the last node of the
.critical path.

In this example the current tail node is node N. Assume that
the path led by node Q is still the most promising critical path
after we have updated the maximum delays, then the functional
analysis will start from the tail node (N) of the path that is led by
node Q. We will not stop the functional analysis until the process
fails or reaches the primary input node. If a primary input node is
reached then the critical path has been found and the program will
be terminated. If the new critical path (node Q, N, and J) is
blocked by nodeJ (Figure 2(c)), then the maximum delays of node
J, N, and Q must be updated. We have two critical paths now,
one is the new critical path (node J, N, and Q) the other is the
previous one (node H, K, N, and Q). However, we can just keep
track of one critical path in a network. If the new critical path is
still the most promising one and this time node H is chosen to be
included in the new critical path then the next node to be chosen
after node H would be node E instead of node D (Figure 2(d)). It
is because at node H the input node D has been marked as visited.
In the presence of more than one critical path, we may choose the
wrong one, node E, instead of node A so we can have only one
critical path in a network at one time.

Pruning-subpaths, tracing all the paths that come after the tail
node(N) of the previous critical path, is our approach to solve the
problem. The procedure of pruning-subpaths is the same as the
modified DFS algorithm [11} except that the root is the tail node
(N) and the direction is trom primary output to primary inputs.
Pruning-subpaths of previous critical path starts from the last node
(H) and ends at the tail node (V) along the path. The procedure
will also keep track of the lower bound of the analyzed circuit
which is at first set to be zero. Pruning-subpaths will not include a
node to the critical path if the maximum delay plus the gate delays
along the current critical path is less than the lower bound, and this
node would be marked as visited. We will update the lower bound
when a primary input node is successfully included in the path.

We will include a node in the critical path only if the inclusion
produces a path delay which is greater than the current lower

bound.

As pruning-subpaths searches for the lower bound and the
tracing of critical path of each network finds the upper bound, the
upper-bound algorithm is somewhat like a branch-and-bound algo-
rithm.

One of the important parts of our algorithm is that the pro-
cedure which collects node signal information derives more conclu-
sions to check for logic consistency. We use the same procedure
as in [9], and define a set of propagation rules as follows:

233

A = not(B)
1. If B is known, set A to B.
2. If A is known, set B to A.

A =and(B,, By, ..., B,)
1.IfB; =1foralli,set Ato L.
2.IfA=1,set B; to 1 foralli.
3, 1fB; =0 forany i,set At 0.

A =or(By, By . By)
1.IfB; =0 foralli,set At O.
2.IfA=0,setB; 100 foralli.
3.1fB;, =1 foranyi,set Ato 1.

A =nand(By, By, ... B,)
1.IfB; =1foralli,set At0.
2.IfA=0,setB; to 1 forali.
3.1fB; =0 foranyi,set Ato 1.

A =nor(By, By, ..., B,)
1.I1fB; =0foralli,set Ato 1.
2.IfA=1,set B; to O foralli.
3.If B, = 1 for any i, set A to O.

A =xor(By, By, ... By)
n
1. If ¥'B; is odd, set A to 1.
1

A =xnor(By, By, ... By)

n
1. If ¥'B; is even, set A to 1.
1

Before describing the algorithm, we will define some termino-
logies used in the algorithm first. Let Q be the queue containing
pairs of output node and its corresponding delay, lower_bound be
the.lower bound of critical path delay, and L be the maximum path
delay that would not cause timing violation.

delay (p) - gate delay of node p

max_in(p) - delay of the longest path from primary inputs to
node p

latest_to(p) - the unmarked node that has largest max_in
value among all the input nodes to node p

mark_node(q, p) - mark the input node g of node p as
visited.

tail (H) - tail node of the path which is led by primary output
node H.

prenode (p) - node that comes before node p in the critical
path which direction is from some primary output to primary
inputs.

postnode (p) - node that comes after node p in the critical
path which direction is from some primary output to primary
inputs.

Funalys(p) - retum true if the inclusion of the node p into
current critical path does not cause logical confliction.

Begin

lower_bound := 0 /* initial value */

For all node p in the circuit compute max_in(p).

/* use PERT method */

Sort queue Q according to path delay by descending order.

/* every pair in Q contains a primary output node and the max-
imum delay from primary inputs to that node */

(H, upper_bound) := remove(Q)

/* (H, upper_bound) is the first pair in Q */

WHILE ((upper_bound > L) && (upper_bound > lower_bound)){
/* continue when upper bound is still too large and the current
upper bound is greater than lower bound */
IF (H has never been visited before)
THEN
Create a network for the primary output node H .
/* for holding functional values while analyzing the path */
p = tail(H)
/* p is the tail node of the network that is created for H */
I := postnode (p)
/* r points to the subpath to be pruned */
q := latest_to(p)
continue := funalys(q)
/* if continue is true than node q can be included in the path that
is led by node H */

WHILE (continue && (q is not a primary input node)){
/* the path is not blocked and not reach the primary input */
add node q to the current critical path
q = latest_to(q)
continue := funalys(q)
}
IF (q is a primary input node) /* the critical path is sensitive */
THEN exit

IF (r != NULL) /* if r is NULL it means nothing to be pruned
*/
THEN
lower_bound := prune_subpaths (r, lower_bound)
/* pruning_subpaths returns the updated lower bound
trace back and update timing delays */
p = prenode (q)
mark_node(q, p)
/* q cause violation when adds to the critical path */

WHILE (p != H){
/* there are more nodes to be traced in the path */
q := latest_to(p) /* q is the new max_in of p */
s := prenode (p)
IF (q == NULL)
THEN /* all the input nodes of p had been traced */
mark_node (p, s) /* mark node p as visited */
ELSE
max_in(p) := delay [p] + max_in(q)
/* compute new max_in of node p in the path */
p:=s
}
max_in(H) := delay (H) + max_in (latest_to (H))
/* compute new upper bound of the path that is led by H */
Insert (H, max_in(H)) into Q according to the new path delay.
(H, upper_bound) := remove (Q)
/* (H, upper_bound) is now the most promising critical path and
critical path delay */

234

3. Examples

Consider the circuit shown in Figure 3 [10]. After perform-
ing PERT analysis we get the maximum delay from primary inputs

of each node. The results are also shown in Figure 3. Primary
output node Y has the maximum delay (4), so a network is created

for it. The path which composed of edges Y, X, E, D, and B is
the critical path. The result after performing functional analysis is
shown in Figure 4. We observe that at edge E, there is a logic
inconsistence, so the path is blocked. As we have only one critical
path, so we do not have to do prune-subpaths. The max_in(i) of
each node i that goes between edge Y and edge E must be
reevaluated and the result is shown in Figure 5. Path (Y, X, E, C)
is now the new critical path. The result from functional analysis is
shown in Figure 6, and this time the path is not blocked.

4. Conclusion

We have proposed an algorithm that will always select the
most promising critical path for performing functional analysis.
Previous algorithms used to choose the altemative of the last edge
1o replace the one that violates the functional requirements. Some-
times the real critical path is far away from the current blocked
path, previous algorithms will still waste time on those hopeless
ones. Nevertheless, the upper-bound algorithm will always select
the most promising one according to updated path delay informa-
tion after it prunes subpaths. Ten circuits from ISCAS testing
benchmark have been run on VAX 8530 and the results in Table 1
show the advantages of efficiency and accuracy over the PERT
approach.

References

(1]. T. I Kirkpatrick and N. R. Clark, "PERT as an aid to
Logical Design," IBM Journal of Research and Development,
Vol. 10, No. 2, pp. 135-141, March 1956.

[2]. T. M. Mcwilliams, "Verification of Timing Constraints on
Large Digital Systems," Proceedings of the 17th Design Auto-
mation Conference, Minneapolis, pp. 139-147, 1980.

[3]. Robert B. Hitchcock, Sr. "Timing Verification and the
Timing Analysis Program,” Proceedings of the 19th Design
Automation Conference, pp. 594-604, 1982.

[4]. Lionel C. Bening , Thomas A. Lane, and Curtis R. Alex-
ander, "Developments in Logic Network Path Delay
Analysis," Proceedings of the 19th Design Automation
Conference, pp. 605-615, 1982.

[5]. D. J. Pilling, and H. B. Sun, "Computer Aided Prediction
of Delays in LSI Logic Systems," Proceedings of the 10th
ACM/IEEE Design Automation Workshop, Portland, Oregon,
pp. 182-186. 1973.

[6]. M. A. Word, "Design Verification and Performance
Analysis," Proceedings of the 15th Design Automation
Conference, Las Vegas, pp. 264-270, 1978.

[7]. T. Sasaki, A. Yamada, T. Aoyama, K. Hasegawa, S.
Kato, and S. Sato, "Hierarchical Design Verification for Large
Digital Systems," Proceedings of 18th Design Automation
Conference, Nashville, pp. 105-112, 1981.

[8]. R. Kamikawai, M. Yamada, T. Chiba, K. Furumaya and
Y. Tsuchiya, "A Critical Path Delay Check System," Proceed-
ings of the 18th Design Automation Conference, Opryland, pp.
118-123, 1981.

[9]. D. Brand, "Redundancy and Don’t cares in Logival Syn-
thesis,” JEEE Transactions on Computers, Vol. 1. C-32, No.
10, October, pp. 947-952, 1983,

(10]. D. Brand, and V. S. Iyengar, "Timing Analysis using
Functional Relationships Verification," IEEE Digest of Techni- A
cal Report, ICCAD’ 86, pp. 126-129, 1986.

[11). J. Benkoski, E. Vanden Meersch, L. Claesen, and H. De

Man, "Efficient Algorithms for Solving the False Path Prob-

lem in Timing Verification," IEEE Digest of Technical Report, E »- N Q
ICCAD’87, pp. 44-47, 1987.

- I 10 11
b (a)
~
a— el 3 =~
0 5 T
10 12
E H |
I S |
3 K Q
14(13) 16(15)

(o)

A—EE_ J Figure 2. (a) network created for node Q, number beicw each noge s the

O 5 maximum delay from primary input to that node

1 1 (g) (b) numbers in parentheses are the updated delays, dotied ine
marks the node as visited

Figure 1. (a) is the sample circuit, (b)
is the network created for (d)
node J, and (c) is the network

created for node K. Figure 2. Continued

235

Figure 3. Sample circuit and the results after performing PERT
analysis.
Figure 5. Circuitafter the reevaluation of max-in(i) of each
nodei in the traced path.

) . . . Figure 6. Circuit after performing functional analysis on the new
Figure 4. Results of performing functional analysis, critical path
where the number in quotes represents logical values.

circuit | # gates | exe-time (pert) | delay (pert) | exe-time (u-bound) real-delay
1/60 second unit delay 1/60 second unit dela
c432 160 5 17 5 17
c499 202 6 11 1 11
c880 383 9 25 2 25
c1355 546 12 25 22 25
c1908 880 19 45 339 43
c2670 1193 33 37 648 35
¢3540 1669 35 57 9637 51
c5315 2307 53 51 6552 46
c6288 2416 53 124 1208 124
c7552 3512 78 46 16799 40

Table 1. Result of ISCAS testing benchmarks running on VAX 8530,
all the gates have 1 unit delay except that BUFF has 2 units.

236

